
PHYSICAL REVIEW E VOLUME 52, NUMBER 2 AUGUST 1995

Effects of mobile vacancies on the dynamics of ordering and phase separation
in nonconserved multicomponent systems
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The effects of mobile vacancies on the dynamics of ordering processes and phase separation in mul-
ticomponent systems are studied via Monte Carlo simulations of a two-dimensional seven-state fer-
romagnetic Potts model with varying degrees of site dilution. The model displays phase equilibria corre-
sponding to a dilute Potts-disordered (Quid) phase and a dilute Potts-ordered phase (solid), as well as a
broad region of coexistence between the Quid and the solid phase. Temperature quenches into the dilute
Potts-ordered phase as well as into the phase-separated region are considered under the condition of
conserved vacancy density and nonconserved Potts order. The dynamics of ordering and phase separa-
tion is found to follow algebraic growth laws with exponent values that depend on the phase to which
the quench is performed. Strong transient effects are observed in the dilute Potts-ordered phase, which
are shown to result from an accumulation of vacancies at the domain boundaries. These transient effects
are accompanied by an overshooting effect in the local order of the growing domains.

PACS number(s): 05.70.Ln, 64.60.My, 64.60.Cn, 75.40.Mg

I. INTRODUCTION

Systems undergoing far-from-equilibrium ordering pro-
cesses after being quenched in temperature are known to
display a remarkable degree of universality in the dynam-
ic behavior of the ordering domains [1—5]. Specifically, it
has been found for a number of ideal and pure systems
that the average linear size R (t) of the growing domains
at late times obeys algebraic growth laws

R(t) —At",

with values of the growth exponent n that characterize
large universality classes [6] that are mainly determined
by the conservation laws in effect. Moreover, it is found
that at late times only a single time-dependent length
scale is needed to characterize the essential time depen-
dence of the problem, and the ordering process exhibits
dynamical scaling [1].

For impure and imperfect systems, the situation is
more complex and much more controversial due to the
randomness that these complications introduce into the
problem [7]. Several types of imperfections have been
studied, including site impurities [8—13], vacancies
[14—29], random couplings [30,31], random fields
[32—43], as well as second-phase particles [44]. When
site impurities or site dilution (vacancies) are involved in
the ordering process, two major circumstances seem to be
important when classifying the ordering dynamics. First,
it is relevant whether the impurities (or vacancies) are
mobile (annealed) or not (quenched). If they are quenched
they tend to pin the domain interfaces, leading to activat-
ed processes and at late times to a logarithmic growth
behavior, R (t)-(lnt)~, where P is some exponent [12]. If
the impurities are annealed, their diffusive dynamics cou-

ples to the motion of the domain interfaces [45] and the
ordering dynamics now critically depends on the nature
of the final equilibrium state of the system, which may be
different from that of a pure system. In the case where
the equilibrium state has the same symmetry as that of
the pure system no changes in the essential time depen-
dence of R (t) is to be expected, although the amplitude
A in Eq. (1) may be drastically changed in the presence of
mobile impurities that couple to the interface motion.
Mobile impurities can, however, also lead to changes in
the phase equilibria in a way that depends on the details
of the interaction between the pure-system components
and the impurities as well as the mutual interactions be-
tween the impurities. If the quench takes the system into
regions of phase separation or phases with new sym-
metries, the ordering dynamics may be significantly al-
tered.

For impurities that have no specific mutual interac-
tions among themselves, and hence display no separate
cooperativity, a fairly simple change in the phase equili-
bria arises in the case where the impurities are not inter-
facially active. This is the case for inert impurities and
vacancies where the entropy of mixing may introduce
phase coexistence between the phases of the pure-system
component. Only under very special circumstances can
the impurity induce phases of new symmetry. Examples
include stoichiometric complexes with vacancy super-
structures in antiferromagnets with competing interac-
tions [21] and rotationally inert impurities in orientation-
ally ordered structures [e.g., (Nz+Ar)-graphite [15]]. If,
however, the impurities are interfacially active, i.e., they
tend specifically to lower the interfacial tension between
ordered domains or phases, new phases may arise with
different symmetries from that of the pure system. Well-
known examples are phases with microphase separation,
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e.g., in block copolymer mixtures or microemulsions like
ternary oil-water-surfactant systems [46—49].

In order to gain information about the inhuence on or-
dering dynamics of mobile vacancies and in particular on
the relevance of the phase to which a thermal quench is
performed we have conducted a numerical study using a
very simple statistical mechanical model that in the pres-
ence of vacancies has a simple phase diagram including
both one-phase regions as well as a phase-separated re-
gion. The model is the two-dimensional seven-state fer-
romagnetic Potts model with annealed site dilution. The
seven-state ferromagnetic Potts model in two dimensions
is known to display a strong first-order phase transition
from a Potts-ordered (solid) phase to a Potts-disordered
(fiuid) phase [50]. When vacancies are introduced, simple
freezing-point depression results and a region of coex-
istence between the two phases is introduced. Hence this
model is a good and simple candidate for a study of non-
equilibrium ordering dynamics and how it may depend
on di6'using vacancies and the nature of the phase to
which the quench is performed. Since the Potts model
has a degenerate ground state (in the case of the seven-
state ferromagnetic Potts model there exist seven thermo-
dynamically equivalent states of di6'erent Potts order
below the phase transition temperature), two types of or-
dering phenomena may occur subsequent to a quench. In
both cases, the Potts spins order in ferromagnetic Potts-
ordered domains (with some dilution). Depending on
temperature and vacancy concentration, a phase-
separation process may simultaneously take place be-
tween Potts-ordered domains and the Potts-disordered
phase. Hence, the ordering processes involve ordering of
the Potts spins as well as redistribution of the vacancies.
Therefore, two ordering fields have to be taken into ac-
count, the Potts order parameter and the vacancy con-
centration. In the present paper we shall impose a global
conservation law for the vacancy concentration whereas
the Potts order is kept as a nonconserved quantity. These
conservation laws shall turn out to be relevant for classi-
fying the growth behavior.

In Sec. II we define the dilute Potts model used in our
study and describe the Monte Carlo computer-simulation
techniques used to derive the phase equilibria as well as
the nonequilibrium ordering dynamics. This section also
includes a short subsection on a particular numerical al-
gorithm we have developed in order to make it computa-
tionally feasible to simulate the time evolution of inter-
faces in inhomogeneous systems. The main results of the
study are reported in Sec. III, which describes the phase
diagram, the morphology of the domain patterns, and the
associated interfacial network, the growth laws, as well as
the growth exponents. Furthermore, we present data for
local order parameters that show that the nonequilibrium
ordered domains have a structure and composition
significantly diFerent from that of the equilibrium phases.
We describe this phenomenon as a kind of overshooting
eAect and discuss in Sec. IV the possible generic oc-
currence of overshooting efFects in nonequilibrium order-
ing dynamics as due to a subtle competition between
nonequilibrium internal energy and nonequilibrium en-
tropy.

II. MODEL AND SIMULATION METHOD

A. The dilute Potts model

The model we have used for the present study is a ver-
sion of the q =7 state Potts model defined by the Hamil-
tonian

H= —Jg(5 —5 +5 + ),

(3)

where the angular brackets denote an ensemble average.
The summation in Eq. (2) is over nearest-neighbor sites of
a finite triangular lattice with periodic boundary condi-
tions. We have studied a series of lattice sizes,
X =L XL, with L =50,200,500, 1000. Most of the results
reported below correspond to L =200.

The pure two-dimensional q-state Potts model has a
first-order phase transition for q )3. For q =7, the tran-
sition is strongly first order and the transition tempera-
ture is known from exact calculations to be
k~ T, /J =2/ln3 = 1.8205 [50]. Below T„ the model ex-
hibits a Potts-ordered (PO) phase and above T„the mod-
el has a Potts-disordered (PD) phase. When the annealed
site dilution is introduced, a region of coexistence be-
tween the two phases (PO-DO) is introduced. The pre-
cise phase diagram is described in Sec. III A (cf. Fig. 1).

B. Model dynamics

The Potts model in Eq. (2) has no natural dynamics
and stochastic dynamics therefore has to be invoked in
order to associate dynamical behavior with the, model,
both for providing equilibrium properties via the simula-
tions and for deriving the nonequilibrium ordering dy-
namics.

In all simulations, except for those used to derive the
equilibrium phase diagram, the vacancy concentration p
is kept fixed and is therefore a conserved field. The other
relevant field is the (global) Potts order parameter,

qN 'max (+,5, ) —
1)

q
—1

(4)

which we keep as a nonconserved quantity.
The conservation of p is assumed by only allowing va-

cancies to be involved in two-site Kawasaki exchanges,
whereas the Potts spins are allowed to change state ac-
cording to single-site Glauber dynamics, which does not
conserve %. These two types of dynamics have to be
specified in relation to each other in order to define the
detailed microscopic dynamics. We have chosen to con-
sider the following two types of dynamics:

(A) Coupled dynamics —Potts-spin chang. es are only
allowed in connection with a Kawasaki exchange involv-

o.;=1,2, . . . , q+1,
with J )0 corresponding to ferromagnetic interactions.
State q+ I is interpreted as a site vacancy. The (global)
vacancy concentration is determined given by
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ing a neighboring vacancy. The physics behind this
mechanism is that the time evolution of the system
proceeds via vacancy hopping, and the Potts spins are
only allowed to relax in connection with a vacancy hop.
The two processes are hence coupled and take place on
the same time scale. Obviously, the pure Potts model
limit cannot be studied by this type of dynamics.

(B) Uncoupled dynamics —. Single-site Potts-spin
changes and vacancy exchange between neighboring sites
involving a vacancy and a Potts spin are allowed to take
place independently. This allows in principle for two
different time scales. For simplicity we have taken the
two independent processes to occur on the same time
scale in order to facilitate comparison with (A).

In the Monte Carlo simulations the possible system up-
dates are governed by the microscopic dynamics de-
scribed above, and the acceptance procedure follows the
usual Metropolis criterion, min( 1,exp( b,E /kti —T ) ),
where AE is the total internal energy associated with the
update. In order to speed up the simulations, a particular
fast updating algorithm has been developed as described
in Sec. II E.

C. Equilibrium and quenching simulations

D. Measures of time-dependent length scales

The time evolution of the spatial ordering is followed
by a number of different measures. First, a series of
selected and representative microconfigurations are in-
spected qualitatively. Second, a measure of the average
linear dimension, R (t), of the growing domains is deter-
mined from the domain-area distribution function,
P(A, t), as

(t)=()f(A(T)P(A, ))dA)'
0

(5)

where A (t) is the area of an ordered Potts domain at

The calculation of the equilibrium phase diagram in
the T-p plane for the model in Eq. (2) proceeds via a
grand-canonical simulation where a chemical-potential
term, —pg;5 ~+„ is added to the Hamiltonian. These

calculations provide the phase boundaries with an accu-
racy that is sufficient to determine those state points,
( T,p), for the subsequent quench simulations, which are
safely within a prescribed region of the phase diagram.

The quenching simulations are performed by preparing
the system at a prescribed vacancy concentration in the
PO phase, usually a completely random state correspond-
ing to infinite temperature. The temperature is then sud-
denly changed to a temperature within either the PO or
the PO-PD phase, and the microscopic dynamical evolu-
tion is governed by the principles described in Sec. II 8.
The time is hence naturally measured in units of Monte
Carlo steps per site (MCS). In order to provide accurate
ensemble averages for the measured time-dependent
quantities, which in most cases are non-self-averaging
[51],a large number of independent quenches, from 10 to
100, have been performed for each value of temperature
and vacancy concentration.

time t. An ordered Potts domain is defined as a connect-
ed region of lattice sites that are occupied by Potts spins
in the same state. Connectivity requires at least one
nearest-neighbor bond. Ao is a lower cutoff on the distri-
bution function. The lower cutoff is chosen so as to elimi-
nate effects due to small clusters of excitations, which
should not be considered real domains. The choice of
cutoff value (in the present case 30 =4) has no inhuence
on the asymptotic behavior, but for finite-time simula-
tions an appropriate choice of Ao facilitates determina-
tion of the asymptotic behavior at an earlier time.

Furthermore we have monitored local aspects of the
ordering and coarsening process by calculating two mea-
sures of local order. One is the local domain Potts order
parameter

(6)

and the other is the local concentration of vacancies
within the ordered Potts domains

Nk

p)„(t)= Nk
' g5
i=1

In Eqs. (6) and (7) the bar refers to an average over all
Potts-ordered domains and the sums are for each domain
k extended over the Nk sites that make up the domain.
In this averaging, only domains over a certain size,

100, are included in order to improve the statistical
accuracy. The effects to be described in Sec. III D do not
depend on this particular choice of smallest domain size.
Furthermore, in the calculation of these local domain or-
der parameters the same lower cutoff is introduced for
the domain size as in Eq. (5) in order to eliminate effects
from small clusters of correlated Potts spins or small va-
cancy precipitates. In the long-time limit, the two local
order parameters tend towards the global, thermodynam-
ic ordering fields, 0'&„(t—+ (x) ) =%(T) and pi„(t~ ()() )

=p( T).

E. Fast updating algorithm

The dynamics of ordering in far-from-equilibrium sys-
tems involves at intermediate and late times very hetero-
geneous states characterized by domains with a high de-
gree of order (almost that of the equilibrium state) and a
random network of interfaces corresponding to disorder.
From the standpoint of stochastic Monte Carlo simula-
tion it is therefore extremely inefFicient to use updating
algorithms that correspond to random or sequential up-
dating of the lattice. The action is mostly related to the
interfaces or those sites of the ordered domains where va-
cancies or broken Potts bonds occur. We have therefore
developed a fast updating algorithm that focuses on those
sites of the lattice that are susceptible to effective up-
dates. This method was also employed in a previous study
of ordering dynamics in conserved Potts models [52].

In the case of coupled dynamics (A), which is formally
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equivalent to ordinary two-site Kawasaki exchange [52],
the algorithm is implemented in the following way. We
maintain a list of links where one site at the edge of the
link is occupied by a spin and the other by a vacancy. A
link with this property is called a broken bond. We
maintain a counter, ND&FF, that keeps track of the num-
ber of broken bonds.

At every time step we choose a hnk randomly from the
list and attempt an exchange between the site with the
spin and the site with the vacancy. In the process we al-
low the spin to attempt a change of its value. We use the
standard Metropolis criterion to decide whether or not to
accept the combined move. The exchange, if accepted,
will on the triangular lattice affect ten links which have
to be either deleted from or added to the list of broken
bonds. These cha~ges may affect N»». Every time an
attempt to update a broken bond has been performed we
update a clock counting the number, tMcBB, of updated
broken bonds per site according to tMCBa~tMCnB+1/N
where N is the number of lattice sites.

This time scale for tMc~~ is obviously not the physical
time scale associated with random activity on the lattice.
Such a time scale would be simulated by a Metropolis al-
gorithm where bonds are randomly selected, although in
that case we might have to add the rule that time is not
incremented if a bond with two vacancies is selected. At
this point we run into the subtle problem of deciding
whether a vacancy is considered a physical entity or not.
In order to revert to the physical time scale we maintain
yet another counter, N&H~s=3Ã —V, where V is the
number of links with edges populated solely by vacancies.
Every time a broken bond is selected for update we incre-
ment the physical time, tMcs, according to the rule

r MCS r MCS +NPHYS /( NDIFFN)

since on average we should have selected NPHYs/ND, FF
random bonds before we would have found a broken one.
The factor of N is a convention since tMcs is defined as
Monte Carlo steps per site.

With the relation in Eq. (8) we can check the validity
of the time scale, tMcs, by noting that for low concentra-
tion of vacancies (so low that the vacancies do not aggre-

gate), tMCs and tMCBB have to be proportional to each
other, and the proportionality constant is the concentra-
tion of vacancies p.

This updating algorithm is very efficient since bonds
selected for update are only those where an exchange
leads to a physical change of the configuration. The price
we pay for the efficiency is the extra overhead introduced
with maintaining the list of broken bonds. Hence the al-
gorithm becomes more economic during the late stages of
the growth process where only few broken bonds remain.
An interesting consequence of the algorithm is that the
Physical time, tMcs, via Eq. (8) becomes of a statistical
nature. The precision of the physical time will increase
with increased system size and number of quenches per-
formed, since we determine tMcs for a given value of
tMGB& by averaging over the corresponding and different
values of tMcs obtained from the different quenches.

This algorithm is purely scalar in nature and very
difftcult to vectorize or parallelize (apart from simulating
different concurrent systems). The overhead structure
needs updating only when the configuration changes,
therefore the efficiency of the overhead structure in-
creases with decreasing acceptance rate. On a present-day
workstation we can perform a quench on a 200X200 sys-
tem with p=0.01 and T/T, =0.6 in approximately 1 h
CPU time, when running the quench until tMcs=10
MCS. This compares favorably with fast algorithms
developed for vector computers.

III. RESULTS

A. The phase diagram

The equilibrium phase diagram for the dilute q =7
state Potts model in Eq. (2) is shown in Fig. 1. As expect-
ed, the diagram consists of three regions: a Potts-ordered
phase at low temperatures and low vacancy concentra-
tions, a Potts-disordered phase at high temperatures
and/or high vacancy concentrations, as well as a region
of phase coexistence. The range of stability of the PO
phase is very small (note the logarithmic p axis used in
Fig. 1).
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0.2

0-PD

FIG. 1. Phase diagram of the q =7 state fer-
romagnetic Potts model on a triangular lattice
with annealed site dilution, cf. Eq. (2). T, is
the first-order phase transition temperature of
the pure q =7 state Potts model. The vacancy
concentration is denoted by p. The digram
consists of three regions, the dilute Potts-
ordered phase (PO), the dilute Potts-
disordered phase (PD), and a region (PO-PD)
of phase separation.
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t = 2000 t = 63000
FIG. 2. Time evolution of domain patterns for quenches into the PO phase (a) and into the PO-PD phase-separated region (b) cor-

responding to vacancy concentrations of p=0.01 and p=0.2, respectively. The quench temperature is T/T, =0.58. The system
sizes correspond to lattices with 200X 200 sites. The domain pattern is mapped out by highlighting the broken Potts bonds. The va-

cancies are indicated by small dots. The defects seen within the ordered Potts domains are mostly isolated Potts spins or vacancies.
The time is in units of MCS.

B. Domain patterns C. Growth laws and exponents

Figure 2 illustrates the time evolution of
microcon6gurations typical for quenches into the PO
phase (a) and the PO-PD coexistence region (b), respec-
tively. The microscopic dynamics is the coupled dynam-
ics (A). The configurations in Fig. 2(a) illustrate the
coarsening process of the Potts domains as well as the
distribution of defects (wrong Potts spins or vacancies)
within the domains for quenches into the PO phase. At
late times a clear tendency towards accumulation of de-
fects at the domain interfaces is seen. Still, the domain in-
terfaces remain fairly sharp and localized.

The evolution of the domain pattern for quenches into
the PO-PD coexistence region appears quite diferent as
seen in Fig. 2(b). First of all, the overall growth rate is
much faster as more vacancies are introduced. Second,
the PO regions are formed in a compact manner more
readily that the PD regions, which seem to nucleate at
boundaries between domains with diferent types of Potts
order. In this way the PD phase develops as a connected
network of interfacial regions that broaden as time lapses.
This interfacial region may be seen as a phase of defects,
i.e., a mixture of disordered Potts spins and vacancies.

A quantitative analysis of the ordering dynamics in the
case of coupled dynamics (A) is provided in Fig. 3, which
shows how the length scale R (t) in Eq. (5) evolves in time
for quenches into the PO phase, the PO-PD coexistence
region, as well for a quench close to the boundary be-
tween the PO phase and the PO-PD coexistence region.
At late times all three sets of data are seen to display an
approximate power-law growth behavior, Eq. (1), with an
exponent whose value n seems to be dependent on the va-
cancy concentration. Even more dependent on the va-
cancy concentration is the absolute growth rate deter-
mined by the amplitude A in Eq. (1). The amplitude
strongly increases for increasing vacancy concentration.
This is a consequence of the chosen type of dynamics,
which obviously is faster the more vacancies there are to
facilitate the growth. This behavior is in contrast to that
found for the uncoupled dynamics (see also Ref. [17])
where the growth amplitude decreases with increasing
vacancy concentration.

A comparison between the growth behavior for the
two types of microscopic dynamics, (A) and (B), is pro-
vided in Fig. 4, which for a quench into the PO phase at
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FIG. 3. Double-logarithmic plot of the
average size R (t) of ordered Potts domains as
a function of time (in units of MCS). The mi-
croscopic dynamics is that of coupled
vacancy-spin exchange and Cilauber spin dy-
namics. The quench temperature is
T/T, =0.58. Data for three different vacancy
concentrations are shown, p=0.001 (+), 0.04
(0), 0.1 (0), corresponding to quenches into
the PO phase, into the crossover region, and
into the PO-PD phase-separation region, re-
spectively. The results refer to lattices with
200X200 sites. Power laws corresponding to
t' and t' are shown by solid lines.

p=0.01 illustrates that the growth exponent is larger for
the coupled dynamics.

A compilation of results for growth exponent values n
is given in Fig. 5 for both types of dynamics and for a
series of different quench temperatures and vacancy con-
centrations. When comparing with the phase diagram in
Fig. 1 the following tentative conclusion is drawn: In the
case of the coupled dynamics the growth exponent per-
tinent to the PO phase is around n =0.6 whereas in the
PO-PD coexistence region n =0.3. In the case of uncou-
pled dynamics the growth exponent for the PO phase
tends towards n =0.5 whereas it is also n =0.3 in the
PO-PD coexistence region. We shall in Sec. IV return to
a discussion of these results for the growth exponent.

D. Local order parameters: overshooting e6'ects

Figure 6 shows the intermediate and late time behavior
of the local domain Potts order parameter, %»,(t) in Eq.
(6). The results, which are obtained in the case of cou-
pled dynamics (A), refer to a quench into the PO phase
and data for three different system sizes are shown. It is
obvious that there is no systematic dependence on the

system size in the range shown and that the data there-
fore represent the thermodynamic limit as far as the sys-
tem size is concerned.

The most striking feature of the temporal variation of
the local domain Potts order parameter is that it is non-
monotonous and displays a maximum. This maximum is
above the equilibrium value of the global Potts order pa-
rameter, which is indicated by a thin line and an arrow in
Fig. 6. Hence at intermediate and late times the Potts or-
der within the domains is larger than the equilibrium or-
der parameter. We shall refer to this effect as an
overshooting effect. The overshooting is more pronouced
the larger the temperature, as is demonstrated in Fig. 7.
This finding suggests that the overshooting may be relat-
ed to a nonequilibrium entropy effect. We shall return to
a discussion of these observations in Sec. IV.

The time evolution of %&„(t) as a function of vacancy
concentration is shown in Fig. 8. Data are here given for
a single value of the quench temperature and for various
values of the vacancy concentration corresponding to
quenches both into the PO phase and into the PO-PD
coexistence region. This figure provides two important
results. First, there is the overshooting effect, which per-
sists for all vacancy concentrations. Second, the

10
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10 o10
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10
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10
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10 10

FIG. 4. Double-logarithmic plot of the
average size R (t) of ordered Potts domains as
a function of time (in units of MCS). Compar-
ison of the growth for two different types of
microscopic dynamics: coupled vacancy-spin
exchange and Glauber spin dynamics (E) and
uncoupled vacancy-spin exchange and Cxlauber
spin dynamics (X). The quenches are in both
cases into the PO phase corresponding to a
quench temperature of T/T, =0.58. The va-
cancy concentration is p=0.01. The results
refer to lattices with 200X200 sites. A power
law corresponding to t' is shown by a solid
line.
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0.4

0.2

O T/T, =0.42
C3 T/'T, =0.58
Q T/T, =0.67
+T/T, =0.58, uncoupled dynamics

FIG. 5. Growth exponent n, cf. Eq. (1), as a
function of vacancy concentration shown for
quenches to difFerent temperatures. The ex-
ponent values are estimated from data for the
time dependence of the linear size R(t), as
shown in Figs. 3 and 4. Results are presented
as obtained for both coupled (o, , 0) and un-
coupled (+) dynamics.

0 I

10
~ ~ ~ 5 I

10 10 10 10

0.998

0.995

0.992 I

10
I

10 10

FIG. 6. Semilogarithmic plot of the local
domain Potts order parameter, %~„(t) in Eq.
(6), as a function of time (in units of MSC).
The microscopic dynamics corresponds to cou-
pled vacancy-spin exchange and Glauber spin
dynamics. Results are shown for quenches to a
temperature T/T, =0.58 for a vacancy con-
centration, p=0.001, within the PO phase.
Data are shown in case of three different lat-
tice sizes, 200 X200, 500 X 500, and
1000X 1000. The equilibrium value,

(t = ~ ), of the Potts order parameter is in-
dicted by a thin line and an arrow.
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FIG. 7. Semilogarithmic plot of the local
domain Potts order parameter, %„,(t) in Eq.
(6), as a function of time (in units of MSC).
The microscopic dynamics corresponds to cou-
pled vacancy-spin exchange and Glauber spin
dynamics. Results are shown for quenches to
two different temperatures, T/T, =0.58 and
0.67, for a vacancy concentrations, p=0.001,
within the PO phase. The equilibrium values,
%&„(t= ~ ), of the Potts order parameter in
the two cases are indicated by thin lines and
arrows. The results refer to a system with
200 X200 sites.
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FIG. 8. Semilogarithmic plot of the local
domain Potts order parameter, V|„(ti in Eq.
(6), as a function of time (in units of MSC). The
microscopic dynamics corresponds to coupled
vacancy-spin exchange and Glauber spin dy-
namics. Results are shown for quenches to a
temperature, T/T, =0.58, in the case of four
different vacancy concentrations, p =0.001,
0.01, 0.04, and 0.1. The equilibrium values,
%&„(t=~x) ), of the Potts order parameter for
p=0.001 and 0.01 (which are almost the same)
are indicated by a thin line and an arrow. The
results refer to a system with 200 X 200 sites.

overshooting is to a level in 4&„ that is not sensitive to p.
For quenches into the PO-PD coexistence region, Potts-
ordered domains are formed transiently with the same
high degree of Potts order as seen for quenches into the
PO phase. After some time these domains start to disor-
der again and the corresponding value of %&„drops to
the much lower equilibrium value. Within the time span
of the simulation, the equilibrium value of the PO
domains in the PO-PD coexistence region has not been
reached. For quenches into the coexistence region but
close to the PO —PO-PD phase boundary the drop to-
wards the equilibrium Potts order only sets in at very late
times. This is seen in Fig. 8 in the case of p =0.04.

The overshooting effect is not a special feature of the
coupled microscopic dynamics. The same effect is found
for uncoupled dynamics as demonstrated in Fig. 9. Again
the overshooting is to the same level independent of p
and the drop towards the equilibrium value of %&„sets in
at very late times for quenches into the phase coexistence
region.

The overshooting effect is accompanied by a depletion
effect in the time evolution of the local vacan. cy concen-
tration, p&„, within the domains. This is shown in Fig. 10,
which presents data for p&„ for three difFerent values of

the global vacancy concentration corresponding to two
quenches into the PO phase and a quench into the PO-
PD coexistence region close to the phase boundary.
These data sets demonstrate that concomitantly with the
overshooting effect in the local Potts order parameter
there is a depletion of vacancies within the Potts-ordered
domains, for quenches both into the PO phase and into
the PG-PD coexistence region. The depletion is seen as a
pronounced minimum in p&„(t). This minimum in the lo-
cal vacancy concentration rejects the fact, observed in
the microconfigurations in Fig. 2, that the vacancies are
transiently enriched at the domain interfaces.

As described in Sec. II 8 the simulation of the dynami-
cal evolution proceeds by use of the Metropolis function,
min[1, exp( b,Elk~ T)], in—the acceptance criterion for
the Monte Carlo process. We have verified that the
overshooting effects described above are not artifacts of
the use of this asymmetric function by repeating some of
the simulations with the symmetric Glauber function,
—,'[1—tanh(bE/2kzT)]. It is found that the effects still
persist with this function.

In Sec. IV we return to a discussion of these overshoot-
ing efFects and try to relate them to a generic property of
systems far from equilibrium.
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FIG. 9. Semilogarithmic plot of the local
domain Potts order parameter, %&„(t) in Eq.
(6), as a function of time (in units of MSC).
The Inicroscopic dynamics corresponds to un-
coupled vacancy-spin exchange and Glauber
spin dynamics. Results are shown for quenches
to a temperature, T/T, =0.58, in the case of
three different vacancy concentrations,
p=0.01 (solid line), 0.04 (dot-dashed line), and
0.1 (dashed line). The equilibrium value,
4&„(t= ~ ), of the order parameter for
p=0.01 is indicated by a thin line and an ar-
row. The results refer to a system with
200 X200 sites.
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FIG. 10. Semilogarithmic plot of the local
domain vacancy order parameter, p&„(t) in Eq.
(7), as a function of time (in units of MSC). The
microscopic dynamics correspond to coupled
vacancy-spin exchange and Glauber spin dy-
namics. Results are shown for quenches to a
temperature, T/T, =0.58, in the case of three
different vacancy concentrations, p =0.001,
0.01, and 0.04. The equilibrium values„

p&„(t = ~ ), of the order parameter for
p=0.001 and 0.01 are indicated by arrows.
The results refer to a system with 200X200
sites.

IV. DISCUSSION

Using a simple model with a first-order phase transi-
tion we have in this paper shown by computer simulation
that the nonequilibrium ordering dynamics following a
thermal quench is very dependent on the degree of an-
nealed site dilution. However, some universality still
holds when it comes to the value of the growth exponent
n in Eq. (1), that characterizes the late-time algebraic
time evolution of the length scale R (t). The data
presented in Fig. 5 suggest that n has two possible values,
one within the single-phase region (the PO phase) and
another one within the two-phase region (the PO-PD
coexistence region). Due to crossover effects introduced
by finite-system and finite-time limitations inherent in the
present numerical approach, there is no sharp transition
between the two exponent values at the phase boundary.
Intuitively, one may expect that for quenches into this re-
gion the system does not "know" to which phase it is
quenched until very late times where the role of the mix-
ing entropy, which is a global entity, has fully established
itself. It is likely that previously reported anomalously
low exponent values in models with diffusing vacancies
[17,19,20] suffer from similar crossover effects.

The value of the growth exponent found in the coex-
istence region, n =0.3, is close to the value, n = 1/3, pre-
dicted by the classical Lifshitz-Slyozov theory [1] for spi-
nodal decomposition and phase-separation processes.
This theory should apply for the present system since the
phase separation involves separation of two phases of
different density. Hence the growth process is limited by
long-range diffusion [21,53]. The numerical value of the
exponent does not seem to depend on the details of the
microscopic dynamics chosen.

The value of the growth exponent found in the Potts-
ordered one-phase region depends on the type of micro-
scopic dynamics used. In the case of uncoupled dynarn-
ics, i.e., a dynamics by which the Potts spins can change
value independent of vacancy exchanges, the exponent
approaches n =0.5 at low temperatures. This is in accor-
dance with the expectation for a system with a noncon-
served order parameter (in this case the global Potts or-
der qi), which should obey the classical Lifshitz-Allen-
Cahn growth law with n = —,

' [1]. The presence of an an-

nealed dilution should not inhuence the exponent value
but only the amplitude A. Only for a tricritical system
[53] can the conserved field p have an effect on the
growth exponent.

In the case of coupled dynamics, i.e., a dynamics by
which dynamical evolution in the system proceeds ex-
clusively via hopping of a particle into a vacancy, the nu-
merical exponent assumes a value n =0.6, which is dis-
tinctly above the theoretical value. We have found no in-
dications of this being a transient effect although it of
course never can be excluded in a numerical study of the
present type that a crossover to a different growth law
may set in at later times. In a series of studies of the non-
conserved Ising model with very low amounts of mobile
vacancies (from p=0.0004 down to a single vacancy),
Vives and co-workers [22,24,25] found a growth exponent
value of n -0.6—0.7 depending on temperature and va-
cancy concentration. The general trend found was that as
the vacancy concentration is decreased the exponent
value increases towards 0.7 [25]. These results are in
close agreement with our findings for the dilute Potts
model with a dynamics controlled by vacancy hopping.
Furthermore, the decrease in the exponent value as the
temperature is increased as suggested by the data in Fig.
5 is also consistent with the results for the nonconserved
Ising model [25]. It has been suggested by Frontera,
Vives, and Planes [25] that the anomalously high growth
exponent found for low vacancy concentrations and low

temperatures in the nonconserved Ising model with va-
cancy hopping is caused by the strong localization of
non-correlated vacancies in the domain boundaries.
Whereas a vacancy diffusing within an ordered domain
undergoes a normal random walk, a vacancy trapp d in
the domain boundary undergoes some kind of self-
avoiding random walk associated with an anomalous
diffusion constant corresponding to diffusion in a con-
strained geometry [25].

Returning to the results for the growth exponent in the
case of uncoupled dynamics, the numerical value of the
exponent at finite temperatures is found to be slightly
below the theoretical value, which is likely to be a finite-
system and finite-time effect. This is consistent with pre-
vious findings for pure q-state nonconserved Potts models
with large q where the asymptotic region is only reached
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for very large systems, %-1000, and at very late times

Vacancy hopping as the main mechanism for phase
separation and spinodal decomposition has previously
been studied by Monte Carlo simulation for symmetric
and asymmetric AB alloys modeled by the conserved Is-
ing model with small amounts of vacancies. Specifically it
was shown by Yaldram and Binder [27—29] that a few
percent of mobile vacancies produced the same results for
the ordering dynamics as the standard Kawasaki A-B ex-
change mechanism in pure systems. However, the
asymptotic region characterized by the exponent value
n =

—,
' was not reached in these studies but rather the

well-known transient region characterized by an effective
exponent value of n =0.25 [52]. Subsequently it was
found by Fratzl and Penrose [26] that an exponent value
close to —,

' could be obtained in the conserved Ising model
with vacancy diffusion if the vacancy concentration was
substantially reduced to p=6X10 . In the light of the
findings of an anomalously high growth exponent by
Vives and co-workers [24,25] for the nonconserved Ising
model with vacancy hopping it is possible, however, that
the exponent value reported by Fratzl and Penrose [26]
may be inAuenced by two counteracting effects: one be-
ing the usual slow transient involved in spinodal decom-
position and the other being a fast mode controlled by
the localized vacancy diffusion in the domain boundaries.

Finally, we discuss the overshooting effects found in
the local domain order parameter and the concomitant
depletion effect in the local domain vacancy concentra-
tion, cf. Figs. 6—10. It is likely that these effects are due
to some generic mechanism in far-from-equilibrium or-
dering processes. First, we have found in the present pa-
per that the effects are robust to changes in the micro-
scopic dynamics as well as to changes in composition and
temperature. Second, it was shown in a recent study of
the conserved q =2 (Ising) and q =3 state two-
dimensional Potts models [52] that the local concentra-
tions of Potts excitations (which are the carriers of
growth within the condensation-evaporation phenome-
nology) within the ordered Potts domains display a
minimum as a function of time. This is equivalent to a
transient depletion of disorder, and hence an overshoot-
ing in the domain Potts order parameter. In that study
[52] it was suggested that the overshooting eff'ect may ex-
plain the slow transient growth mode in spinodal decom-
position characterized by n =0.25. Finally, we have re-
cently shown [55] using the simplest possible model of an
order-disorder process, the two-dimensional noncon-
served Ising model, that overshooting is very pronounced
in the local domain order of this model as well, and in the
case of site dilution there is a concomitant depletion of
vacancies within the ordered Ising domains.

An important observation is the temperature depen-
dence of the overshooting effect as demonstrated in Fig. 7
which shows that the degree of overshooting is larger for
the higher temperature. This suggests that the effect is
related to entropy. Furthermore, it is striking that the

level of the transient local order parameter, cf. Figs. 8
and 9, does not seem to be very dependent on the vacancy
concentration or the choice of microscopic dynamics.
These observations suggest that in the transient state, va-
cancies, and spin excitations are expelled from the grow-
ing ordered domains, which hereby increase the internal-
energy contribution to the lowering of the nonequilibri-
um free energy. The disorder (and hence the entropy) is
localized in the domain boundaries and in the global
domain-boundary configuration. Only at later times does
the stabilizing effect of the mixing entropy manifest itself.
This leads to a redistribution of the vacancies which start
dissolving in the ordered domains together with a de-
crease of the domain Potts order towards the thermo-
dynamic equilibrium value.

Obviously, during the quench the total entropy of the
system decreases in monotonous fashion and so does the
total internal energy. However, the energy is a local
quantity and it can be easily minimized by local rear-
rangements involving spin ordering and exclusion of va-
cancies from ordered domains. A balancing contribution
in the free energy to this ordering effect and minimization
of internal energy is the entropy of mixing, which, how-
ever, is a global property of the system that only mani-
fests itself fully over a much longer time scale. This sub-
tle competition between nonequilibrium energy and en-
tropy is what we believe is the mechanism behind the
overshooting effects.

We are only aware of a single piece of experimental
work on ordering dynamics that provides the kind of
time-resolved early-time structural information that can
be used to address the question of the possible presence of
overshooting efFects. Park et al. [56] report from an x-
ray scattering study of the ordering process in Fe3A1 that
the short-range order goes through a transient maximum
in contrast to the long-range order parameter, which
monotonically approaches the equilibrium value. These
observations were interpreted as a consequence of a sub-
tle coupling between long- and short-range order charac-
terized, respectively, by the correlation length of the
order-parameter

fluctuations

and the domain size
[56—58]. We suggest that the observations made by Park
et al. may be an example of the general phenomena we
have described in the present paper. It would be obvious-
ly of interest to further analyze the early-time dynamical
structure factor obtained from time-resolved scattering
experiments on various systems with an aim to scrutinize
the occurrence of possible overshooting effects in far-
from-equilibrium ordering processes.
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