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Dynamics of two coupled van der Pol oscillators
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A system of two coupled van der Pol oscillators showing multistable behavior for some control param-
eter ranges is studied. When several attractors coexist a rich fractal structure is found both on the bor-
der between basins and in extended zones of the phase space. In such zones strong mixing and self-
similar structure of basins are manifest. A relationship is observed between the appearance of symmetric
attractors and the fractal properties of the attraction basins. First return maps, Poincare sections, and
probability distribution functions have been computed for the model equations, indicating that the com-
plex dynamics found in the system can be understood in terms of more simple discrete transformations
related to the logistic map. A combined master-slave system based on the coupled oscillators studied is
found to enter a chaotic synchronization regime for some values of the control parameters. The practi-
cal implications of the observed phenomena are discussed.

PACS number(s): 05.45.+b, 42.65.Vh

I. INTRODUCTION

The study of systems of coupled nonlinear oscillators is
signiGcant in a number of areas of fundamental and ap-
plied mathematics and physics, such as bifurcations in
the presence of symmetries [1—4], chaos theory [S—9],
multistability and hysteretic behavior [10—22,24—28],
nonlinear electronics, etc.

The essential elements are either self-sustained or
forced pulsating elements and a sufficiently strong cou-
pling between them, allowing for rather complex tem-
poral behaviors that capture some of the characteristics
of irregular natural phenomena.

These systems with just two or a few nonlinear coupled
elements range between the relatively simple behavior of
a single nonlinear oscillator (where geometric theory and
the perturbative methods are highly developed) and the
tremendously complex spatiotemporally extended sys-
tems such as fluids, where problems like turbulence and
the dynamical generation of patterns and defects are the
object of intense study today [23]. Incidentally, it is to be
noted that some of these issues are dealt with using mod-
els involving a rather large number of nonlinear coupled
oscillators; thus, the analysis of simpler cases can form
the building blocks needed to gain insight into more com-
plicated systems.

The model studied in this paper is given by Eqs. (1):

y = (e& —(x +Pz) )y —(x +Pz ),

v=(sz —(z+ax) )v —(z+ax),
which were considered in some detail in [4]. In that
reference it was found that chaotic behavior is possible
for (1), the role of the discrete symmetries of the vector
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x=y,
y =(E,—(x +Pz) )y —(x+Pz),
Z=V

v=(ez —(z +ax) —(z +ax),

'(master )

Geld in the dynamics was discussed, and multistability
was reported.

The physical meaning of Eqs. (1) is that of two van der
Pol oscillators coupled by adding to each one's amplitude
a perturbation proportional to the other one. For
a=P=O, (1) uncouples to yield two van der Pol oscilla-
tors whose limit cycles are determined (in fundamental
period and amplitude) by E, and Ez.

Although the van der Pol oscillator model has been
used to study a wide range of self-oscillating phenomena
ranging from physics to biology, a concrete example is
found in an electronic circuit with an active element
(triode or transistor) in which a dynamical equilibrium is
attained between amplification for low voltages and dissi-
pation for larger ones. In this context all the conclusions
drawn from the paper can be applied to a feasible and
highly intuitive experimental system.

Our goal in this paper is to complete the study of the
dynamical aspects of Eqs. (1), which were initiated in [4].
The additional aspects that have been addressed can be
divided in two main groups: (i) the structure of attraction
basins in phase space as a control parameter is varied,
and its relation to the number and symmetry of the un-
derlying attractors, and (ii) the computation of first-
return maps, Poincare sections, and probability distribu-
tion functions.

The main resu1ts obtained are the relationship between
the fractal properties of attraction basins and the symme-
try of the underlying attractors, and that the complex
behavior found can, in all the cases studied, be approxi-
mated quite well by simple discrete transformations simi-
lar to the logistic map.

Finally, the system can be configured in a master-slave
setup given by
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x, =y, ,

y, = ( EI —( x +pz, ) )y, —(x +pz, ),
z) =v)

vI=(E2 —(z, +ax )
—(z, +ax),

'(slave)
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that shows chaotic synchronization for some combina-
tions of the control parameters. The main reason for
studying a master-slave system like (2) is that we thought
it would be interesting to check the possibility that the
system of two coupled van der Pol oscillators considered
as a whole could act on a similar one (slave system) giving
rise to chaotic synchronization. This phenomenon, re-
ported originally in [29] and developed further in
[30—34], has straightforward technological applications
in data encoding, for example.

The rest of the paper is organized as follows: in Sec. II
we present the numerical techniques used to study Eqs.
(1) and (2), together with the bulk of the results, and in
Sec. III the conclusions and perspectives for future work
are outlined.
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FIG. 1. Three chaotic attractors coexist for Case 4, a=0.5;
one of them is symmetric, the other two are asymmetric with
respect to an inversion through the origin.

II. NUMERICAL METHODS AND RESULTS

A. Numerical methods

The main tool used in this investigation was a fourth-
order Runge-Kutta (RK) algorithm allowing the numeri-
cal integration of model equations (1) and (2). The im-
plementation of the method was different, however, when
used to study the basins' fractal structure or the first-
return maps, Poincare sections, and probability distribu-
tion functions. For the basins' structure computations a
vectorized fourth-order RK algorithm was written as
part of the main program.

When two or more attractors are found simultaneously
(see Fig. 1), a criterion is needed to classify a given phase
space point as pertaining to one of the attraction basins.
This is done in our case by computing the long-term aver-
age of a system variable (x or z, say) or a power of it.
That quantity turns out to be different enough for
different attractors to allow the classification of all phase
space points studied. Of course, this criterion does not
reveal whether the underlying attractor is chaotic or reg-
ular (limit cycle), but one of the results we obtain is that
the attraction basin structure is, in a broad sense, not
very sensitive to that feature but, rather, to the number
and symmetry of the attractors.

It must be pointed out that a classifying criterion that
is always valid for all the parameter combinations ex-
plored is not known a priori, partly due to the fact that
attractors can be created or destroyed as a parameter is
varied. In this sense the criterion used to classify phase
space points must be tailored to each of the explored
cases.

Only a two-dimensional section of the total four-
dimensional phase space of (1) is amenable to a detailed
computation, even using a rather powerful computer. In-
itial conditions of the form (x, O, z, O) have been investi-
gated with both x and z taking values on the interval
[ —5.0, 5.0] (or a subset of it). Arrays of 256X256

or 512 X 512 initial conditions have been integrated.
Symmetry considerations allow the actual number of
computations to be reduced by one half in some in-
stances, because the attraction basin to which a point
( —!x,O, —!z!,0) pertains is completely determined by
the one at (!x!,0, z!,0).

For the rest of the computations mentioned above,
standard NAD library routines have been used. The tech-
niques for obtaining first-return maps and Poincare sec-
tions from autonomous systems are well known and a
good description of them can be found in [35].

The probability distribution functions for variables x
and z were obtained by dividing their range into a
su%ciently high number of bins (1000) and counting the
number of times that the signal passes through each one
of them in a very long, small step size integration.

B. Attraction basins' structure

The computations made to clarify the attraction
basins' structure for Eqs. (1) concentrate mainly on two
combinations of control parameters, which have been
named Case A and Case B. Case A corresponds to
EI=E2=1.0, p= —1.75, with a varying in the interval
[0.2,0.7], while Case B corresponds to sI=1.0, san=2. 0,
P= —0.75, and a in the interval [0.9600,1.0955]. Inside
this interval two ranges are to be distinguished: for a in
[0.96,0.98] only one fully symmetric chaotic attractor is
found, while for slightly higher values of the control pa-
rameter a symmetry-breaking bifurcation takes place.
Several attractors coexist in both Case A and Case B, giv-
ing rise to a nontrivial structure of the corresponding at-
traction basins. The main difference is that while in Case
2 symmetric and asymmetric attractors coexist for some
range of the control parameter o., in Case B only asym-
metric attractors are found for a & 0.98. Another
difference worth mentioning is that in Case A all the at-
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tractors found are chaotic, while in Case B we begin with
two asymmetric chaotic attractors (coming from the
symmetry-breaking bifurcation), then two asymmetric
limit cycles appear (for a= 1.0055), and for higher values
of n both the chaotic and limit cycle attractors su8'er a
series of bifurcations. At a=1.025 the formerly chaotic
attractors become periodic (through an inverse cascade)
and at a = 1.0405 the limit cycles that appeared previous-
ly double the period. At a value of a=1.0955 the two
periodic attractors disappear, and what remains are two
other chaotic attractors coming from the solutions born
at a = 1.0055 (Figs. 2 and 3).

The two cases mentioned above have been selected
mainly because previous experience was gathered about
them ([4]) and also because they are representative in the
sense that they show two of the most complex behaviors
found for system (1), at least from the point of view of the

FIG. 2. An x-z projection of the main dynamical features of
Case B with a varying in [0.9900,1.0955]. (a) Two chaotic asym-
metric attractors coming from a symmetry-breaking bifurcation
(o.=0.99); (b) two new asymmetric limit cycles along with the
old chaotic attractors (n = 1.055); (c) an inverse cascade leads to
asymmetric periodic attractors, while the limit cycles born at
o,'=1.055 double their period (+=1.0405); and (d) only two
chaotic attractors remain, coming from the solutions born at (b)
{a= 1.0955).

number of coexisting attractors (a maximum of 3 for Case
A and 4 for Case B). Although several tens of combina-
tions of control parameters have been explored, no more
than four coexisting attractors in phase space have ever
been found, but nevertheless the possibility of an even
greater number is not ruled out.

Let us begin with the discussion of Case A. For cz

values in the intervals [0.20,0.48] and [0.52,0.70] two
asymmetric chaotic attractors are found, while for a in
[0.483,0.510] another symmetric chaotic attractor is add-
ed (see Fig. 1). For a values near the symmetric attractor
creation or destruction, the basin structure consists of
zones where both basins are clearly separated and others
where an intense mixing of basins and self-similarity at
smaller scales takes place (Fig. 4). Successive blowups of
a mixed area for other values of a reveal that self-similar
structure and strongly fractal boundaries are also ob-
served (Fig. 5). On each scale solid (open) bands pertain-
ing to each basin are intermingled with zones in which an
apparently uniform mixing of both basins takes place.
On further magnification such zones reveal similar struc-
tures, giving evidence of a fractal, Cantor-like structure
of the basins.

A quantitative characterization of the fractal structure
of basins is given through the uncertainty exponent, com-
puted following [11]. This exponent has been calculated
for n =0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. Good power scal-
ing of the uncertain fraction with size is obtained in all
the cases [Fig. 6(a)]. The uncertainty exponent is
significantly lower outside the bifurcation value (a =0.5)
than for o.=0.5, where a symmetric attractor is also
found [Fig. 6(b)].

On the basin boundary, smooth segments alternate
with fractal regions. A similar behavior displaying frac-
tal boundary basins has been found in systems having
more than one attractor [10—18]. A related but different
basin structure is found in the so called riddled basins
[19—21], in which any neighborhood of every point in the
riddled basin has points belonging to the other. In spite
of the di6'erences, in both kinds of basin structures one is
very likely to find strong final state sensitivity with
respect to sma11 changes to the initial conditions. From
this point of view a precise knowledge of the position and
extent of such zones may prove of interest in the design
of systems exhibiting at least safe qualitative dynamics
(i.e., qualitative dynamics that does not change under a
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FIG. 3. Bifurcation diagram for Case B.
On the abscissas the control parameter a
ranges between 0.96 and 1.20 and on the ordi-
nates the z variable relative maxima are shown.
The different colors correspond to four
different initial conditions that are followed
through the whole a range. The existence of
several attractors for some values of the con-
trol parameter as well as their bifurcations are
apparent.
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FIG. 5. Attraction basin structure blowups (Case A,
a=0.35) showing that the mixed zones manifest a self-similar,
fractal structure. From top to bottom and from left to right,
x E [0.0, 5.0], z E [ —5.0, 5.0]; x E [0.0, 3.2], z E:[1.7, 5.0];
x E [1.0, 1.1], z E [3.56,3.6]; x E [1.072, 1.082],
z E [3.611,3.621].

FICx. 4. Attraction basin structure of Case A just before
(a=0.48, top left} and after (o;=0.52, top right) the creation
(destruction) of the symmetric attractor. Initial conditions
(x,O, z, O) are plotted, with x in [0.0,5.0], z in [ —5.0, 5.0]. Black
represents points in phase space going to the attractor with
(x ) )0 and white represents points going to the attractor with
(x) (0. Strong mixing among black and white zones is ob-
served over extended areas of phase space and is found at small-
er scales (self-similarity) as shown in the blowups of the bottom
panels, corresponding to a =0.48. Bottom left panel
x E [3.298, 3.302] and z E [ —0.402, —0.398]; bottom right
panel x E [3.2991,3.2995] and z E [ —0.4000, —0.3996].
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small modification of initial conditions).
When the symmetric attractor appears, its attraction

basin rather suddenly takes over most of the mixed zones
that existed previously. In this sense basin structure
changes sharply at the bifurcation value, as shown by the
uncertainty exponent [Fig. 6(b)]. While the symmetric at-
tractor exists, attraction basins are quite regularly distri-
buted over phase space except for very delicate and thin
fractal structures on the border between them (Fig. 7). As
the symmetric attractor disappears, it leaves behind
zones of intense basin mixing where previously its own
attraction basin was located (see Fig. 4).

In Case B and for a in [0.9905,1.0005] the attraction
basins of the two coexisting attractors (asymmetric and
chaotic) are regularly and smoothly distributed in phase
space as alternating bands of difFerent thickness. Small
structures are apparent as very thin interrupted curves
near the boundary between them, no evidence of extend-
ed zones with strong basin mixing is found, which distin-
guishes this case from Case A.

For a= 1.005, two new asymmetric limit cycles appear
and their attraction basins grow steadily as a increases.
Near the bifurcation point, they show as thin structures
sometimes located near the boundary of the previous
ones. When o, = 1.09S5 the solutions born at a = 1.005
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FIGr. 6. (a) Scaling of the uncertain fraction with size for
a=0.4, 0.5, 0.6 (Case A), and (b) uncertainty exponent as a
function of the control parameter. Note the increase (decrease)
of this exponent at a values around the bifurcation that creates
(destroys) the symmetric attractor.
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are the only ones that survive. In this situation, the glo-
bal structure of their attraction basins is (but for minor
details) identical to the original one (Fig. 8). The overall
process can be interpreted as an exchange of basins from
the previous chaotic attractors to the ones remaining at
+=1.0955. The exchange occurs in a way that points in
phase space that went to the chaotic attractor with
(z) &0 ((z) &0) now go to the attractor with
(z) &0 ((z) &0), although the asymptotic dynamics is
completely diff'erent from the chaotic attractor. In that
sense the basin structure seems to be much more robust
than asymptotic behavior, at least for small changes in a
control parameter. Even when four asymmetric attrac-
tors coexist, no zone in phase space with an extended

basin mixing as in Case 3 has been found.
The previous results lead us to propose the following

conjecture: when asymmetric attractors exist, a sym-
metric one can appear only if an extended zone of strong
basin mixing is found. It will be precisely that zone that
builds the attraction basin of the symmetric attractor.

In order to give further numerical support to that con-
jecture, another control parameter combination that
shows the same number (and kind of symmetry) of attrac-
tors than Case A has been studied, namely c, =c2 = 1.0,
P= —2.0, a in [0.50,0.72]. Behavior similar to the one
previously described is obtained, giving it partial support.
It proved to be rather dificult to find the same number of
attractors and symmetries if the parameters were varied a
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FIG. 7. Attraction basis structure in Case
a =0.50 (top panel) and in Case 8,

+=1.0855 (bottom panel). In the first case,
three chaotic attractors coexist and the corre-
sponding initial conditions are shown in blue
(asymmetric attractor, (x ) )0), red (asym-
metric attractor, (x) &0), and green (sym-
metric attractor). In the second case two
chaotic attractors and two limit cycles (all of
them asymmetric) are found together. The
coloring of the initial conditions is blue (chaot-
ic, (z ) )0), red (chaotic, (z ) &0), green (limit
cycle, (z ) )0) and yellow (limit cycle,
(z) &0). In both panels, x and z range be-
tween —5.0 and 5.0.
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puted for model equations (1) in Case A and Case 8. The
dynamics can be understood in terms of much simpler
discrete transformations similar to the logistic map. Let
us discuss these points in more detail beginning with Case
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FIG. 8. Attraction basin structure and its evolution under a
change in control parameter a in Case 8. Top left panel
a=0.9905, top right a= 1.0055, bottom left a = 1.0655, and
bottom right a=1.0955. Black and white points represent ini-
tial conditions that go to the {initially) asymmetric chaotic at-
tractor with (z) &0 ((z) &0), while dark and light gray
represent conditions that go to the (initially) limit cycle with
(z) &0 ((z) &0). In all the panels x &[0.0, 5.0],
z E [ —5.0, 5.0].
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lot from the values corresponding to Case A. In such
cases a different number of attractors and their sym-
metries is obtained, making the comparison nearly im-
possible.

40
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C. First return maps, Poincare sections,
and probability distribution functions

It is known that the dynamics of many systems evolv-
ing in a continuous way in time can be considerably
simplified when viewed as a discrete map obtained from
the Poincare surface of section or some of its variants, as
first-return maps. The first-return map consists essential-
ly of a plot of the (n + 1)th relative maximum as a func-
tion of the nth maximum for a signal in which transients
have decayed. If the graph of such a function lies on a
curve (with a single maximum, say), then a straightfor-
ward connection with the well developed theory of unidi-
mensional maps can be made, allowing a simplification of
the overall dynamic picture.

Poincare sections and first-return maps have been com-

3.0

2.5

2.0

1.5
2.0 3.0 3.5 4.0

FIG. 9. First-return maps for Case 8 at three difFerent values
of the control parameter a. (a) a=1.00 (asymmetric attractor);
(b) a =0.985 (asymmetric attractor); (c) a =0.98 (symmetric at-
tractor). Note that in (c) a tangency point with the line
x„+l=x„occurs,as well as a tangency among two branches of
the first-return map when a takes a value very close to the
symmetry-breaking bifurcation.
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erties of the attractor for which they are computed and,
in general, present rather conspicuous spikes reminiscent
of the periodic solutions that generated the chaotic at-
tractors through period doubling. In some cases, changes
in the metric or topological properties of the underlying
attractors can be inferred from changes in the statistical
properties of PDFs (mean value, skewness, kurtosis, etc.),
which makes them a valuable tool in nonlinear system di-
agnosis (Fig. 12).
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FIG. 10. Three-dimensional Poincare map through the hy-
perplane y =0 (dy /dt (0) for Case 8, u = 1.0. Two-
dimensional projections on the three coordinates planes are also
shown.
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0.2

For a=0.50 the first-return map is quite simple for the
asymmetric attractor and more complicated for the sym-
metric one, but in both cases the points are not scattered
through the plane, but located on quite definite curves. A
Poincare section through the hyperplane v=0
(dv/dt (0) for these attractors shows an even simpler
picture: the points obtained by successively piercing the
section are located on smooth curves (in IR ), indicating
that the main dynamical features can be modeled as the
restriction of the Poincare map to such invariant curves.
These facts hold true over the whole explored control pa-
rameter range.

In Case 8 interest was focused on the transition with
spontaneous symmetry breaking that takes place for
a=a,&=0.98. If a&a,b, only one chaotic, fully sym-
metric attractor is found, which splits into two asym-
metric attractors for a~0.98. At o.=1.00 the first-
return map has a smooth paraboliclike form, indicating
that a direct application of the results for the logistic map
to that case is straightforward [Fig. 9(a)]. When decreas-
ing the control parameter towards u,b, the first-return
map develops additional structure until for n=u, b it
shows a tangency point with the x„+&=x„line and also a
tangency point between two branches of the first-return
map also located on such a line [Figs. 9(b) and 9(c)].

The Poincare section through the hyperplane y =0
consists also of smooth invariant curves in R . The same
remarks made before can be applied here (Fig. 10).

To summarize, in all the cases where the Poincare map
has been computed, an extremely simple picture of the
dynamics is apparent. The map leaves invariant one or
more curves on R (corresponding to one or more asymp-
totic attractors), meaning that the main dynamic features
of Eqs. (1) can be understood through the restriction to
such invariant curves of a mapping of R in itself.

Probability distribution functions (PDFs) for the
dynamical variables x and z have been computed, show-
ing a markedly non-Gaussian behavior (see Fig. 11),
which have also been reported for other kinds of non-
linear oscillators [36]. PDFs inherit the symmetry prop-
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FICx. 11. z variable probability distribution function in Case
8, {a) o.= 1.00, (b) a =0.985, and (c) o.=0.98.
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differential equations.
It seems appropriate to ofFer some further comments

on the roles played by symmetry and coexistence of at-
tractors in the fractal structure of attraction basins. In
our model the discrete symmetries of the vector field are
an exact property of it, and this holds true when there is
only one attractor, or when several coexist. Due to the
particular form of the symmetry, however, when an
asymmetric attractor is found, we are certain that anoth™
er companion attractor exits simultaneously. Provided
that more than one attractor is found, there are good
chances to have attraction basins with rich fractal struc-
ture, as found in many other nonlinear systems. So the
point is that although symmetry by itself doesn't imply
directly multiple fractal basins, provided that the symme-
try is (spontaneously) broken, the appearance of such
basins with fine fractal structure is quite probable. %'e
have never found (up to now) in our model several coex-
isting completely symmetric attractors. Then, the rich
fractal structure of basins is tied to the existence of asym-
metric attractors, and thus to symmetry breaking of at
least some asymptotic solutions (attractors). Finally, the
attraction basins have the same kind of symmetry of the
corresponding attractor, i.e., they can be divided into
symmetric basins with respect to an inversion through
the origin, or appear in pairs related by that symmetry.

First-return maps and three-dimensional Poincare sec-
tions show that the complex temporal behavior in Eqs. (1)
is quite well modeled by simple discrete transformations;
this result holds for both symmetric and asymmetric
chaotic attractors. The Poincare section of Eqs. (1)
reduces the dynamics to a discrete map from IR to IR

that leaves invariant a few curves (or segments of curves)
on which the dynamics is essentially that of the logistic
map.

Probability distribution functions have been computed
systematically for Eqs. (1) providing evidence of a
markedly non-Gaussian behavior, a fact observed in oth-
er nonlinear circuits and systems. In addition to this,
PDFs are useful as a tool to diagnose changes in the to-

pological or geometrical properties of attractors through
the corresponding changes in some of their statistical
characteristics. In that sense, PDFs should become a
standard test in nonlinear systems analysis.

The results obtained in this investigation may serve to
motivate further research; in particular, the authors plan
to extend its work to cover some of the issues given
below.

A possible way to study attraction basin organization
in a (relatively) high-dimensional system akin to (1) is
given by the fact that a Poincare section of Eqs. (1)
reduces the dynamics to a discrete map from IR to IR

that leaves invariant some curves (or segments of curves).
Then, if a model transformation from R to IR could be
devised keeping these essential features in focus, the
iteration of such an application could provide valuable
information on the organization of attraction basins for
systems closely related to (1).

In a previous paper ([4]) it was shown that for certain
ranges of the control parameter values, unbounded solu-
tions of (1) exist. That implies the need to consider, in
general, another attractor at ~ and the shape of the cor-
responding attraction basin. Recent work on safe en-
gineering design and on the so called riddled basins
makes such a study also relevant for the proposed model.

A deeper investigation of the parameter space regions
where the chaotic synchronization phenomenon takes
place is planned, with special attention to the possibility
of synchronizing several chaotic solutions when they
coexist and to the observed feature that the mean value of
the slave variable is a function of the distance between in-
itial conditions for the master and slave subsystems. The
practical implication of such a study will be the possibili-
ty of coding a rather large amount of information by us-
ing just one basic chaotic system and adjusting some of
its control parameters and/or the initial conditions.

The relationship between the overall structure of the
stable and unstable manifolds of the (in general unique)
equilibrium point and the attraction basin structure is
another theme for future investigations.
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