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Thermally activated escape with potential fluctuations
driven by an Ornstein-Uhlenbeck process
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We study the mean escape time T of an overdamped Brownian particle in a metastable poten-
tial that is subject to additive Gaussian white noise (thermal noise) and multiplicative Ornstein-
Uhlenbeck noise (potential fluctuations). We derive two very general simple conditions for the
existence of "resonant activation, " i.e., a minimum of T as a function of the correlation time w of
the potential Buctuations. In the case of small thermal and potential Buctuations, we investigate
T(r) for large r by means of a kinetic model and the remaining r regime by means of quasipotential
theory. We find three different types of "resonant activation": a standard type, a type that typically
occurs for potentials without Huctuations near the barrier and the well, and a mixed type.

PACS number(s): 05.40.+j, 02.50.—r, 82.20.Mj

I. INTRODUCTION

The problem of thermally activated escape with ran-
domly Quctuating potentials occurs in a wide variety of
contexts [1—13]. Examples are molecular dissociation in
strongly coupled chemical systems [14], oxygen binding
to hemoglobin [15], models for the dynamics of a dye
laser [16], selective pumps for biological macromolecules,
chromosomes, or viruses [17], and recently introduced
ratchet models for the action of molecular motors [18].
In a seminal paper, Doering and Gadoua [2] considered
an overdamped Brownian particle driven by Gaussian
white noise in a piecewise linear double well potential
with slopes Quctuating according to a dichotomous pro-
cess. They detected that the mean escape time T over
the potential barrier may exhibit a minimum as a func-
tion of the correlation time v. of the potential Quctua-
tions. This "astonishing phenomenon" [14], for which
Doering and Gadoua coined the term "resonant activa-
tion" [19]stimulated numerous subsequent investigations:
A more detailed study of the same model was carried out
in Refs. [3,4]. Some light on the basic mechanism of res-
onant activation was shed by the investigation [5,6] of
even much simpler kinetic models that, under appropri-
ate conditions, exhibit the same behavior. More gen-
eral potentials with fluctuations driven by an Ornstein-
Uhlenbeck process were treated by means of different ap-
proximation schemes in Refs. [7,8] and, even before [2], in
Refs. [9,10], while a simple particular model was solved
exactly in [ll]. The observation of resonant activation
in analog simulations was reported in Ref. [12]. Finally,
by means of a perturbation theory it could be shown [13]
that the mean escape time T(r) generically decreases for
sufBciently small correlation times w and increases for
asymptotically large correlations times w, which implies
the existence of resonant activation, for both dichoto-
mous and Ornstein-Uhlenbeck noise driven potential Quc-
tuations under the assumption of weak thermal noise.

In this article we continue our study [20] that pre-
dicted a variety of new general qualitative and quanti-

tative properties of T(7) by means of simple intuitive
arguments. Here, we present a more detailed and rigor-
ous approach for the particular case where the potential
Quctuations are driven by an Ornstein-Uhlenbeck pro-
cess. We proceed as follows: In Sec. II we specify the
model and introduce the central quantity of this paper,
the mean escape time T(r). In Sec. III we determine
T(r) for asymptotically small and large w yielding as a
by-product two very general simple conditions for the ex-
istence of resonant activation. In the rest of the paper we
restrict ourselves to the most interesting case [21] of weak
thermal and potential Quctuations. In Sec. IV we show
that a kinetic model similar to those studied in Refs. [5,6]
provides accurate approximations for T(r) in the large-w
regime. We review the well-known general properties of
such kinetic models [22—24] and discuss the consequences
with respect to our particular problem at hand. In Sec.
V the rate concept [21] is adopted for the determination
of T(w) in the 7 regime not covered by the kinetic model.
We restrict ourselves to the exponentially leading contri-
butions for small thermal and potential Quctuations that
can be determined by the powerful methods of quasipo-
tential theory [25—34]. General qualitative properties of
the quasipotential are discussed in Sec. VI, while a quan-
titative perturbation theory is presented in Sec. VII for
potential fluctuations that are small in comparison with
the thermal noise. The technically most involved calcu-
lations are carried out in Sec. VIII in order to determine
the quasipotential for large correlation times v . For read-
ers who are not interested in the technical details a rather
complete summary of the main results is presentedin Sec
IX.

II. THE MODEL

We consider the usual one-dimensional model
[2—4,7—13,20] of an overdamped Brownian particle with
coordinate x,

x(t) = —U'(x(t)) —W'(x(t)) y(t) + +2D ((t), (2.1)
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additively disturbed by Gaussian noise ((t) of vanishing
mean and correlation (((t) ((s)) = 6(t —s) (thermal Huc-

tuations). The particle moves in a potential

U„(x):=U(x) + W(x) y (2.2)

consisting of a static part U(x) and a Huctuating part
W(x) that is driven by an Ornstein-Uhlenbeck process

y(t) = y(t)—/w+ /2D/7 rl(t), (2.3)

p(y) = (2' D) '~ exp( —y /2D) (2.4)

and C(t) = De ~ ~)', respectively. The correlation time
w, 0 & 7 & oo, is the central control parameter of our
model and we adopt the crucial assumption [2—4,11,13,20]
that both the thermal noise and the distribution of the
fluctuating potentials do not change with w. In other
words, we assume that U(x), W(x), and D in (2.1), (2.3)
are w independent [35].

For the sake of convenience only, we restrict ourselves
to smooth metastable potentials U(x) in (2.1) with a
quadratic well (minimum) at x = 0 and a quadratic bar-
rier (maximum) at x = 1. We further assume that x = 0
and x = 1 are the only zeros of U'(z) and that U(x) in-
creases faster than what would be proportional to x for
large negative z [36], for instance,

U(x) = x'/2 —x /3 . (2.5)

Finally, the Huctuating part of the potential W(x) is as-
sumed to be a smooth function that approaches a con-
stant value for z ~ —oo [37]. Two examples that we will
often use in the following are

where rt(t) is the same kind of 8-correlated Gaussian
noise as ((t) in (2.1) with (((t) rl(s)) = 0. The coupling
strength g2 D/v of the white noise in (2.3) is chosen for
later convenience. In principle, this does not yet mean a
loss of generality since any other choice could be absorbed
into the potential W(x) in (2.1). We restrict ourselves to
the case where the potential Huctuations (2.3) are in the
stationary state. Thus their probability distribution p(y)
and correlation C(t):= (y(t) y(0)) are

III. GENERAL FRAMEWORK

For small correlation times ~ of the potential fluc-
tuations (2.3) it is plausible that in leading order ap-
proximation their effect on the particle (2.1) is equal to
that of white Gaussian noise (in Stratonovich interpre-
tation [39]) of the same mean (y(t)) = 0 and intensity

I C(t) dt = 2 Dr. In other words, the fact that y(t) is
actually colored only concerns higher than leading order
approximations in w. These intuitive arguments are con-
firmed by the more detailed discussions in Refs. [8,10]. As
a consequence, one readily finds [21] for the mean-first-
passage time T (x) across zth for a particle with seed
x & xth in leading order w that

exp y ~ ),)dz)
U'( )

dv de)
D (v) D (w)

D-(*):=D(1+ IW'(*))'k

T-(*) = (3.1)

(3.2)

Qn the other hand, in the limit w m oo, the potential fluc-
tuations (2.3) become time independent. Consequently,
by averaging over the mean-first-passage times for fixed
y(t) in (2.1) according to the probability distribution
(2.4) one finds [21] that

hG itself, the saddle point (1,0) is the unique attractor.
We focus on an ensemble of particles (2.1) with an

initial distribution pp(x) at time t = 0 that is mainly
concentrated about the well x = 0 of the static potential
U(z). The quantity of central interest is the mean escape
time T out of the region x & x&h, where the boundary
xth is required to be sufFiciently far beyond the barrier
x = 1 in order that particles, once they have crossed the
threshold x&h, are very unlikely to return into the region
x & 1 [38]. In particular, we will study the behavior of
the mean escape time T(7 ) as a function of the correla-
tion time w of the potential fluctuations and the possible
occurrence of resonant activation [nonmonotonic depen-
dence of T(w) on 7 with an absolute minimum at a finite
w value].

and

W( )
gU(x) for z&0
g U(0) for x & 0 (2.6)

T-(*) =
&th exp(+(" v))/D)

D

&( ):=U( ) —U( ) + [W( ) —W( )1'/2.

(3.3)

(3.4)

g cos (2vr x) for 1/4 & z & 3/4
0 otherwise, (2.7)

From the mean-first-passage times (3.1) and (3.3) the
corresponding mean escape times T(7 ) are obtained by
averaging over the seeds,

where g is a coupling constant. It turns out that the
discontinuities of W" (x) in these examples never impose
a serious problem.

Our assumptions regarding U(x) and W(x) imply that
the two-dimensional deterministic dynamics (2.1), (2.3)
with D = 0 has a saddle point at (x, y) = (1, 0) and a
point attractor at the origin (0, 0) with a w-dependent
basin of attraction G . The basin boundary bG cuts
the x-y plane into two parts, one being deterministically
attracted by the origin and the other by x = oo, while on

T(v) = po(*) T-(z) . (3.5)

From (3.1)—(3.5) we can infer that

T(0) & T(~). (3.6)

In fact, one even has the strict inequality T(0) & T(oo)
except for a certain class of potentials W(x) in the weak
noise limit D ~ 0, as we shall see in Sec. IV C. Further-
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more, it can be shown that T(oo) stays finite and T(7)
is smooth and Rnite for small v due to our assumptions
at the end of Sec. II regarding the potentials U(z) and
W(x). For a coinparison of (3.1)—(3.5) with numerical
simulations see Figs. 1—4.

According to (3.6), a sufficient condition for T(w) to ex-
hibit a minimum (resonant activation) is that the asymp-
totic expression (3.1) decreases for increasing w [20].
The latter is certainly the case if W'(z) = 0 whenever
U'(x) & 0 and x & xth. While this simple ancient con
dition for resonant activation is valid for general noise
strengths D, for small D one can evaluate (3.1) in saddle
point approximation to yield for the mean escape time
(3.5)
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Thus, for sufjciently smat/ D resonant activation occurs
generically [13];see also Figs. 1—4.

It is worth noting that in the weak-noise approximation
(3.7) only the exponentially leading Arrhenius factor, but

FIG. 2. Same as Fig. 1 but for the type II potential W(x)
from (2.7) with g = 0.4.

not the pre-exponential factor, depends linearly on w. A
similar weak-noise analysis as in (3.7)—(3.9) but for the
large-w limit (3.3), (3.5) is postponed to Sec. IV C.

In order to obtain quantitative results for correlation
times w more general than in (3.1)—(3.5), one cannot
avoid dealing with the master equation
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governing the two-dimensional time dependent probabil-
ity distribution p(x, y, t) of the particle x and the poten-
tial Quctuations y. Here, the master operators I' and
I'„arethe Fokker-Planck operators corresponding to the
I angevin equations (2.1) and (2.3), respectively. The
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FIG. 1. Numerical simulations of the mean escape time
T(v) out of the region z & xth = 3/2 for the noisy dynam-
ics (2.1), (2.3) with U(x) from (2.5) and the type I potential
W(z) from (2.6) with g = 1. The noise strength is D = 0.03
and the initial distribution of particles p()(z) = b(z). The
numerical uncertainty due to the time discretization and the
6nite number of realizations is a few percent. The crosses
indicate the (exact) T(0) and T(oo) from (3.1)—(3.5). The
four solid lines represent the following theoretical approxima-
tions (from left to right): (1) small-r asymptotics according
to Eqs. (3.1), (3.5), (2) approximation (8.12) for 1 « 7 (( To
with TTI from (4.7) and R from (8.11), (3) approximation (4.1),
(4.6) for in 1/D (& v (& T(0) following from the kinetic model,
and (4) large-v asyxnptotics (4.1), (4.8) predicted by the ki-
netic model. Note that the predictions (2)—(4) are expected
to become exact within the respective range of v values only
fear asymptotically small D.
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FIG. 3. Same as Fig. 1 but for the mixed type po-
tential (shown in the inset) W(x) = 0.025 [1 —cos(TT x)]
+0.075 [1 —cos(3 Tr z)] for 0 & z ( 1, W(x) = 0 for z & 0, and
W(x) = 0.2 for z ) 1. The approximation (8.12) is uot shown
since the condition U'(z) —AW W'(x) ) 0 for 0 ( z & 1 is
not satisfied.
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evolution equation (3.10) is supplemented by the initial
condition at time t = 0 reading p(x, y, 0) = pp(x)p(y)
and the boundary condition p(xti, I y, t) = 0 accounting
for the absorption of particles after having escaped from
the region x & xqh. The mean escape time then follows
&om p(x, y, t) as

&th OO OO

dx dy dt t [ p(x—, y, t)]
—OO 0

dx dy dtp(x, y, t) .
—OO 0

(3.13)

In general, the solution of the master equation (3.10) is
very difficult. In the following we restrict ourselves to the
most interesting case [3,7—11,13,20,21] of small strengths
D of the thermal and potential fluctuations. This case has

the additional appealing property that the mean escape
time T(T ) becomes independent of the particular choice
of the threshold xth, provided xth & 1, and the initial
distribution po(x) of particles, provided it is mainly con-
centrated about the potential well x = 0 [21].

Due to our specific choice /2D/r of the coupling
strength of the white noise TI(t) in (2.3) one should,
in principle, allow for a D dependence of the poten-
tial W(x). However, as already plausible by (3.1)—(3.5)
and as will be con6rmed by our subsequent calculations,
the natural choice for small D is a (asyxnptotically) D
independent W(x). Otherwise, either the thermal noise
or the potential fiuctuations in (2.1) becomes negligi-
ble for asymptotically small D [at least in the exponen-
tially leading part of T(r)]. We briefiy come back to
D-dependent potentials W(x) in the final section IX.
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FIG. 4. Same as Fig. 1 but for the type II potential W(x) from (2.7) with g = 0.1 (a) and g = 0.2 (b). The theoretical
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IV. KINETIC MODELS FOR LARGE v

A. Basic equations

For small strengths D of the thermal and potential
fluctuations in (2.1), (2.3) it is plausible, and will be seen
in more detail later on, that the mean escape time T(r)
becomes large. If, additionally, the characteristic time
v of the potential fluctuations y(t) is large then a par-
ticle typically spends most of this waiting time T(r) in
a small neighborhood of the instantaneous absolute min-
imum x;„(y(t))of the "quasistatic" potential U„~ql(x)
in the region x ( xq~. The sojourn close to x;„(y(t))is
interrupted by smaller and larger excursions that all end
again near x;„(y(t))(unsuccessful escape attempts) and
is terminated by a successful escape attempt. Hence, for
correlation times 7 much larger than the time scale T of
the escape attempts, the particle sees in good approxima-
tion a nonfluctuating potential U„(x)during any excur-
sion &om the instantaneous minimum of the potential. In
particular, for v && T the probability per unit time to es-
cape across xqh is given by the well-known Smoluchowski
rate k(y) corresponding to the instantaneous quasistatic
potential U„(x)[21]

For systems (2.1) with potential fluctuations driven
by dichotomous noise y(t), an approximative description
analogous to (4.2) was introduced in Refs. [4,5] and in-
vestigated in further detail in Ref. [6]. Gain-loss balance
equations of the form (4.2) have been studied extensively
in the context of random walks with traps and the kinet-
ics of difFusion-controlled chemical reactions, see [22—24]
and further references therein. It is also worth mention-
ing that, apart from the absorption term k(y) and the
boundary conditions, Eq. (4.4) has the same form as the
backward equations encountered in mean-erst-passage-
time problems [21].

Note that the kinetic model (4.1)—(4.4) itself is well
de6ned for arbitrary D and ~. Unless stated otherwise,
in the remainder of this section we incan by T(w) the
hence following mean escape time (4.5). The latter is,
however, expected to provide accurate approximations
for the "true" mean escape time (3.13) of the particle
(2.1) only for small D and large w, as will be discussed
in more detail in Sec. IVD. In particular, this will be
always implicitly understood when comparing T(7 ) from
(4.5) with the numerical results in Figs. 1—4.

B. General results

k(y)= f dzj dz

xp([U (*) —U (~)]l!D)
D (4.1)

Obviously, there is little hope of solving (4.3) or (4.4)
explicitly with k(y) given by (4.1). However, asymptotic
expressions for large and small v are available [24], yield-
ing for the mean escape time (4.5)

In other words, correlations between potential fluctua-
tions and escape events are negligible [3]. Thus, for
v )) T the joint probability P(y, t):= 1

'"
p(x, y, t) dx

that a particle sees a quasistatic potential U&(x) and has
not yet escaped &om the region x & x&h evolves under
the simultaneous action of the master operator I ~ gov-
erning the potential fluctuations y, see (2.3), (3.12), and
the loss rate k(y) due to successful escape events,

2

dy 1 —Tpky py
T(r) = Tp + — dy

—OO py

OO

Tp ..—— dy k(y) p(y)

(4.6)

(4.7)

P(y, t) = [I'„—k(y)]P(y, t). (4 2) for small r and

[I'. —k(y)]P(y) = -p(y) (4.3)

The initial condition supplementing this so-called "ki-
netic equation" obviously reads P(y, 0) = p(y). By
integration over t in Eq. (4.2) one finally finds that
P(y):= j~ P(y, t) dt satisfies

T(™)= / "NP(w)l" (1l) (4.9)

T(~) = T(~) —— dy p(y) [k'(y)]'l [k(y)]' (4.g)
—OO

Alternatively, one may introduce a form function f(y)
through f (y)p(y):= P(y) obeying

[I".—k(y)]f(y) = -1 (4.4)

(4.5)

where I't is the adjoint operator of I'&. Once (4.3) or
(4.4) is solved, the mean escape time readily follows from
(3.13) as

for large r. Furthermore, it can be proven [24] that T(7 )
in (4.5) is strictly monotonically increasing u)ith r unless
k(y) is y independent in tvhich case T(7) is constant. In
particular, it follows that Tp ( T(oo). For a comparison
with numerical results see Figs. 1—4. The large-7. limit
(4.9) easily follows from (4.3), (4.5) since I'„in (3.12) van-
ishes. On the other hand, for small w the term k(y) on the
left-hand side of (4.3) becomes a small perturbation in
comparison with I'„,suggesting an ansatz P(y) oc p(y).
Introducing this ansatz into (4.3) and integrating both
sides over y fixes the proportionality constant and with
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(4.5) one recovers (4.7). The derivation of the leading or-
der corrections (4.6), (4.8) of the asymptotic results (4.7),
(4.9) as well as the proof that T(w) increases monoton-
ically are inore involved [24] and not reproduced here.
We only mention that To & T(oo) is an immediate con-
sequence of the Cauchy-Schwartz inequality applied to
(4.7) and (4.9). The fact that the asymptotically exact
expressions (4.6) and (4.8) obviously overestimate and
underestimate T(r) for sufficiently large and small 7,
respectively, suggests that they are actually upper and
lower bounds, in agreement with Figs. 1—3.

In order that the rate (4.1) correctly describe the de-
cay from a "quasistatic" potential U„(x)we made the
tacit assumption that this rate is equal to the inverse
mean-first-passage time [21] across xti, for a particle (2.1)
starting close to x = 0 and any y value that can occur
with a nonnegligible probability p(y). More precisely,
this assumption just means that the expression (4.9) for
T(oo) agrees with the result (3.3)—(3.5) in the weak noise
limit D ~ 0. In other words, E(v, ii)) in (3.4) is re-
quired to take its absolute minimum with side conditions
x & v & xqh and m & e at the same values v and m for
any x with nonnegligible po(x) as well as for x = —oo.

C. Vfeak noise limit

In order to compare (4.6)—(4.9) with numerical sim-
ulations (for instance in Figs. 1—4) one preferably uses
the full rate expression (4.1). However, for the further
analytical discussion we restrict ourselves to the saddle
point approximation

k (y) = IU„"{~(y))U,"{b(y))I"
&y(~(u)) —&w(b(v))

) (4.10)

valid for asymptotically weak noise D, where b(y) and
a(y) are the values of x and z, respectively, that maxiinize
U„(x)—U„(z)with the side condition —oo & z & x &
xth [40]. With (4.10) one can rewrite (4.7) by means of
another saddle point approximation under the form

This imposes a (rather mild) condition on W(x) in the
region x & 0 additional to those introduced at the end of
Sec. II.

Tp
2~{1+[W'(~)]'/IU„".(u) I

+ [W'(b)]'/IU,".(b) I)'" U(b) —U(~) —[W(b) —W(~)]'/2
IU„",(~) U„".(b) I"' (4.11)

Tp —C» e '/ with Cg & 0, C2 & 0 . (4.12)

A more explicit evaluation of (4.11) is possible only under
the assumption that a(y = —AW) and b(y = —EW) —1
are small quantities, where we introduced

~w:= w(i) —w(0). (4.i3)

It can be shown that this assumption is equivalent to the
following two conditions: (i) n and P defined by

Here, the numerator in the exponential function is equal
to the minimum of yz/2+U„{b(y))—U„{o(y)),yo denotes
the corresponding minimizing y, and a:= o(yo), b:=
b(yo) . In particular, one has that yo

——W (a) —W (b)
Taking into account that U„{b(y))—U„{a(y))is non-
negative for any y and certainly positive for y = 0 it
follows that To &om (4.11) is of the form

V(x):= U(x) —AW W(x) (4.i5)

2~v C AU —AW2/2+ v/2
v" (0) v" (1)

I
D

(4.16}

are small quantities. (ii) The straightforward solution
x = 1 —p+0(p ), z = n+0(n ) of c) [V(x) —V(z)] = 0,
and 8, [V( x)

—V(z)] = 0 is not only an extremum of
V(x) —V(z) but the absolute maximum respecting the
side condition —oo & z & x & xth. Under these condi-
tions (i) and (ii), it can be shown that the values of a(yo)
and b(yo) that dominate the saddle point approximation
(4.11) of (4.7), (4.10) are close to 1 and 0, respectively.
As a consequence, one finally finds after some calcula-
tions that

AW W'(1)
Iv" (1) I

AW W'(0)
Iv" (0)l

(4.i4)

where contributions of order n and P in the prefactor and
of third order in n and P in the exponential function are
omitted and

&:=1+ [w'(0)]'/Iv" (o) I+ [w'(1)]'/Iv" (1) I

[ 2iv" (0)I+ P'IV" (1)i] (2& - 1) —
[ w'(0) + P w'(1)]'

C2

(4.i7)

(4.18)
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Similarly as in (4.11), a saddle point approximation of (4.1), (4.9) yields

2~(1 —[W'(a)]'/IU„'-'. (a) I

—IW'(b)]'/IU, '-'. (b) I} ' '
IUg'. ( ) U„'-'.(b) I"'

U(b) —U( ) + [W(b) —W( )] /2x exp (4.19)

V(x):= U(x) + b, W W(x), (4.21)

&:=41 —[W'(o)]'/IV" (o) I

—[W'(1)]'/IV" (1)I)
'

(4.22)

where v = b and u/ = a maximize I (v, u/) from (3.4)
under the side condition —oo & ve & v & xth and
ys .——W(b) —W(a). Furthermore, in the saddle point
approximation (4.19) of (4.1), (4.9) the strict inequali-
ties —oo & a & 6 & 2;th are assumed to hold. In order
that (3.3)—(3.5) agree with (4.1), (4.9) in the weak-noise
limit it is additionally required that 6 & 0; see also the
last paragraph of Sec. IV 8. The term raised to the power
—1/2 in (4.19) is always positive as a consequence of the
fact that I" (v, u/) has a maximum at v = b, u/ = a. Simi-
larly as in (4.16), under the additional conditions that a
and 1 —b are small quantities, Eq. (4.19) can finally be
brought into the form

2m. V~C AU+EW'/2+K/2)T oo exp
IV"(o) V"(1)I" D

(4.2o)

where

while To ( T(0) if AW g 0, and To ) T(0) if b, W = 0
but W'(0) g 0 or W'(1) g 0. Here and in the following
T(0) refers to (3.8), not to (4.6). Similarly, one can con-
clude from (4.19) that T(oo) ) T(0), see also (3.6), and
that the equality holds if and only if (4.24) and

max F(v, u/) = F(1,0)—ao&u &e(~,h
(4.25)

are satisFied [41], where I'(v, u/) is defined in (3.4). In
summary, within the kinetic model T(7) is constantly
equal to T(0) from (3.8) if D is asymptotically small and
(4.24), (4.25) are satisfied and strictly monotonically in-
creasing from To towards T(oo) ) T(0) otherwise. For
instance, the conditions (4.24), (4.25) are satisfied for
the examples shown in Figs. 2 and 4 but not for those
in Figs. 1 and 3. The deviations in Figs. 2 and 4 from
T(w) = T(0) for large w are thus a finite-D effect. The
fact that in Fig. 2 these deviations are quite considerable
can be understood by noting that for a slightly larger g
value than the one used in Fig. 2 (for instance g = 0.41)
the condition (4.25) would no longer be fulfilled and thus
T(oo) would be exponentially larger than T(0) for weak
noise D.

Regarding the leading order corrections (4.6) and (4.8)
of the asymptotic behavior (4.7) and (4.9) we restrict
ourselves to the case where we have

v"(o) I
+ p'Iv" (1) I

+ [~ w'(o) + p w'(1)]

(4.23)

AW = W'(0) = W'(1) = 0, (4.24)

and n, P are as in (4.14) but with V instead of V. Sirn-
ilarly as in (4.16), contributions of order 6 and P in the
prefactor and of third order in n and P in the exponential
function are omitted in (4.20). Clearly, these contribu-
tions vanish and (4.16), (4.20) become particularly simple
if AW = 0 or W'(0) = W'(1) = 0.

As mentioned in Sec. IVB, within the kinetic model
T(7) becomes ~ independent if k(y) from (4.1) is y in-
dependent and increases strictly monotonically other-
wise. The w independence of T(w) is thus equivalent to
To ——T(oo). From (4.1) it is clear that a constant k(y)
and thus To ——T(oo) is not possible for any finite D.
However, within the validity of the saddle point approx-
imation, i.e. , for asymptotically small D, it can be con-
cluded from (4.11) after some calculations that To ——T(0)
if

a(y) = 0, b(y) = 1 (4.26)

for all y values in (4.10) that notably contribute to the
integrals in (4.6)—(4.9). In particular, this means that
W'(0) = W'(1) = 0. Assuming (4.26), one readily recov-
ers (4.16) and (4.20) with n, 6, P, P, K, and P equal to
0. According to the derivation of (4.16) the assumption
(4.26) is thus certainly justified as far as To is concerned
if V(x) —V(z) takes its absolute maximum respecting
—oo & z & x & x&h for x = 1 and. z = 0. Similarly, the
assumption (4.26) is certainly correct as far as T(oo) is
concerned if (4.25) and W'(0) = W'(1) = 0 are satisfied.
Analogous conditions for the validity of the assumption
(4.26) with respect to (4.6) and (4.7) are much harder
to obtain. Here, we restrict ourselves to the following
heuristic argument: The kinetic model (4.2) represents a
random walk on the y axis with a y-dependent probability
k(y) per unit time that a random walker at y disappears
&om the system. It is plausible that the relative number
of random walkers that disappear at any y for small 7
diQers only slightly &om the case 7. = 0. In particular,
the y values that dominate the mean escape time will be
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essentially the same. We thus can hope that the y values
that notably contribute in (4.6) are the same as in (4.7).
Analogous arguments for large ~ suggest the same conclu-
sion with respect to (4.8) and (4.9). In other words, the
above-mentioned conditions that (4.26) is valid as far as
(4.7) and (4.9) are concerned are expected to apply also
for (4.6) and (4.8), respectively. In particular, these con-
ditions are satisfied by the examples in Figs. 1—4 with
the exception that for the one in Fig. 3, the maximum of
V(x) —V(z) is not at x = 1, z = 0.

Introducing (4.26) into (4.10) one obtains from (4.6)

T(7) = Tp[l+7 k(0) g(AW//V2D)]

@(z):= e-'' dx e [erf(x —z) —erf(x)]

(4.27)

(4.28)

2
where erf(z):= 27r ~ J e dx is the error function.
Obviously, we have g( —z) = @(z) and, in particular,
@(0) = 0. If z is of the order 1 or larger, then the

2
integrand in (4.28) is approximately equal to 4e for
0 & x & z and negligible otherwise. Thus, @(z) becomes
roughly constant for large z. Finally, by means of (4.26),
(4.10) we can rewrite (4.8) under the form

For AW = 0 one readily recovers from (4.27), (4.29) a
constant T(7 ) as discussed below Eq. (4.25). For AW g
0 we may consider (4.27) and (4.29) very roughly speak-
ing, i.e. , within exponential accuracy, as truncated series
expansions in powers of r/T(0) and T(oo) e ~ /r, re-
spectively, where T(0) follows from (3.8) [not from (4.6)
or (4.27)] and we used (4.10), (4.20), and (4.26). We
thus expect that for AW g 0 and weak noise D, Eqs.
(4.6) and (4.8) will be accurate approximations at least
for small 7/T(0) and large T(oo) e ~ /r, respectively,
in good agreement with Figs. 1 and 3.

We finally mention that even under the conditions
(4.26) and W" (0) = W" (1) = 0, implying for the rate
(4.10) the simple form k(y) = k(0) e "~~~+, a closed
analytical solution of (4.3) or (4.4) is not known. For
numerical solutions see Ref. [23].

D. Consistency

Formally, our intuitive derivation of (4.2) corresponds
to an adiabatic elimination (Born-Oppenheimer approx-
imation) of x in the master equation (3.10), i.e., to ap-
proximating the operator I" by its smallest "instanta-
neous eigenvalue" —k(y) and then integrating over x [13].
This is justified as long as both 7 and k(y) are much
smaller than the other eigenvalues of I' describing the
"intrawell relaxation" towards the instantaneous quasi-
stationary state corresponding to the potential U„(x)
[13]. The time scale of the intrawell relaxation can be
readily identified with the time scale T of the escape
attempts. Moreover, the assumption in Sec. IV A that

T(r) and r are large and the escape from any quasistatic
potential U„(x)can be described by a rate (4.1) are equiv-
alent to the conditions r )& T and [k(y)] )) T in
the above-mentioned adiabatic elimination of x. Strictly
speaking, not only k(y) but also T depends on y and the
conditions 7 )) T and [k(y)] )) T must be fulfilled
for any real y since the Ornstein-Uhlenbeck noise (2.3)
is unbounded. In the following we will see that there
is hardly any potential W(x) for which these rigorous
conditions are actually satisfied. However, we will argue
that the kinetic model is expected to provide accurate
approximations for T(7 ) under much weaker conditions,
basically since large y values that may violate 7 &) T or
[k(y)] )) T only occur with extremely small probabil-
ity p(y).

It has been shown in Ref. [33] that for a potential
U„(z)with a single minimum in the domain z & zth,
for instance U„(x)= U(x), the time scale of an escape
attempt is given by

T ln 1/D (4.30)

for small noise strengths D, where the proportionality
constant depends on the details of U„(z).In view of (4.1),
(4.10) it follows that the conditions [k(y)] )) T and
r )) T require small noise strengths D and r )& ln1/D.
We thus expect that weak noise D and 7 & r;„(D)
with r;„(D))) ln1/D are necessary conditions for the
kinetic model to provide good approximations for the
mean escape time T(w). In particular, for r —+ oo we
have seen in the last paragraph of Sec. IVB that the
correct T(r) is recovered from the kinetic model only if
the rate (4.1) is equal to the inverse mean-first-passage
time across x&h which generically is only true for small
noise strengths [21].

We conjecture that weak noise D and large correla-
tion times w ) 7;„(D)are not only necessary but also
sufhcient conditions for the kinetic model to provide ac-
curate approximations for T(r) with r;„(D)diverging
for D + 0 much faster than ln1/D but much slower
than To. In the following we give some evidence for this
conjecture, however, without being able to prove it. We
first mention the agreement with the numerical results in
Figs. 1—4 apart from finite-D efI'ects. Next we note that
according to (4.12) the restrictions r;„(D))) ln 1/D
and 7;„(D)« T, are co.mpatible. Moreover, since
T(w) & Tp within the validity of the kinetic model, we
are consistent with the assumption at the very beginning
of Sec. IV A that T(r) becomes large for small D

If the adiabatic elimination of x is not justified for a
certain y value or, equivalently, a rate description fails
for the corresponding potential U„(x),this induces two
kinds of errors in the kinetic model in comparison with
the true behavior of the particles (2.1). First, the escapes
&om such a potential U„(x)are not properly taken into
account in the mean escape time. Second, the number of
particles that do not escape until U„(x)notably fluctu-
ates is generally wrong, undermining the validity of the
kinetic model even for those y values for which a rate
description is valid. Thus, if the rate description fails for
a y value, we have to make sure that both kinds of errors
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are negligible.
From (4.30) one can readily conclude that a rate de-

scription is certainly valid for potentials U„(x)with a
single minimum in the region x & xih [weak noise D
and w & 7;„(D),7;„(D)» ln1/D, is always tacitly
assumed]. Next we consider potentials W(x) and y val-
ues such that U„(x)is rnonotonically decreasing in the
whole region x & xth. An example is (2.6) but with
W(x) = gU(1) for x & 1, g & 0, and y & —1/g. It
is obvious that a rate description fails for such a poten-
tial U„(x).In particular, both the forrnal inverse escape
rate (4.1), (4.11) and the true escape time will be much
smaller than r;„(D).In other words, for such a poten-
tial U„(x)an escape takes place almost certainly until
the potential notably fluctuates but the same would also
be true if the "wrong" rate description were still used.
Moreover, using the wrong rate description only leads
to a negligible error in the incan escape time T(7) since

;„(D)« To & T(7). In summary, our conjecture re-
garding the validity of the kinetic model [which is based
on a rate description for all U„(x)]is consistent even in
the case where U„(x)exhibits no potential barrier for
certain y values.

While our conjecture is thus rather suggestive in the
case where U„(x)can only exhibit one or no minimum in
the domain x & xth for all real y, things become diferent
if U„(x)exhibits more than one minimum for certain y
values. For instance, U„(x)may display two minima that
are separated by a very high barrier such that the time
scale T of the "intrawell relaxation, " which is, in this
case, the transition time over the high barrier, becomes
comparable or larger than w or the (formal) inverse rate
(4.1). Our conjecture expresses the hope that such y
values only negligibly contribute to the number of escape
events and the mean escape time T(7 ) both in the kinetic
model and in the true escape problem for the particle
(2.1).

P(x, y) = —lim D ln p(x, y).
D —+0

(5.3)

Introducing the WKB ansatz for p(x, y) into the master
equation (5.2) and collecting terms of order 1/D then
yields the Hamilton-Jacobi equation for the quasipoten-
tial

H(B P(x, y), Oyg(x, y), x, y) = 0,
H(p, q, x, y):= p + q /7- —U„'(x)p —y q/~,

(5.4)

(5 5)

where p and q denote the canonical momenta conjugate
to x and y, respectively. Similarly, the remaining terms
of the master equation yield a di8'erential equation for
the prefactor Z(x, y).

Since in the Hamilton- Jacobi equation (5.4) the
quasipotential plays the role of the action in classical
mechanics, a formal solution at any point (x, y) F R
is given by

P(x, y) = min L[x(t), y(t)] dt,
*(~) ~(~)

(5.6)

particular model systems by Ludwig [26], Jauslin [28],
Kautz [29], and Dykrnan and co-workers [31] to name
but a few. Finally, concepts of quasipotential theory also
entered into the investigation of bistable systems driven
by colored noise through their close relation to the path
integral formalism [42]. Here, we only sketch those parts
of the general theory needed for the further investiga-
tions in Secs. VI—VIII: Expecting the usual Boltzmann-
like structure of the quasi-invariant density p(x, y), one
starts with a WKB ansatz p(x, y) = Z(x, y) e
where the quasipotential P(x, y) is assumed to be D in-
dependent and the prefactor Z(x, y) may depend on D
at most algebraically. In other words, the quasipotential
represents the exponentially leading weak-noise behavior
of the quasi-invariant density

V. RATE CGNCEPT AND QUASIPOTENTIALS
where the Lagrangian

~[x yl = I*+U,'(*)1'/4+ ~ [y+ y/~]'/4 (5.7)

k-r = T(~)
I'p(x, y) = kp(x, y). —

(5 1)
(5.2)

For the determination of the rate k we will use an ap-
proach based on the theory of quasipotentials. The math-
ematical foundation of this theory was elaborated mainly
by Freidlin and Wentzell; see [25] for a detailed account
of their work. Further important contributions are due
to Graham and Tel [27] (see also [30] for a recent review)
and Maier and Stein [32—34]. The general theoretical
framework has been partially rederived and applied to

For small noise strengths L7 one expects a rather ex-
tended regime of correlation times w with the property
7 « T(7). Within this separation of time scales the rate
concept is valid [21], meaning that p(x, y, t) approaches
an exponential decay e " p(x, y) on a time scale that is
negligible in comparison with T(7). It then readily fol-
lows from (3.10) and (3.13) that the decay rate k and the
quasi-invariant density p(x, y) satisfy

follows from the Hamiltonran (5.5) by Legendre trans-
formation. The mirnmization in (5.6) is over all paths
x(t), y(t) starting at time t = —oo at the point attrac-
tor (0, 0) of the deterministic dynamics (2.1), (2.3) with
D = 0 and ending at the point (x, y) at a time t = t
which can still be chosen arbitrarily. This initial condi-
tion for the paths x(t), y(t) and the fact that one has
not only to extremize but to minimize in (5.6) does not
strictly follow from the analogy with classical mechanics
but only from the rigorous foundation of quasipotential
theory [25,27,30]. There, one actually starts with (5.6)
as a definition of the quasipotential and then proves that
it satisfies the Hamilton-Jacobi equation (5.4) and the
property (5.3). Once the generalized potential is known,
the exponentially leading weak-noise behavior of the rate
k can be extracted &om (5.2) by standard methods [21].
For the mean escape time (5.1) one finally obtains

lim D lnT(v') = ming(x, y) —P(0, 0) =:AP(7), (5.8)
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where the minimization is performed on the basin bound-
ary hG of the point attractor (0, 0) introduced in Sec.
II.

Equation (5.8) may be rewritten under the form

(5.9)

with a pre-exponential factor ((r, D) that depends more
weakly than the exponentially leading Arrhenius factor
e+&(~~/' on D in the weak-noise limit D M 0. In fact) the
findings of Refs. [33,34,44] suggest that ((r, D) converges
towards a 6nite value for D + 0 and any fixed w. Under
the additional tacit assumption that the ~ dependence
of this limiting function ((r, 0) is sufficiently smooth we
thus expect that the qualitative features (monotonicity,
extrema) of AP(r) as a function of r carry over to T(7).
for sujgciently smal/ D In t.he same way as the expo-
nentially leading part AP(r) in (5.9) follows from the
quasipotential (5.8), the pre-exponential factor ('(r, D)
can be readily determined, once the differential equation
mentioned below (5.5) for the prefactor Z(x, y) of the
quasi-invariant density p(x, y) is solved. However, it is
only very recently that the full complexity of this prob-
lem has been clearly recognized [34] and we wi11 restrict
ourselves to the investigation of b, P(r) in the sequel.

It is rather obvious from (5.6) and will be confirmed
in the following sections that AP(r) in (5.8) is always a
positive quantity. It follows that the separation of time
scales r « T(r) is guaranteed for any r in the weak-
noise limit D ~ 0 and thus the rate and quasipotential
concepts are valid. It is only for fiiute (but small) D that
they may break down if v becomes very large.

According to Sec. IVB the kinetic model predicts
T(r) ) To and according to Sec. IVD the kinetic model
is expected to yield accurate approximations for T(7).
provided the noise strength D is small and r )) ln1/D.
With Eq. (4.12) it follows that for sufficiently small D
there exists a rather extended regime of correlation times
r, namely ln1/D « r « T(r), for which both the rate
concept and the kinetic model are supposed to yield ac-
curate and thus essentially identical approximations for
T(r) In particul. ar, for smalt D the rate concept and the
kinetic model provide a comp/ete description of T(r).

For weak noise D the mean escape time T(7) can be
determined in the r regime ln 1/D (( r « T{r), where
both the rate and the kinetic descriptions are valid, as fol-
lows [20]: Since the kinetic model applies (see Sec. IV A)
a particle experiencing an instantaneous quasistatic po-
tential U„(x)will escape at a rate k(y) given in (4.1).
Since the characteristic time scale 7. of the potential
Buctuations y is much smaller than the typical escape
time T(r) the distribution of the "quasistatic" potentials
U„(x)is governed by the stationary distribution p(y) of
the Ornstein-Uhlenbeck process (2.3). The hence follow-
ing mean escape rate k = I k(y) p(y) dy is equal to
[T(r)] thanks to the rate concept, see Eq. (5.1). With
(4.7) we finally obtain

its validity without additional conditions as in (4.26) but
does not include the leading finite-D and 6nite-7 correc-
tions. The prediction (5.10) compares quite well with the
numerical simulations shown in Figs. 1—4 in view of the
fact that D is not yet that small in these examples.

From (4.11), (5.9), and (5.10) the large-r limit of
4P(r) readily follows, while the pre-exponential factor
((r, D) indeed approaches a D and-r-independent finite
value, as expected below (5.9). Finally, we can infer from
the above-mentioned fact that the rate and quasipoten-
tial concepts are valid for any finite w in the weak-noise
limit and the comparison of To and T(oo) below (4.25)
that the limits D + 0 and w ~ oo do not commute and
the rate concept fails for finite D in the limit 7. —+ oo [13]
unless the conditions (4.24), and (4.25) are satisfied.

It is plausible that if the rate concept fails for a certain
7 = 70 then it stays invalid for all 7 & 7O. %e thus expect
that T(r) is bounded &om above (in order of magnitude)
by 7 for w & To, in agreement with Figs. 1—4 and our
previous prediction that (4.6) is actually an upper bound.

VI. CENEHAI PKOPEBTIES DF THE
QUASIPOTENTIAL

From the definition of the quasipotential (5.6) it follows
that P(0, 0) = 0. Furthermore, one can infer &om (5.7)
that the Lyapunov property [25,27,30]

(6.1)

AP(r) = min L[x(t), y(t)] dt
(~) m(~)

(6.2)

with boundary conditions x(oo) = 1 and x(—oo)
y(+oo) = 0.

The minimizing x(t), y(t) in (6.2) is called the most
probable escape path (MPEP) [32,33]. Note that with
x(t), y(t) also x(t + At), y(t + At) minimizes (6.2) for
any real b, t. The uniqueness [34] of the MPEP can be
restored for instance by introducing the additional con-
dition that

is satisfied along any solution x(t), y(t) of the determinis-
tic dynamics (2.1), (2.3) with D = 0. This property and
the fact that on the basin boundary bG the saddle point
(1,0) is the unique attractor of the deterministic dynam-
ics (see Sec. II) imply that the miniinum in (5.8) is taken
for x = 1, y = 0 and thus AP(r) = P(l, 0). Since (1,0) is
a fixed point of the deterministic dynamics, a minimiz-
ing path x{t), y{t) in (5.6) with endpoint x(t) = x = 1,
y(t) = y = 0 can stay there for an arbitrary period of
time t & t without changing the value of P(1,0). We
thus can set t = oo without loss of generality, i.e. , AP(r)
can be determined &om

T(r) = To for ln 1/D « 7' « To . (5.1o)
x(t =O) =1/2. (6.3)

This result together with (4.11) and (4.12) is comple-
mentary to (4.6) and (4.27) since it includes the range of

In the weak-noise limit D + 0 every successful escape at-
tempt follows this path after an appropriate shift of the
time scale [25—27,30]. For small but finite D the MPEP
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still gives the correct qualitative behavior of a typical suc-
cessful escape attempt except for very large positive and
negative times t, i.e. , close to the point attractor (0, 0)
and the saddle (1,0) [33]. In particular, the successful es-
cape attempts give rise to a distribution of exit points on
the basin boundary bG that is concentrated in a small
neighborhood of the saddle (1,0) [33,34] but generically
is neither maximal nor symmetric about (1,0) [32] (sad-
dle point avoidance). Moreover, close to (0, 0) and (1,0)
a typical successful escape attempt resembles a free ran-
dorn walk rather than the smooth MPEP z(t), y(t) and,
as a consequence, is of finite duration, in contrast to the
infinite time that the MPEP x(t), y(t) needs to go from
(0, 0) to (1,0) [33]. Once the successful escape attempt
has crossed the small neighborhood of the saddle (1,0) it
essentially follows a deterministic path along the x axis
and finally is absorbed at the threshold xth ) 1.

For the sake of convenience, we will solve the varia-
tional problem (6.2) not by means of the corresponding
Euler-I agrange equations but the equivalent Hamilton
equations

x = B„H= 2p —U'(x) —y W'(x),
p = BH = [—U"(x) + y W"(x)]p,

y = B~H = 2 q/r —y/r,
q = B„H=—W'(x) p + q/7. ,

(6.4)
(6.5)
(6.6)

(6 7)

where arguments t have been omitted and the Hamilto-
nian H is given by (5.5). The boundary conditions are
x(t = —oo) = 0 and x(t = oo) = 1, while p(t), y(t), and

q(t) must vanish for t = +oo. From the analogy with
classical mechanics it is clear that one integration can be
saved by taking into account that the Hamiltonian is a
constant of motion. By focusing on t = —oo one sees
that this constant is zero, i.e. ,

H(p(t), q(t) x(t), y(t)) = 0 for all t . (6.8)

Moreover, it will often be useful. to consider the auxiliary
variable

r for this type of potential W(x). To this end we focus on
an arbitrary but fixed w value and denote by x(t), y(t) the
corresponding MPEP, i.e. , the minimizing path in (6.2).
Since, in general, this path no loriger minimizes (6.2) if
we change 7, we obtain AP(v + br) & f L[z(t), y(t)]dt
for any br. By difFerentiation of L[x, y] in (5.7) with
respect to 7 it then follows that

&4(~+«) «d(~)+ —,j (f~(&)I'

-Iy(t)/rl') «+ O(~r') (6»)

From Hamilton's equation (6.5) it is clear that p(t) can-
not change sign. In Appendix A it is shown that ac-
tually p(t) & 0 for any finite t and that x(t) never
leaves the domain with W'(x) & 0. With (6.11), (6.12)
this implies that q(t) —r (t) & 0 for any finite t and
q(t) r(t) is nonpositive and not identically zero (provided
r & 0). Moreover, &om (6.6) and (6.9) one can infer that

—(y/r) = 4qr/r . Therefore, it follows from (6.13)
that ding(r)/dw & 0, i.e. , AP(w) is strictly monotoni-
cally decreasing ioith r for any potential W(x) of type I,
in agreement with the numerical example in Fig. 1. Fi-
nally, since q(t) —r(t) & 0 we find with (6.9) that the
MPEP x(t), y(t) is contained in the half plain y & 0
for any finite t In othe. r words, for potentials W(x) of
type I a particle (2.1) typically escapes mobile the poten-
tial U„(x)is in a "lour state" y & 0, see Fig. 5. More
precisely, this property y ( 0 only concerns the "inter-
mediate phase" of a successful escape attempt while the
particle x crosses the domain between 0 and 1: As men-
tioned below Eq. (6.3), for z very close to 0 and 1 and for
x & 1, the typical y values become very small, possibly
even with Buctuations into the positive domain. Similar
features of typical successful escape attempts in the case
of dichotomous potential fiuctuations y(t) in (2.1) have
been found numerically in Ref. [2].

r(t):= q(t) —y(t)

instead of y(t), satisfying

' = W'(z) p —r/r

(6.9)

(6.10)

(6.12)

with boundary conditions r(+oo) = 0. The unique (for-
mal) solutions of (6.7) and (6.10) fulfilling the correct
boundary conditions are

q(t) = — e(' ')~ W'(x(s)) p(s) ds, (6.11)
t

t
r(t) = e ' ' W'(x(s)) p(s) ds .

Next we introduce potential W(x) of type I [20] defined
by the property that W'(x) does not change sign and is
not identically zero on the interval [0, 1]. Without loss of
generality we will always assume that W(x) is monoton-
ically increasing for 0 & x & 1 and, in particular, that
AW = W(1) —W(0) & 0. A typical example is (2.6). We
now want to prove that AP(r) is a decreasing function of

FIG. 5. Sketch of a typical successful escape attempt for
a potential W(z) of type I and 0 & r « T(r) at three suc-
cessive time instances (a)—(c). Solid lines: Suctuating poten-
tial U„(z)= U(z) + y W(z) for 0 & z ( 1; dashed lines:
unperturbed potential U(x); arrows: motion of the escaping
particle.
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VII. QUASIPOTENTIALS FOR SMALL W(x)

In this section we study the exponentially leading
weak-noise behavior of the incan escape time (5.8) and
the MPEP for asymptotically small potentials W(x). It
is convenient to introduce an explicit small parameter p
by means of the substitution

W(x) m p W(x). (7.1)

This suggest an expansion of the minimizing x(t) in
(6.2) as xp(t) + uzi(t) + . and similarly for y(t) and
their canonically conjugated momenta p(t) and q(t). The
equations governing zp(t), zi(t), ... can then be found by
comparing powers of p in Hamilton's equations (6.4)—
(6.7) [or their formal solutions (6.11), (6.12)] and in the
energy conservation law (6.8). The boundary conditions
become xp(t = oo) = 1 and xp(t = —oo) = x, (t
+oo) = 0 for i ) 1, while y; (t), p; (t), and q; (t) must
vanish for t = +oo and any i & 0. The additional condi-
tion (6.3) requires that xp(t = 0) = 1/2 and x, (t = 0) = 0
fori &1.

In order po one sees from (6.9), (6.11), (6.12) that yp(t)
and qp(t) identically vanish. Then Hamilton's equation
(6.4) and the energy conservation law (6.8) lead to zp ——

2p —U'(xp) and pp [U'(xp) —pp] = 0, where we omitted
arguments t. In view of the boundary conditions xp(t =
—oo) = 0 and xp(t = oo) = 1 this implies

zo = po = U'(zo). (7.2)

1

qi(xp) = — W (y) K(y, zp) dy, (7.3)

Since we assumed above Eq. (2.5) that U'(x) has no zero
for 0 & z & 1 it follows that zp(t) is a strictly mono-
tonically increasing function of t with xp(t = —oo) = 0,
xp(t = 0) = 1/2, and xp(t = co) = 1.

In order p one readily finds qi (t) and ri (t):= qi (t)—
yi(t) by introducing xp(t) and qp(t) into (6.11), (6.12).
Since xp(t) increases strictly monotonically, we can use
zp 6 [0, 1] instead of t ERas para-meter. For qi(xp)
qi(t(xp)) and ri(zp):= ri(t(zp)) one then obtains

b, p(~) = AU —p'I(7-) + O(~'),
1

I(7.) = dx dy W'(x) W'(y)
0 x

"- (-' .'."') (7 6)

For small correlation times one readily sees that I(7 )
becomes ~ f~ [W'(z)]2U'(z) dx, in agreement with (3.7).
Furthermore, by difFerentiation of AP(w) in (7.6) with re-
spect to w one recovers for small p the general result from
Sec. VI that AP(w) is strictly monotonically decreasing
with w for any potential W(x) of type I.

In Figs. 4(a) and 4(b) the approximate prediction

T(~) = T(0) e (7.7)

following from (7.6) and (5.9) is compared with numerical
simulations. While the qualitative agreement is satisfac-
tory, the quantitative differences can be attributed either
to the unknown corrections of order O(p4) in (7.6) or
the unknown r dependence of the pre-exponential factor
((~, D) in (5.9) which both have been neglected in (7.7).
From the obvious invariance of T(r) under p ~ —p we
can conclude that ((v, D)/((0, D) must be of the form
1 —p (i(w, D) + O(p ). Neglecting terms of order O(p )
we thus obtain from (7.6) and (5.9) that the unknown
function (i(7., D) should satisfy

a straightforward calculation yields a unique solution up
to the order p . In other words, there exists exactly one
solution of Hamilton's equations (6.4)—(6.7) plus bound-
ary conditions of the form x(t) = zp(t) + p xi(t) + O(p )
and similarly for y(t), p(t), and q(t). However, in princi-
ple, there might be further solutions that are not of this
form. In this case, we tacitly assume that they corre-
spond to relative extrema but not to the absolute min-
imum in (6.2). Although we cannot prove this assump-
tion, the agreement of our later result for A(t(w) with
known limiting cases strongly suggests its validity.

As detailed in Appendix 8, by introducing our above
results for the MPEP x(t), y(t) into (6.2) one obtains
for the exponentially leading weak-noise behavior of the
mean escape time (5.8)

XQ

ra(zo) = W'(y) K(zo, y) dy,
0

(7.4) ~(1 T(0) 'r( )/D-
T() (7.8)

K(e, p):= exp (
——f —, ) (7 5)

In particular, the correct boundary conditions are sat-
isfied, i.e., qi(zp) and yi(zp) = qi(xp) —ri(zp) vanish
for x0 = 0 and x0 = 1. Introducing our results so far
into Hainilton's equation (6.4) and the energy conserva-
tloil law (6.8) yields xi (xp) = xi (xp) U" (xp)/U'(xp) and
pi (zp) = U (zp) zi (zp). The general solution of the first
equation is xi(xp) = const x U'(xp). Due to the condi-
tion xi(t = 0) = 0, or equivalently, xi(xp ——1/2) = 0 one
finally finds that zi(zp) and pi(zp) identically vanish.

In summary, we have found a unique solution of the
variational problem (6.2) which can be expanded in pow-
ers of p, at least up to the order p . By similar methods

independent of p. This prediction is verified in Fig. 4(c),
showing that corrections of order O(p ) are indeed negli-
gible for the examples shown in Fig. 4. In order to show
that the deviations in Figs. 4(a) and 4(b) from (7.7) are
a mere prefactor efkct one has to consider smaller noise-
strengths D. Since this is numerically very expensive, we
restricted ourselves to a single ~ value close to the mini-
mum of T(7 ), see Fig. 4(d). According to (5.8) the quan-
tity ln T(v) as a function of 1/D approaches a straight
line for large values of 1/D with slope AP(r) [45]. The
simulations shown in Fig. 4(d) strongly support the valid-
ity of the theoretical prediction (7.6) for this slope b,g(7).
However, for a completely convincing verification of (7.6)
one should either consider still smaller D and p values
or find an analytic approximation for ((w, D). Unfortu-
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nately, the former requires a very large numerical efFort,
while the latter is a very difficult problem as well [34], as
already mentioned below (5.9), being resistant to all our
analytical attempts so far.

For large w it is shown in Appendix C that

~W' 1 ' [W(1) —W(*)] [W(*) —W(0)]
2 7 o U'(z)

+O(r 2) . (7 9)

As predicted by (5.9), (5.10) the exponentially leading
part of To &om (4.16) is recovered &om Eqs. (7.6), (7.9)
for asymptotically large r [note that r in (4.16) is of
the order O(p4)]. Equation (7.9) motivates the introduc-
tion of potentials W(z) of type IIdefine by the property
that AW = 0. A typical example is (2.7). Since only the
derivative W'(z) plays a role in Eq. (2.1) we will hence-
forth always assume that W(0) = W(l) = 0 without loss
of generality. For potentials W(z) of type II we then find
&om (7.6) and (7.9) in leading order p and 1/r that

of b,P(r). For a potential U(z) with a constant slope in
the domain 1/5 & z & 4/5 the double integral in (7.6)
can be performed explicitly. Depending on the parameter
values wi, w2, ws in (7.12), difFerent qualitative features
of I(r) and thus of AP(r) are found, see Fig. 6(b). First,
I(r) is monotonically increasing if W(z) is of type I but
additionally for some W(z) of mixed type. Second, I(r)
shows a maximum at rR~ = O(1/b, U) if W(z) is of type
II but also for some W(z) of mixed type. In the latter
case I(r) converges from above towards the positive limit
QW2/2 for 7 m oo. Finally, there are potentials W(z)
of mixed type for which I(r) exhibits a maximum in the
domain r = (1/AU) followed by a relative minimum and
then monotonically increases towards b.W2/2 for large

We mention that the latter type of I(r) would not
be observed if W(z) consisted only of four linear pieces.
The consequences of these 6ndings will be discussed in
more detail in Sec. IX. Obviously, the example shown
in Fig. 3 was inspired by the properties of I(r) for the
piecewise linear toy model (7.12). This demonstrates the

b~( )=+U
U'(z)

(7.10)

rRA = O(l/b, U) (type II) (7.11)

By closer inspection one 6nds that in a small-w expansion
of (7.6) the terms of order r and r2 are of opposite sign
and become of comparable magnitude for w values of the
order 1/AU and similarly for a large-r expansion. This
is a further confirmation of (7.11). Very simple intuitive
arguments leading to the same conclusion (7.11) have
been given in Ref. [20]. In Sec. VIII we will see that
these properties of type II potentials, in particular (7.10)
and (7.11), stay valid even if the fluctuating part of the
potential p W(z) is no longer small; see also Figs. 2 and
4

Potentials W(z) that are neither of type I nor II are
called of mixed type. They have the property that b, W g
0 and W(z) has at least one extremum in the region
0 & x & 1. As a particular toy model we consider a
piecewise linear continuous W(x) respecting

In contrast to the type I case, AP(r) is thus monoton-
ically increasing for large r. Since AP(r) is always de-
creasing for small r [see Eq. (3.7) and the discussion be-
low Eq. (7.6)] and b,P(oo) = AP(G) we can infer that
b, P(r) has an absolute minimum at a finite correlation
time rR~ (the index RA refers to "resonant activation").
Although wR~ can, in general, not be determined explic-
itly by means of (7.6), a comparison of the small- and
large-r asymptotics (3.7) and (7.10) suggests that rR~ is
comparable to the "typical inverse slope" of U(z) in the
region0&x &1,
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(7.12)

where wi, w2, ws are parameters, see Fig. 6(a). The
nondifferentiabilities are of no relevance since they can
be made smooth without notably changing the properties

FIG. 6. (a) Three examples of potentials W(x) defined by
(7.12) with parameters wi ——w3 = 1 and wq = —1 (solid line),
wi ——wq ——1 and wq ———1 (dashed line), wi ——wq = 0.625
and w2 = —0.25 (dashed-dotted line). Note that W(0) can
be chosen arbitrarily since only W'(x) enters the dynamics
(2.1); (b) The corresponding functions I(r) from (7.6) for a
potential U(x) with a constant slope U'(x) = 1 in the domain
1/5 & x & 4/5.
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FIG. 7. Same as Fig. 5 but for a potential W(x) of type Il
with a single hump on the interval [0, 1] [49].

predictive power of (7.6) in spite of our ignorance of the
pre-exponential factor g(v, D) in (5.9).

We finally discuss the MPEP x(t), y(t) as introduced
in the second paragraph of Sec. VI. With xo instead of t
as parameter and omitting terms of order p the MPEP
is given by x(xo) = xo and

y(*o) = ~ yi(») = ~ [&i(zo) —ri(»)] . (7.13)

We are thus left with the discussion of Eqs. (7.3)—(7.5).
For potentials of type I one immediately recovers y(xo) &
0 for 0 & xo & 1; see the end of Sec. VI and Fig. 5.
Next we address potentials of type II with a single hump,
i.e. , with a single zero x of W'(x) in the domain 0 (
x & 1. Without loss of generality we further assume
that W(x) is non-negative for 0 ( x & 1, in particular
W(x) ) 0. For such a potential W(x) it is shown in
Appendix D that yi(xo) has exactly one zero (besides
the trivial ones at xo ——0 and zo ——1) and is negative
below and positive beyond this zero. In other words, we
recover the suggestive escape mechanism [20] as sketched
in Fig. 7: Typically, a successful escape attempt leaves
the neighborhood of x = 0 while the potential U„(x)is
in a "low" state, y & 0 [Fig. 7(a)), then the particle is
lifted by a large fluctuation of y [Fig. 7(b)], and finally
it moves in a potential U„(x)in a "high" state y ) 0
towards the potential barrier z = 1 [Fig. 7(c)].

For potentials W(x) of type II with more than a single
hump on [0, 1] and of mixed type the behavior of yi(xo)
becomes more involved and is not discussed in further
detail here. We only mention that for small w one Ands
from (7.3)—(7.5) that

the Buctuating part of the potential is not required to be
small and thus we do not make the substitution (7.1). In
view of (5.9), (5.10) we expect that b,g(7) approaches
the exponentially leading part of To &om (4.11) in the
limit 7 —+ oo. According to the discussion following Eq.
(4.11), an explicit evaluation of AP(w) even in the limit
7. —+ oo will thus not be possible without any further as-
sumption regarding W(x). In order to keep things sim-
ple at least in the limit ~ —+ oo we, therefore, restrict
ourselves to potentials W(x) such that V(z) defined in
(4.15) is strictly monotonically increasing d'or 0 & x & 1
and W'(0) = W'(1) = 0. In view of (4.16) we thus expect
that AP(w) converges towards AU —AW /2 for ~ ~ oo.

Next we introduce the following three assumptions re-
garding the MPEP x(t), y(t) and the canonically conju-
gate momenta p(t), q(t): (i) z(t) is positive and thus x(t)
is strictly monotonically increasing for any finite t. (ii)
the difference

~ (t) :=*(t) — (t) (8.1)

tends to zero for 7 -+ oo. (iii) y(t) and q(t) are bounded
in the limit v -+ oo, i.e., there exists a constant C with
[y(t) [

& C for any t and any sufficiently large v, and sim-
ilarly for q(t). In the sequel we will determine a unique
solution of Hamilton's equations (6.4)—(6.7) plus bound-
ary conditions that are consistent with these assumptions
(i)—(iii). However, in principle, we cannot exclude that
there exist still other solutions that do not satisfy (i)—
(iii). If so, we tacitly assume that our solution is the
absolute miniinum in (6.2). As a justification we antic-
ipate that our final result (8.11) agrees with all known
limiting cases, namely (4.16) for r ~ oo and (7.6), (7.9)
for asymptotically small W(x). We also find the assump-
tion (i) plausible since we would not expect that a par-
ticle x(t) stops or changes its direction during a typical
successful escape attempt. We further note that the as-
sumption (iii) is equivalent to the boundedness of any
two of the functions y(t), wy(t), q(t), and r(t) in the
limit w -+ oo due to (6.6), (6.7), (6.9). The boundedness
of y(t) is plausible since in (2.4) an infinite y has zero
probability independent of w. The boundedness of y(t)
and q(t) is also strongly suggested by Hamilton's equa-
tions (6.4)—(6.7) though we are not able to give a rigorous
proof. The assumption (ii) that x(t) ~ p(t) for r ~ oo
is, however, not so obvious.

The assumption (i) that z(t) ) 0 for —oo & t & oo
implies that there exists a function V(x) satisfying

y, (zo) = —2~W'(zo) U'(zo) + O(v ) . (7.14) (t) = V'(*(t)). (8.2)

Similarly as for Ag(7), it turns out that this small-w
result stays valid even if the Huctuating part of the po-
tential p W(x) is no longer small. In other words, the
corrections of order O(p4) in (7.6) and of order O(p ) in
(7.13) vanish for w ~ 0. V'(x) = U'(x) + y(x) W'(x) + 2 bp(z) . (8 3)

Since x(t) ) 0 we may equally well use x F [0, 1] in-
stead of t C R as parameter. Introducing (8.1), (8.2) into
Hamilton's equation (6.4) then yields the exact identity

V'III. QUASIPOTENTIALS FOR, LARCE w

In this section we investigate b,g(7 ) from (6.2) for large
correlation times v . Unlike in the preceding section, here

Since bp(z) becomes small for large 7 according to our
assumption (ii), V'(x) can often be approximated by
U'(x) + y(x) W'(x) in the sequel. Even more, in our
final result we will be able to replace V(z) by V(x) from
(4.15), which motivates the notation V(x) for the un-
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known function satisfying (8.2).
With (8.1), (8.2), and z as parameter we can rewrite

Eqs. (6.11) and (6.12) under the form

1

q(*) = — W'(y) [1 —~p(y)IV'(y)] ~(y *)dy (8 4)

r(*) = W'(y) [1 —~p(y)/V'(y)] It (x y) dy (8 5)
0

R(T, y):=exp( ——f ) (s.6)

Exploiting the assumptions (ii) and (iii) it is shown in
Appendix E that

[W(1) —W(x)] [W(x) —W(0)]
r V'(z)

(s.7)

Furthermore, it is shown in Appendix E that for most z
values in (8.4), (8.5) the leading order behavior for large
'T can be obtained by expanding the exponential function
(8.6) in powers of 1/r. More precisely, it is shown that

q(x) = W(x) —W(1)
W(1) —W(y) W'(y) bp(y)

V() V()
(+0 (s.s)

W(y) —W(0)
o r V'(y)

W'(y) bp(y)
V'(y)

+o
qr2 —E )

(8 9)

for 0 & x ( 1 —x and that r(x) decreases rapidly &om
r(1 —x ) given by (8.9) towards r(1) = 0 in the domain
1&z&1—z .

From (8.1) it is clear that hp(x) -+ 0 for x -+ 0. Even
more, it is shown in Appendix E that, there exists a con-
stant Ai ) 0 with V'(x) ) Ai x for sufficiently small x.
Since W'(0) = 0, the difFerence W(x) —W(0) in (8.7)
decreases at least quadratically for small z and thus the
convergence bp(x) + 0 for x + 0 goes proportional to
z or even faster. Analogous properties hold for z ~ 1.
Using these properties of bp(x) and the assumption (ii)
that 8p(x) ~ 0 for r ~ 0 it is not difficult to see that the
term 2'(x) in V'(x) &om (8.3) can be consistently ne-

for 1 & z & z, while in the domain 0 & z & z the func-
tion q(z) rapidly grows from q(0) = 0 towards the value
q(x ) &om (8.8). Here, o(l/r ') denotes an asymptoti-
cal decrease for large r that is faster than 1/r2 ' for any
e ) 0 but slower than 1/r2 and the quantity x is defined
as exp( —r'~ ), tending to zero faster than any power of
1/r for r m oo. Similarly, one finds that

r(x) = W(x) —W(0)

glected as far as Eqs. (8.7)—(8.9) are concerned without
changing the accuracy of order O(r ) and o(1/r '),
respectively. For y(x) = q(x) —r(x) [see Eq. (6.9)] it
then follows from (8.7)—(8.9) that

y(x) = —AW + O(1/r) (8.10)

[W(1) —W(x)] [W(x) —W(0)]
U'(x) —AW W'(x)

One recovers b,P(r) = AU —AW /2 for r -+ oo as ex-
pected at the beginning of this section as well as (7.6),
(7.9) for asymptotically small W(x). The general predic-
tion &om Sec. VI that EP(r) is strictly monotonically de-
creasing for potentials W(x) of type I is also satisfied. For
potentials W(x) of type II AW = 0 and (8.11) exactly
agrees with (7.10). As a consequence, the conclusions
below Eq. (7.10) immediately generalize to arbitrary po-
tentials W(x) of type II with W'(0) = W'(1) = 0.

For a comparison of (8.11) with numerical simulations
we neglect the contributions of order o(1/r ') as well
as the r dependence of the unknown prefactor ((r, D) in
(5.9), similarly as in (7.7). With (5.10) this yields the
approximation

T(r) = Tp exp(E/(D T) ) (s.12)

for large ~ but with 7 (& To which is in good agreement
with the numerical results in Figs. 1, 2, and 4. [For the
example in Fig. 3 the function V(x) &om (4.15) is not
strictly monotonically increasing for 0 & z & 1 and one

for z & z & 1 —z, while in the domain 0 & z & z the
function y(x) rapidly grows from y(0) = 0 towards y(x )
&om (8.10), and similarly for 1 —z & x ( 1. So, ex-
cept for potentials W(x) of type II an expansion of y(x)
in powers of 1/r about r = oo is impossible since y(z)
becomes discontinuous at z = 0 and z = 1 for v. —+ oo.
Essentially, this is the reason for the rather involved cal-
culations in the present section. It can be shown that this
feature of y(x) also agrees with the kinetic model &oin
Sec. IV in the regime r;„(D)& r (( T(r) as predicted
at the end of Sec. V: In this regime practically all par-
ticles (2.1) escape while they experience a "quasistatic"
potential U„(x)with y = —AW.

It follows f'rom (8.10) that in (8.3) not only the term
2bp(x) can be neglected but also y(x) can be approxi-
mated by —AW in (8.7)—(8.9) without changing the ac-
curacy of order O(w 2) and o(1/rz '), respectively. In
other words, we can substitute V(x) by V(x) &om (4.15).
In particular, one can readily verify now by means of
(8.2), (8.3), and (8.7)—(8.9) the consistency of our re-
sults with the assumptions (i)—(iii) at the beginning of
this section. It also follows that the assumptions that
W'(0) = W'(1) = 0 and that V(x) is strictly monotoni-
cally increasing for 0 & z ( 1 cannot be easily relaxed.

Using our results so far, the evaluation of AP(r) &om
(6.2) is straightforward. As detailed in Appendix F, one
Gnally obtains

AW' E I' 1
AP(r) = b.U — + —+ o

~2 r (r 'j
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indeed finds that (8.12) compares very badly with the
numerical simulations. ]

We finally discuss the MPEP, written in the form y(x),
for potentials W(x) of type II. Since W(0) = W(1) = 0
one finds Rom (8.7)—(8.9) that

y(x) = — 2
* W(z)

W(z) W'(z) [W(z)]~
p i U'(z) [U'(z))

(8.13)

(8 14)

for x ( x ( 1 —x . If both U'(x) and W(x) are sym-
metric about x = 1/2 for 0 ( x & 1 then (8.13), (8.14)
simplify to

2 W(z)
y(z) =—,dz. (8.15)

IX. SUMMARY AND DISCUSSIQN

We studied the escape problem for an overdamped
Brownian particle (2.1) in a fluctuating metastable po-
tential in the presence of thermal noise. The potential
Huctuations are driven by an Ornstein-Uhlenbeck pro-
cess (2.3) in the stationary state with an invariant den-
sity (2.4) that is independent of the correlation time w.

Regarding the fluctuating part W(x) of the potential we
distinguished three difFerent types: type I if W'(x) does
not change sign between the well x = 0 and the bar-
rier x = 1 of the metastable static part U(x) of the po-
tential (without loss of generality one can assume that
W(x) is monotonically increasing on [0,1]), type II if
DW = W(1) —W(0) is zero (without loss of generality
one can assume that W(0) = W(1) = 0), and a mixed
type if W(x) is neither of type I nor II.

As our central quantity we introduced the mean escape
time T across a threshold xth beyond the barrier x = 1
of U(x) for an ensemble of particles (2.1) with an initial
distribution pp(x) concentrated about the well x = 0 of
U(x). Of particular interest is the dependence of the
mean escape time T(7 ) on the correlation time 7 of the
potential Auctuations, especially the possible occurrence
of "resonant activation" [minimum of T(v ) in the domain
0 ( 7 ( oo]. For asymptotically small and infinite w we
derived the general properties (3.1)—(3.6) of T(7 ). As
a consequence, we found as sufBcient conditions for the
existence of resonant activation that either W'(x) must
vanish whenever U'(x) ( 0 and x ( xth or that the noise

For potentials W(x) of type II with a single hump on [0, 1]
we recover from (8.13)—(8.15) the typical escape mecha-
nism discussed at the end of Sec. VII and sketched in
Fig. 7, at least if either W(x) is small or U'(x) and W(x)
are symmetric about x = 1/2 for 0 ( x ( 1. However,
if neither of the latter conditions is satisfied one can find
examples [even with a single humped W(x)] for which

y(x) &om (8.13) does not change sign. In these exain-
ples the potential W(x) must be suKciently large such
that the last term in (8.14) dominates (8.13). Hence, in
general the typical escape mechanism may be more com-
plicated even for single humped potentials W(x) of type
II than in Fig. 7.

strength D must be small. These findings compare very
well with the numerical simulations &om Figs. 1—4.

In the following we restricted ourselves to the most
interesting case of weak noise D. In this case the escape
problem is governed by three relevant time scales: the
characteristic time scale 7 of the potential Huctuations
that plays the role of a control parameter and may vary
between 0 and oo, the mean escape time T(w) that is
governed by an exponentially leading Arrhenius factor
for weak noise D, and the time scale T of the escape
attempts or, equivalently, of the intrawell relaxation that
increases like ln1/D for weak noise D.

For small D and w && T we introduced a "kinetic
model" by means of an adiabatic elimination procedure
in the full escape problem. The kinetic model itself is
well defined for arbitrary 7 and D. Within this model,
T(7 ) is constantly equal to T(0) &om (3.8) if D is asymp-
totically small and the conditions (4.24) and (4.25) are
satisfied, i.e. , for a subclass of type II potentials W(x). In
any other case, T(w) is strictly monotonically increasing
with ~ &om Tp towards T(oo) defined in (4.7) and (4.9),
respectively, and T(oo) is strictly larger than T(0) &om
(3.8). For small and large w the leading order approxima-
tions for T(w) are given by (4.6) and (4.8) and we showed
(within certain restrictions) that they should be valid for
weak noise D at least as long as 7 is much smaller than
T(0) from (3.8) and much larger than T(oo) e ~ ~, re-
spectively. We finally showed that these results for T(w)
from the kinetic model provide accurate approximations
for the true mean escape time of a particle (2.1) (i.e., the
above-mentioned adiabatic eliinination is justified) under
the necessary conditions that D is small and w )7;„(D)
with r;„(D)diverging much faster than T ln1/D
but much slower than To for D ~ 0. We gave argu-
ments suggesting that these conditions are, in fact, sufFi-
cient, in agreement with the simulations shown in Figs.
1—4. Consequently, the kinetic models put forward in
Refs. [4,5] are not a valid description of the escape prob-
lem (2.1) considered here in the rather extended regime
r & w;„(D).In particular, they are not suitable to pre-
dict the existence of resonant activation nor do they cap-
ture the essential escape mechanisms giving rise to this
eKect for the model considered in this paper, as already
pointed out in Ref. [5].

For sufficiently small D and 7 (& T(w) the rate con-
cept can be used. In particular, in the weak-noise limit
D —+ 0 the rate concept is valid for any finite 7. Since
T(w) )) T, for small (but finite) D the rate concept
and the kinetic model provide a complete (approximate)
description of T(w). In the rather extended regime
ln1/D « v « T(w) where both the rate and the ki-
netic descriptions are valid, the mean escape time is ap-
proximately constant; see (5.10). However, in general,
the rate concept breaks down if 7 (& T(w) is not ful-
filled [13]. In particular, the escape events are no longer
governed by an exponential decay law. Equivalently, the
limits D ~ 0 and v -+ oo do not commute [43]. Ex-
ceptions are type II potentials W(x) that satisfy (4.24)
and (4.25). Within the validity of the rate concept we
mainly restricted ourselves to the exponentially leading
weak-noise contribution AP(w) to the mean escape time



52 THERMALLY ACTIVATED ESCAPE WITH POTENTIAL. . . 1595

(5.8). It is only for small and large w that also the pre-
exponential factor ((w, D) &om (5.9) can be readily de-
termined indirectly by means of (3.7) and (4.11), (5.10),
respectively. For more general ~ values, the determina-
tion of ((w, D) is a very difficult unsolved problem [34].
However, our indirect results for small and large 7 and
the general theory elaborated in Refs. [33,34,44] suggest
that the function g(v. , D) converges to a finite limit for
D + 0. Under the additional assumption that the w

dependence of this limiting function ((w, 0) is sufficiently
smooth, it follows that AP(~) describes not only the dom-
inating weak-noise behavior of T(r) for any fixed w but
also the qualitative features (monotonicity, extrema) of
the ~ dependence. Put differently', differentiation with
respect to w commutes with the limit D ~ 0 in (5.8).

For potentials W(z) of type I we proved that AP(w)
is strictly monotonically decreasing with w. Together
with the kinetic model this implies that for suKciently
weak noise D the mean escape time T(w) first decreases
&om T(0) given in (3.8) [see also (3.1), (3.5)] towards
Tp &om (4.7) and then increases again towards T(oo)
from (4.9) [see also (3.3), (3.5)]. The minimum reso-
nant activation ~RA occurs in the rather extended. regime
ln 1/D « 7 « T(w) where both the rate concept and the
kinetic model provide very good approximations and thus
T(w) is almost constant, see Eq. (5.10). The breakdown
of the rate concept is thus crucial for the occurrence of
resonant activation of this type. In particular, 7.RA di-
verges in the weak-noise limit D ~ 0. So, for potentials
W(z) of type I the essential qualitative and quantitative
properties of the mean escape time T(w) are understood
quite well for weak noise D, see Fig. 1. A correspond-
ing typical successful escape attempt of a particle (2.1)
is sketched in Fig. 5.

For small w a series expansion of AP(7.) is straight-
forward. We left out this calculation here since the full
mean escape time T(w) is known for small w anyway, see
(3.1), (3.5). For completeness, we only mention that in
leading order 7. one recovers the exponentially leading
contributions in (3.7) for AP(~) and (7.14) for the most
probable escape path [46].

If the fiuctuating part of the potential, i.e. , p in (7.1),
is small then AP(7) takes the form (7.6) for arbitrary

Note that even for small p the variations of T(w)
e @~ ~/ as a function of v become exponentially large
for weak noise D. The same stays true even if W(z) is no
longer considered as D independent but decreases with
D slower than ~D [48].

When W'(0) = W'(1) = 0 and U(z) —AW W(z) is
strictly monotonically increasing for 0 ( x ( 1 then the
large-w asymptotics (8.11) for AP(w) is valid. The deriva-
tion of this result is rather involved since a series expan-
sion in powers of 1/v about w = oo is not possible, in
general. With respect to T(7 ) we are thus dealing with a
"doubly singular" perturbation theory about D = 0 and
7 = OO.

From these results for AP(r) and the kinetic model it
follows that for potentials of type II and weak noise D the
mean escape time T(r) decreases for small ~, displays a
minimum in the region w = O(1/AU), and increases be-
yond this region, see Figs. 2 and 4. In addition to this ab-

solute minimum at 7R~ we cannot exclude the existence
of further local minima in the domain w = O(l/AU).
The latter actually seems likely for suitably chosen po-
tentials W(z) of type II with several extrema on [0, 1].
As in the type I case, the minimum of T(w) about 7Rg
is already present in the exponentially leading Arrhenius
factor e ~& ~/ . But in contrast to the type I case, 7RA
does not diverge if D approaches zero and the minimum
of T(7 ) about wRA becomes increasingly sharp. Moreover,
the breakdown of the rate concept is not essential for the
existence of resonant activation and may not even occur
for D ~ 0 and appropriate potentials W(z). Figure 7
shows a typical successful escape attempt for potential
of type II with a single hump in the interval [0, 1] [49].

If W(z) is of mixed type then for weak noise D the
mean escape time is still monotonically decreasing for
small w, increasing towards T(oo) ) T(0) within the va-
lidity of the kinetic model, and governed by (8.11) within
the validity of this result. We thus expect that T(7) ei-
ther shows the same qualitative features as in the type I
or II case, or it is a "true mixture" with one or several
minima in the region w = O(1/AU) and a further mini-
mum in the domain ln1/D « w « T(7 ). In other words,
we achieved a complete classification of the mean escape
time T(7) for all possible potentials W(z). Figures 1—
3 and the example (7.12) considered in Sec. VII and
Fig. 6 show that all three possible cases are actually re-
alized. Moreover, we can predict that T(7 ) is type-II-like
if the quantity E from (8.11) is negative and type-I-like
or "truly mixed" otherwise. Note that these three dif-
ferent types of T(w) can be clearly distinguished only for
weak noise D.

The theoretical and numerical results plotted in
Figs. 1—4 display the correct tendency towards the pre-
dictions that the rate and kinetic descriptions approxi-
mately agree in a rather extended v regime, T(7) is al-
most constant in this domain, and T(7) has a sharply
peaked minimum in the region w = O(1/AU) for the ex-
amples shown in Figs. 2—4. For a more convincing illus-
tration one should, however, consider even smaller noise
strengths D.

Omitting the thermal noise ((t) in (2.1) one recovers
the common escape problem for a particle subject to col-
ored noise only [50] except that the coupling of the white
noise g(t) in (2.3) is usually chosen not proportional to

but to 7 . Clearly, we can restrict ourselves to
potentials W(z) with a nonvanishing derivative in the
region 0 & z & 1 (i.e. , a subclass of type I) since other-
wise a particle (2.1) starting at the potential well z = 0
can never escape. Since y(t) becomes white noise of van-
ishing intensity j (y(t) y(0))dt for w —+ 0 it is obvious
that T(0) = oo. Similarly, in the static limit w ~ oo
one readily sees that T(oo) = oo. However, for finite 7.

the mean escape time is finite as well. We thus recover
a very pronounced form of resonant activation even in
the absence of the thermal noise ((t) that is only mod-
ified and actually diminished by including ((t). From
this point of view, resonant activation for this subclass
of type I potentials W(z) is not the effect of an interplay
between thermal and potential Buctuations but rather a
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property of the escape problem with colored noise only
that survives in the presence of additional white noise
[11].In contrast, for all other W(z), in particular of type
II and mixed type, resonant activation requires the in-
terplay of both kinds of Quctuations. Returning to the
case W'(x) g 0 for 0 & x & 1 it is clear that omitting
the thermal noise ((t) in (2.1) is equivalent to an appro-
priate small-D and large-W(z) limit. Consequently, for
((t) = 0 our result that the exponentially leading part
(5.8) of T(r) decreases monotonically with r stays true
within the validity of the rate concept. However, the ki-
netic model for large v introduced in Sec. IV A must be
replaced by a difFerent approach [51] since the assump-
tion of a quasistatic potential during a successful escape
attempt is no longer valid.

We close with an outlook regarding the full escape
problem (2.1). One expects that this problem will, in
general, be at least as hard to solve as the notorious es-
cape problem with colored noise alone [50] since the latter
follows by an appropriate large-W(x) limit from the for-
mer [8]. It is only in the opposite limit of small W(x)
that a solution for the exponentially leading part 4P(r)
could be obtained relatively easily in the entire w regime.

As far as small noise strengths D are concerned,
there remains essentially one unsolved problem, namely
a quantitative approximation for T(r) for intermediate
correlation times r = O(l/b, U), in particular for poten-
tials W(x) of type II and mixed type. Here, a promising
approach seems to be the unified colored noise approx-
imation (UCNA) [7,8,52]. In principle, it should also
be possible to determine higher order p contributions in
(7.6) yielding accurate approximations for AP(r) even if
W(x) is not so small. Furthermore, it should be pos-
sible to derive exact expressions for b,P(r) &om (6.2)
for simple specific potentials U(x) and W(x). A strik-
ing example for the value of such results for AP(r) is our
prediction based on (7.6) that there must exist potentials
W(z) with T(r) showing a truly mixed type of behavior,
see Figs. 3 and 6 and the discussion below Eq. (7.12).
On the other hand, the examples &om Fig. 4 show that
a quantitative approximation for the prefactor ((r, D) in
(5.9) may often be more important than an approxima-
tion for AP(r) going beyond (7.6).

If the noise strength D is no longer small, nothing is
known except the small- and large-r asymptotics of T(r)
and hence the following existence criterion for resonant
activation. In particular, both the rate concept and the
kinetic model fail and one has to deal with the full master
equation (3.10).

The consequences of our results for molecular motors
[18] and selective pumps [17] are currently under investi-
gation.
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APPENDIX A

We consider a potential W(x) of type I. Without loss
of generality we assume that W'(x) & 0 for x 6 [a, b]
with a & 0, b & 1, and W'(a) = W'(b) = 0. We first
show that p(t) & 0 for any finite t by means of an in-
direct proof. We start by assuming p(t) = 0 for a fiiiite
t. According to Hamilton's equation (6.5) this means
p(t) = 0 for any t. With (6.9), (6.11), (6.12) it then
follows that q(t) —r(t) = y(t) = 0 for any t. Since it
is impossible to And a solution of Hamilton's equation
(6.4) for p(t) = y(t) = 0 that satisfies the boundary con-
ditions x(t = —oo) = 0, x(t = oo) = 1 our assump-
tion p(t) = 0 must be wrong. Let us now assume that
p(t) & 0 for a finite t. Again, this yields p(t) & 0 for
any finite t due to Hamilton's equation (6.5). Next we
show that this property p(t) & 0 implies q(t) ) 0 for all
suFiciently large t again by means of an indirect proof:
If there are arbitrary large t values with q(t) & 0 then
the boundary condition x(t) ~ 1 for t ~ oo and (6.11)
yield b = 1 [i.e. , W'(1) = 0] and x(t) & 1 for certain
arbitrary large t values. The property W'(1) = 0 implies
that the basin boundary bG is given by the straight line
(1) x R. Consequently, the MPEP x(t), y(t) crosses the
basin boundary at a certain Gnite time to. Let us de-
note by x(t), y(t) a path that agrees with the MPEP for

& tp but deterministically approaches the saddle (1,0)
for t & to along the basin boundary (the nondifferentia-
bility at t = to does not play a role). With (5.7) we
thus find that L[x(t), y(t)] = L[x(t), y(t)] for t & to and
L[z(t), y(t)] & I [x(t), y(t)] = 0 for t & to in contradic-
tion to the fact that the MPEP z(t), y(t) minimizes (6.2).
Hence our assumption that q(t) & 0 must be wrong.
Next, by exploiting p(t) & 0 and q(t) & 0 for sufficiently
large t values we can rewrite (6.4) under the difFerential
form dx = dxg~q + bx, where dxg, q xs the differential Bow
of the determiiiistic dynamics (2.1) and b'z & 0. Simi-
larly, (6.6) is equivalent to dy = dye, i + hy, where dye, i
accounts for the deterministic fiow (2.3) and hy & 0. It is
not difBcult to see that under these conditions the MPEP
x(t), y(t) cannot reach the point (1,0) for t ~ oo without
crossing the basin boundary hG . [Note that close to the
saddle (1,0) bG is given in leading order approximation
by r W'(1) y = x —1 with W'(1) & 0.] This leads to an
inconsistency by the same line of reasoning as before and
thus our assumption p(t) & 0 was wrong.

We finally show that W'(z(t)) & 0 for all t by ex-
ploiting p(t) & 0. Let us assume that x(t) leaves the
domain with W'(x) & 0 in the negative direction for the
first time at t = to, i.e., x(to) = a & 0, x(to) & 0, and
W'(x(to)) = 0. Since p(to) & 0 and U'(a) & 0 Hamil-
ton's equation (6.4) yields the inconsistency x(to) ) 0
[remember that U'(x) & 0 for x & 0 and x ) 1, see
above Eq. (2.5)]. Thus x(t) ) a for all t Similarly, o.ne
can show that the assumption z(to) = b for some (finite)
to implies x(to) ) 0 and thus x(t) never can return into
the domain x & 6 once it has left it. In view of the
boundary condition x(t = oo) = 1 & b we thus can infer
that x(t) & b for all t.
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APPENDIX B

In this appendix, we derive Eq. (7.6). With z(t)
zp('t) + p zi (t) +.. ., y(t) = yp(t) + p yi(t) + . . and tak-
ing into account (7.1), (7.2), and xi(t) = yp(t) = 0 the
Lagrangian (5.7) takes the form

L = — 2 U (zo) + p (z2 + xz U (xo) + yi W (zo))j
7 y 2

+ yjL +—
4 (B

where we omitted arguments t and contributions higher
than of order O(p ). Collecting terms of order p in (6.6),
(6.7) one readily sees that

[yi + yi/r] = [2qi/r] = 4qi [qi —W'(xo) po]/r . (B2)

Introducing (B2) into (Bl) and using once more (7.2) one
obtains

L = x() U'(xp) + p'[xz U'(x()) + x2 xp U" (x())

+ql ql + zo W (zo) (yl ql)]

=d
dt

= —U(*.)+~ l
*.U'(*.)+ —

I2)
(B3)

Since x2(t) and qi(t) vanish for t = +oo the total deriva-
tive in (B3) contributes AU to the integral in (6.2). Re-
garding the last term in (B3) one first goes over &om the
integration over t in (6.2) to an integration over xp and
then introduces the result (7.4) for ri(xp). Finally, one
recovers (7.6) by taking into account that there can be
no terms of order O(p ) due to the symmetry of AP(r)
under p )-+ —p following from (6.2) and (5.7).

After exchanging the order of integrations in the last term
the z integral can be performed and one obtains (7.9)
provided our approximation in (Cl) is justified. In other
words, we still have to prove that

dx dy W'(x) W'(y) —
~

—
~

e ~ = O(7' ) .
1

2 (, r)

Since W'(x) is bounded and 0 ( e ~ & 1 for any r
and x & y, it is sufBcient to prove that

dx dy , ( oo .

Since U(z) has quadratic extrema at x = 0 and z = 1
and is strictly monotonically increasing in between, the
integrand f"dz/U'(z) is finite except for logarithmic sin-
gularities when y ~ 1 or x ~ 0 and (C5) follows.

APPENDIX D

In this appendix, the properties of the MPEP for single
humped potentials W(x) of type II stated below (7.13)
are proven. Since W'(x) & 0 for z & x & 1 it is obvious
from (7.3) that qi(xp) ) 0 for x & xp ( 1. Moreover,
since W(x) is nontrivial, qi(z) is actually positive. On
the other hand, qi(xp) must be negative for sufficiently

small xp & 0 since J W'(y) dy = AW = 0 and the kernel
K(y, zp) in (7.3) favors small y values and thus positive
W'(y) values. Next we note that in order p and using
xp instead of t as parameter Eqs. (6.6), (6.7) take the
form

APPENDIX C

In this appendix, Eq. (7.9) is derived. For any fixed
z, y, r a Taylor expansion of e ~, 4:= J"dz/U'(z),
yields the exact identity

2 qi(zo) —yi(zo)

qi(x()) = W (xp) +/ qi(*o)
7 zp

(D1)

(D2)

2

2 (, r) (C1)

for an appropriate 0 C [0, 1] depending upon x, y, and
Neglecting the last term in (Cl) we thus can rewrite

(7.6) as

I(v) = f dT f dyW'(T) W'(y) (1 ——f
(C2)

For the first summand on the right-hand side one readily
obtains AW /2. Regarding the second term, we replace
W'(y) by d[W(y) —W(l)]/dy. Then a partial integration
with respect to y yields

Since qi(zp) & 0 for small zp, W'(zp) ) 0 for 0 & zp & z,
and qi (x) & 0 we can infer &om (D2) that in the region
0 & zp & x the function qi(xp) switches from negative
to positive values but once it is positive it stays positive
as long as zp & 1. With qi(zp) ) 0 for z & zp & 1
it follows that qi(xp) changes sign exactly once on the
interval [0, 1]. Siinilar properties as for qi(xp) can be
proven for ri(xp) showing that y;(xp) = qi(xp) —ri(xp)
is negative for sufBciently small xp ) 0 and positive for
sufficiently small (1 —xp) ) 0. From (Dl) it follows
that yi(xp) stays negative at least as long as qi(zp) is
negative. In the domain where qi(xp) is positive yi(zp)
switches from negative to positive values but once it is
positive it stays positive as long as xp ( 1.

APPENDIX E

o . U'(y)

(C3)
In this appendix, Eqs. (8.7)—(8.9) are derived. Ac-

cording to (8.2) we have V'(x) ) 0 for 0 & x & 1
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dz

V'(z) (El)

diverges logarithmically for x ~ 0 or y ~ 1 and is 6nite
and positive otherwise (0 & z & y & 1).

Similarly as in Appendix C we rewrite the kernel (8.6)
by means of a Taylor expansion as

1 ~f'4
&~ s ~y

2 (r) (E2)

where 0 E [0, 1] for any x, y, and r. Next we estimate
the contribution of the last term in (E2) to the integral
(8.4). Taking into account that 0 & e s+~ & 1 for any
v & 0 and 0 & x & y & 1, 4 diverges logarithmically for
x -+ 0 or y ~ 1, W'(y) and hp(y)/V'(y) are bounded,
and W'(1) = 0 there must exist constants n and P such
that

1 2

W'(y) Il —
I

—
i

—
I

' ~dy
V'(y)) 2 &r)

and V'(0) = 0. Further, if one neglects the term 2hp(x)
in (8.3) it is obvious that there exist positive constants
+1 ) +2 with Ai x & V'(x) & A2 x for small x since
W'(0) = 0, y(x) is bounded and approaches 0 for x -+ 0,
and U(x) has a quadratic minimum at x = 0. The same
is true for large r even if one includes the term 2 hp(x) for
the following reason: For small z values V'(z) and thus
hp(x) cannot decrease slower than proportional to x since
otherwise one could infer from (8.2) that x(t) = 0 for a
certain t ) —oo. In combination with the assumption
(ii) that hp(x) -+ 0 for r ~ oo this shows that 2hp(x)
is negligible in comparison with U'(x) + y(x) W'(x) for
sufBciently small x and large v. Similarly, one can
show that there exist positive constants Bq, B2 with
Bi (1 —x) & V'(x) & B2 (1 —x) for x ~ 1 and large
r. Consequently, hp(x)/V'(x) is bounded and

q(x) r(x)
r p(x)

Since p(x) = V'(x) —hp(x) [see (8.1) and (8.2)], hp(x)
becomes a small quantity for r ~ oo [assumption (ii)],
and r(x) is bounded [assumption (iii)] it follows that
Eqs. (E4) and (E5) can be recast into (8.8) and

h ( )
r(z) [W(z) —W(1)]

O(1/ 2)r V'(x)

for z & z . For 0 & z & z we can rewrite (8.4) as

q(x) = q(x ) K(x , x)

W'(y) 1 — K(y, x) dy .hp(y)
V'(y)

(E7)

APPENDIX F

The term K(x, x) on the right-hand side monotonically
decreases towards zero for x -+ 0, 6rst very slowly as
long as x is still comparable to x, but very rapidly for
x « x . The last term in (E7) is zero for z = x and
x = 0 and at most of order O(x ) otherwise. Thus q(x) is
bounded, ~q(x) ~

& ~q(x ) ~
+ O(x ), in the region 0 & x &

x and goes to zero rapidly for x (( x . A similar line of
reasoning yields (8.9) for z & 1 —x and in the domain
1 —x & x & 1 one finds that ~r(x)

~

& ~r(l —x ) ~+ O(x )
and r(z) -+ 0 for x ~ 1. Introducing (8.9) into (E6)
one recovers (8.7) at least for x & x & 1 —x . From
(E5) and our results for q(x) and r(x) it follows that the
expression (8.7) overestimates the true h'p(x) for 0 & x &
x . However, since (8.7) decreases at least proportionally
to x in this domain, the difFerence with the true hp(x) is
at most of order O(x ). Because O(x ) is smaller than
O(1/r ) anyway, Eq. (8.7) stays true for 0 & z & z and
similarly for 1 —x & x & 1.

n+ P [lnx]2
7

The right-hand side is of the order o(1/r2 ') whenever
x ) z, z:= exp( —r' ), for any small e ) 0. Conse-
quently, Eq. (8.4) can be rewritten under the form

In this appendix, Eq. (8.11) is derived. By means
of Hamilton's equations (6.4)—(6.7) the Lagrangian (5.7)
can be rewritten under the form

I = p [z + U'(x) + y W'(x)] /2 + q [y + y/r] /2, (Fl)

1 I dz
q(z) = W(x) —W(l) + — dy W'(y)

V'(z)

W'y S~y

where arguments t are omitted. Using again (6.7) the
term q [y + y/r] can be recast into d[q y]/dt —p y W'(x).
Together with (8.1) this yields

+o(1/r ') (E4)

for x & x . In the Grst integral, the integration over y can
be readily performed after exchanging the order of the
integrations. In the second integral, the curly brackets
can be rewritten as 1 + o(1/r ') by similar arguments
as in (E3).

Next we introduce Hamilton's equation (6.4) and the
definitions (6.9), (8.1) into (6.8) to yield

I = (x —hp) [p+ hp+ U'(x)]/2+ d[qy/2]/dt . (F2)

p = U'(x) —EW W(x) + hp + hy W'(x), (F3)

by:= y + LTV.

Eliminating p in (F2) by means of (F3) implies

Introducing (8.1) into Hamilton's equation (6.4) one ob-
tains
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d f AWW(x) qyl z W'(x)I = — Ux + +hy

AW W'(x) W'(x)—~S
2

+~@~I
2

+~J'. (F5)

After substitution of (F5) into (6.2) and taking into ac-
count that q(t) and y(t) vanish for t = +oo one finally
obtains the exact identity

AQ(r) = b, U —EW /2+ Ri/2 —R2/2,

Rg..—— dt's' xt byt xt +bpt

R2 .—— dtbp t LWTV' z t —2' t

(F6)

(F7)

(F8)

By means of (8.2) we can rewrite Ri as

Ri —— dx W'(x) hy(x) 1 + hp(x)

o V'(x) (F9)

For hp(x) and hy(x) = AW+ q(x) —r(x) we can use the
approximations (8.7)—(8.9) [with V'(x) instead of V'(x),

see text below Eq. (8.10)]. Strictly speaking, this approx-
imation for hy(x) is valid only for z ( z ( 1—x but one
can readily see that it may be extended to the entire inter-
val [0, 1] without changing the accuracy o(1/r ') of the
result for Ri in (F9). Likewise, the term [1+hp(x)/V'(x)]
in (F9) may be approximated by 1 without changing this
accuracy. In summary, vie obtain1,

( )
W(l) —W(y)

o V'(y)

W(y) —W(0)
V'(y)

' W'(y) [W(1) —W(y)] [W(y) —W(o)] d
V'(y)'

+.(1/ ' ') (F10)

After exchanging the order of integrations the x integral
can be performed. The evaluation of R2 from (F8) is
possible by similar arguments. Introducing Rq and R2
into (F6) finally yields (8.11).
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