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The physical significance of the internal energy as a state function and of thermodynamic variables in
the presence of fields are considered. Intensive variables are formulated in the presence of fields and it is
shown that, due to the fact that their form depends on field constraints, they are not unique. Four
different pairs of pressure and chemical potential corresponding to four different field constraints are
identified for the case of a uniformly magnetized continuum. This multiplicity of form of the pressure
and chemical potential is a consequence of the effect of fields on thermodynamic systems and their envi-
ronment. It is shown that the differential expressing the net effect of fields on the internal energy of a
thermodynamic system must be exact. This is shown to apply for the analysis of electrostatic and mag-
netoquasistatic fields, regarding their thermodynamic properties and conditions of equilibrium. Discrete
systems are defined as those involving field lines that cross their boundaries. The magnetic field which is
energized by a polarized discrete system, outside its boundaries, is defined as pertaining to the system. It
is claimed that internal energy, i.e., in its literal thermodynamic meaning, does not exist in discrete mag-
netized systems where part or all of their magnetic energy may be stored outside their boundaries. Once
this externally stored energy is defined as having a source which is internal to the system, then the con-
cept of internal energy can still be used. Finally, intensive thermodynamic variables are formulated for
discrete systems. These variables are shown to have the same multiplicity of form under different field
constraints.

PACS number(s): 05.70.Ce, 41.20.Gz

I. INTRODUCTION

Thermodynamics in the absence of fields is a well es-
tablished science. However, it seems that the representa-
tion of the effect of fields in terms of thermodynamic vari-
ables is still not well understood. The notion that the
effect of fields can be expressed by adding extra terms to
previous formulas seemed to be a straightforward solu-
tion to the problem but as Guggenheim [1] puts it,
"There is, however, a serious incidental difficulty, name-
ly, that of finding the correct general expression for mag-
netic work. "The attempts that were made over the years
to formulate a comprehensive and unified theory of ther-
modynamics in the presence of fields [1—7] seem to be
only partially successful. It seems that a central problem
is whether it is possible and if so, how to express the
effect of fields in terms of the conventional combination
of extensive and intensive variables. As is well known,
this is the backbone of thermodynamic formulations of
energy, potential functions, and the Maxwell relations.
Another problem is to guarantee that the energy of sys-
tems in fields is indeed a state function that qualifies as
internal energy of these systems. This internal energy
must also be a first order homogeneous function of its ex-
tensive variables so that they can be Euler integrated.
The fact that fields involve interactions at a distance is
not covered properly by ordinary thermodynamics. For
example, in ordinary thermodynamics only direct work
that is done on or by the system can change its internal
energy. However, when fields are involved, work that is
performed on other systems that are not part of the one
being considered can change its potential energy. In this

context, it is known that the energy of a system can be
changed by a Geld without the need to change any of its
extensive variables. This aspect requires appropriate ther-
modynamic formulations. The constraints that can be set
on field variables are also different from those that are
known to apply in ordinary, field free thermodynamic
systems. Furthermore, in the presence of fields, the
current thermodynamic formulations do not provide a
definite answer if the energy stored in the field outside the
boundaries of the system can be considered as part of its
own energy.

In this work, we attempt to formulate thermodynamic
variables in the presence of fields. We focus on magneto-
quasistatic fields for demonstration of the theory. This is
done for the case in which the field dependent energy is a
state function that has an exact differential. The incor-
poration of this exact differential and the differential of
the internal energy (which prevails in the absence of the
field) into a new exact differential produces different sets
of thermodynamic variables depending on the field con-
straints. The theory is then developed, in detail, for the
case of a linearly magnetizable continuum and its impli-
cations for charged and discrete systems are considered.

II. THEORY

A. Thermodynamic Seld variables

Classical thermodynamics postulates that for each sys-
tem there exists a state function called the internal energy
U that depends on the entropy, volume, and mass of this
system. The first law of thermodynamics states that
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dU=dQ+dW,

where dQ and dW' are the heat input and work done on
the system. Neither Q nor W is a state function, but their
integrated combination is. Standard presentation of the
change in U is given in terms of a sum of n + 1 products,
each consisting of an intensive variable and a differential
of its extensive conjugate variable

d U/
= g g;~ dx;J +d Uf,

i=0
(7)

energy. Otherwise, the result would not be consistent
with the requirement that the sum remains an exact
differential of a state function. It follows that if we
denote the differential effect of the kth field
k =1,2, . . . , k'bydUfk, then for the jth system

dU= gg;dx;,
i=0

where

g, =(BU/Bx, .), x,.ex, , ij =O, l, . . . , n .
J

(2)

(3)

where dUf, which denotes the total change in the inter-
nal energy due to the combined effect of all k' fields, must
be an exact differential and is given by

k'

dUf = g dUfg (&)
k=1

In Eq. (2), g, dx, are generally not exact differentials, but
their sum, i.e., dU, must be one. An important property
of ordinary thermodynamic variables is that they can be
Euler integrated. This gives

U= gg, x; . (4)

J n

dU'= gdU = g ggjdx;
j=l i =0

where

dU. = g g,"dx,
i=0

Since d U is the sum of exact differentials d U. , it must be
exact also and, hence, it qualifies as a state function, i.e.,
the internal energy of the combined j' systems. Howev-
er, this would be violated had we attempted to add terms,
or a set of independent terms, that do not combine to an
exact differential. This approach must be applied also in
the case of fields. Thus, the net combined effect of the
field must appear as an exact differential. This condition
must be satisfied if it is to be added as a set of thermo-
dynamic terms that become part of the overall internal

In Eq. (4) the values of all terms g;X; are independent of
the path used to obtain the final levels of g; and X;.
Hence, in this sense, each term of Eq. (4) is a state func-
tion. Obviously, the sum of these state functions yields
also a state function that in this case is the internal ener-

gy U. Since U must be a state function, any addition of
another set of independent terms beyond the original
n + 1 that correspond to U must comply with the require-
ment that the new sum also be a state function. Other-
wise, this precludes the possibility that the new sum will
comply with the postulate that the internal energy is a
state function and, hence, it would not be possible to
identify this new sum as an internal energy.

For example, if UJ is the internal energy of the jth sys-
tem and there are j ' such systems, then U =QJ I U con-
stitutes the internal energy of the combined system.
However, if we now add to this sum an independent vari-
able 8" which is not a state function, then

&
U + W'= U+ W' would not qualify as a new inter-

nal energy. The same applies to Eq. (2), which can be ex-
tended as follows:

and Euler integrated to give
n'

Uf= g gX;
i =n+1

(10)

then the Gibbs Duhem equation would not hold for the
thermodynamic system under the action of the fields con-
sidered. It seems that the properties of electromagnetic
and acceleration fields do not always make it possible to
satisfy the above conditions. Hence, the Gibbs Duhem
equation is not expected to hold generally for systems in
these fields.

Suppose that Ufk is a function of field dependent vari-
ables denoted by Y, m = 1,2, . . . , m ',

Uf) = fI ( YI, Y2, . . . , Y~ ).

Suppose further that for mo ~ m ~ m', mo=1, 2, . . . , m',

Y~ = Y' (XI,X2, . . . , X„) . (12)

This implies that part or all of the independent Geld vari-
ables, as defined by Eq. (11), are, or can be, made func-
tions of the extensive variables of the thermodynamic sys-
tems. The implications of Eqs. (11) and (12) in elec-
tromagnetic fields are discussed below and in Sec. IIB.
The form of Eq. (11), i.e., the nature of the independent
variables Y, depends on the constraints imposed on the
Geld variables,

m —10

dUfj, = g (BUf„/BY )dY
m=1

m' n

+ g (BUfl, /BY ) g dX, .
m=m

G
i=0 i

(13)

Note that in Eq. (13), the partial derivatives are taken
with respect to the independent variable holding all other
variables, e.g. , in the given set, fixed.

Combining Eqs. (7), (8), and (13) followed by collection
of terms gives

In this sense, the field is not different from any other sys-
tem that is combined with the one being considered, ir-
respective of whether this combined system is real or con-
ceptual (i.e., for the purpose of analysis only).

Equation (7) shows that unless d Uf can be presented as
n'

dUf = g g,)dx, .

i =n+1
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BU~ BY

i =0 k=1 m=m 0

k ™I BU&+g g dY
k=1 m=1

(14)

matter is linear and hence p is independent of H.
In this case, the magnetic energy UM is a state function

and, hence, dUM is an exact differential. The nature of U
as an internal energy dictates that dU is also an exact
differential. Hence,

where setting m0 ~2 indicates that there is at least one
Y field variable that is independent of the X; variables.
For example, if k'=1, m'=2, and m0=2, then

BUgl BY2
dU = g g; + dX;+(aUg, /aY, )dY, .

(15)

Thus the classical intensive variable g," is modified by the
field and a new field dependent intensive variable g&;J,
which is conjugate to X;, can be defined as

d U'=d U+d UM (21)

dU'= TdS Pd V+gd—N+d ( —'H. BV) (22)

is an exact differential of the combined energies
U'= U+ UM, which qualifies as the new internal energy
of the continuum considered. For the sake of simplicity,
it is assumed henceforth that the whole magnetic field is
confined to the volume V. Otherwise, integration over
the whole magnetized space that is afFected by the con-
tents of V must be done in order to determine the mag-
netic energy associated with V.

Combining Eqs. (17), (18), and (21) gives

k ~

BUfk BY

aY axk=1 m =m m i0

(16) Similarly

B. Thermodynamic variables of a magnetizable
continuum in a magnetoquasistatic field

Consider a linearly isotropic and uniform continuum
that is uniformly magnetized. In the absence of a Geld,
this continuum is characterized by entropy S, volume V,
mass X, and internal energy U. Hence,

dU =TdS Pdv+ gdN, — (17)

where T, P, and g are temperature, pressure, and chemi-
cal potential, respectively.

In the presence of the Geld, the magnetic energy, which
is uniformly stored in this linear continuum, is given by
[8,9]

If different constraints imposed on the field variables
change mo, then according to Eq. (16), the number of
terms changes so that different forms of g&;J correspond
to the different constraints. This effect is shown later in
detail for the case of electromagnetic fields. Thus, the in-
tensive variables of classical thermodynamics may not be
unique when the thermodynamic system is placed under
the action of fields. It follows that the field dependent in-
tensive variables can have multiple functional depen-
dence on field variables. The form of this functional
dependence is fixed by the constraints imposed on the
field variables. In what follows, we show the implications
of the theory for the case of magnetic fields.

dF'= SdT Pd—V +gdN—+d ( —,
'H. BV),

dG'= SdT+ VdP—+gdN+d( —,'H BV),

d O'= SdT P—d V Nd g+—d—( ,'H. BV),—

where

(23)

(24)

(25)

F' =F+ UM = U —TS + UM,

6'=6+ UM= U —TS+PV+ UM,

O' =0+ UM = U —TS gN + UM,—

(26)

(27)

and F, 6, and Q are the Helmholtz, Gibbs, and Grand
canonical potentials in the absence of the field [5].

Thus, by definition, the first three terms on the right-
hand side of Eqs. (22) —(25) have their conventional mean-
ing, i.e., in a field free environment. The fourth term gives
the net magnetic effect. Note the use of the same Vin the
second and fourth terms on the right-hand side of Eqs.
(22) —(25). In the case of a continuum which is considered
below, this is justified. However, in the general case, the
two volumes may not be the same. Equations (18) and
(19) show that UM is a function of three variables, i.e., V,

8, and p or, alternatively, V, H, and p.
In view of the fact that the differential work done by

external current sources to magnetize a volume V is
VH. d 8, it seems advantageous to use the set V, 8, and p
for further analysis. It can readily be shown that

U =—' VH. B

B=pH,
(18)

(19)

dUM =d( —,
' VH B)=—,'H BdV+ VH dB —

—,
' VHidp,

(29)

where

B=po(H+M) . (20)

In Eq. (20), po is the permeability of free space. Note
that Eq. (18) is a consequence of the assumption that the

where H is the magnetizing field, p is the permeability of
the contents of V, and B is the magnetic induction that
depends on the magnetization M of the matter in V.

(aU b'av), =-,'H B,
(aU zaa), „=va, (aU ~a&)„=—

—,'va'.
Equation (29) shows that the magnetic energy can be
changed by varying one or more of the variables V, 8,
and p. Furthermore, it shows that the magnetic work
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term VH dB can be only a part of the change in the
internal energy and its use as the only magnetic effect is
valid only at fixed V and p. For linear materials, the per-
meability p (being independent of H) is a function of tem-
perature and density of the contents of V.

P =P ——'H. B—1H pB,N 2

g, ,=g —-'a' " .
) 2

Qp

(35)

(36)

dp=(Bp/BT) dT+(Bp/Bp) dp . (30)

dN+ dV
BN BV

and p=N/V. Combining Eqs. (22), (29), and (31) and
rearranging terms gives

dU'=TdS —P ——'H. B——'H p
~ dV

()I l.

2 2
Qp

+ g ——'H dN+ VH. dB .
Bp

(32)

Equation (32) has the form of Eqs. (14) and (15) for n =2,
j =j'=1, k'=1, m0=2. Here, Y, =8 and Yz=p,
Xo =S, X& = V, Xz =X. For example,

If the change in p is solely due to a change in density,
then dropping the subscript T, it can be expressed in
terms of the change of mass and volume as

dp=(Bp/Bp)dp= — dN —p— dV,1 Bp 1 Bp
V Bp V Bp

where in deriving Eq. (31) use was made of

The subscripts B,X and B, V denote the variables in addi-
tion to S that are kept fixed when P and g are evaluated
as partial derivatives of U, respectively.

Note that Pa ~ and gB i correspond to the coefficients
of dXi and dXz at Yi =const. in Eq. (15). This is the
first, but not the only, pair of intensive variables of the
magnetizable continuum. As shown below, the imposi-
tion of different constraints on the field variables pro-
duces additional and different such pairs. At fixed H the
last term on the right-hand side of Eq. (32) is a sole func-
tion of p.

VH. dB= VH dp . (37)

Combining Eqs. (31), (32), and (37) and rearranging terms
gives

d U'(H =const. ) = TdS — P ——'H B+—'H p d VBp
2 2

Qp

+ g+-,'a' " dN.
Bp

Equation (38) facilitates a definition of the second pair of
pressure and chemical potential as

BUf) BY~

8 Y~ BX(
BUf) gp

ap av Pz ~=P —
—,'H B+—2'H p

Bp (39)

vf, = ,'va'/p, , Bvf, /BI = -,'VII'. ——
4r, v=4+ —,'~'B"

Bp
(40)

From Eq. (31),

Bp/B V= ——p
1 Bp
V p

Hence,

At fixed B and p, the second and third terms of Eq. (29)
vanish and, hence,

d( —'VH. B)=—'H BdV= H.BdN,1
2 2 2p

BY BX, '
Bp

(33) 8=const. , p =const. (41)

This gives the third term of the coefficient of dV in Eq.
(32). Similarly, it is straightforward to show that

BUf( BY~

BYi BXi '
Bp

(34)

This gives the second term of the coefficient of dX in Eq.
(32).

Note that the second term in the coefficient of d V in
Eq. (32) arises from the first term on the right-hand side
of Eq. (29). Since the independent variable of this term is
V, it can be considered to be an ordinary thermodynamic
variable. However, if we choose otherwise, then setting
Y3 = V gives (BUf i /B Y3 )( BY& /B V) = —,

' H.B, which is the
second terin of the coefficient of d V in Eq. (32). Equation
(32) shows that at fixed B, one can define the pressure and
chemical potential of the continuum in V as

Hence

= TdS —(P —
—,'H B)dV +gdN . (42)

P~ =P ——'H B,
0ii,,=C .

(43)

(44)

If N is selected as the independent variable in Eq. (41),
then

In Eq. (41), use was made of p V =N, d V =(1/p)dN, with

p being fixed due the constraint that p is fixed. Equation
(41) facilitates the definition of two equivalent pairs of
pressure and chemical potentials depending on the selec-
tion of either V or N as the independent variable. If V is
selected, then combining Eqs. (22) and (29) gives

dv'(8=const. , p, =const. )
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d U'( 8=const. ,p =const. )

1= TdS P—d V+ g+ H.B dN,
2p

(45)

Pp, „=P,
=g+ H 8.1

B,p

(46)

(47)

p=Cp+po, (48)

where, in the general case, C can be a function of temper-
ature, pressure, and of p. If C is a sole function of tem-
perature, then at constant temperature it is fixed and
hence

&P/&P =C =(P—P0)/P . (49)

Note that the partial derivative in Eq. (49) is evaluated at
fixed temperature [see Eq. (30) for notation]. For the
sake of brevity, this notation is also followed in the rest of
this work. In this case, substitution of Eq. (49) in Eqs.
(35) and (36) and in Eqs. (39) and (40) gives

PB ~=P+ —,'P0H —H B=P—
—,'P0H —@0M H, (50)

1
0B, V 0+ P(P

2p

PH, N P 2PW

1 PoH.B=(— M.H,
2p 2p

(51)

1 2 1 1
P0II + H.B=g+ @0M.H .

2p 2p 2p
(53)

It follows that the set of three different constraints, i.e.,
fixed 8, fixed H, and fixed 8 and p (which is equivalent to
fixed 8 and H) yields three diFerent pairs of field depen-
dent pressure and chemical potential, i.e., PB z, gB v,

'

PH z, gH v, and PB„,JB„, respectively. The first con-
straint imposes a condition of fixed Aux linkage with the
source of the field and hence no electrical work is done by
this source on the system (i.e., on the contents of V). This
results in a process of conversion of the field energy to
other forms such as mechanical energy and vice versa.
The second constraint involves energy exchange with the
source of the field, which may add or absorb energy from
the system, through changes in the Aux linkage at the
source.

Under the condition of the first constraint, adding
permeable matter to a system at fixed volume decreases
its magnetic energy and hence gB v contains a negative
term due to the field. Under the condition of the second
constraint, the reverse is true. This gives rise to the posi-
tive, field dependent term in gH v. Under the condition
of the third constraint, addition of a magnetized continu-
um at fixed 8 and. p increases the volume, mass, and,
hence, also the magnetic energy of the system. This gives
rise to the positive term in gB „.

Equations (35), (36), (39), and (40) show that the field
dependent pressure and chemical potential are functions
of p(Bp/Bp) and (Bp/Bp), respectively. It follows that at
fixed temperature, the form of these pressure and chemi-
cal potential variables depends on the form of @=AM(p).
Let this form be expressed as

Hence,

PB,N PH, N POM H

1
PB, V 0H, V p'OM

p

(54)

(55)

For further details on the physical significance of the
above chemical potentials, using the point of view of the
electric work done at the terminals, see the Appendix.

Equations (22), (32), and (42) show that under one con-
straint, i.e., fixed 8, fixed 8, or fixed 8 and fixed p, dU'
can be expressed as

dU'= TdS PdV—+/de,
where, at Axed 8,

PBX ~

(56)

(57)

(58)

at fixed 8,
PH, N

P=SH, V

at fixed 8 and p,

P=P~„,

(59)

(60)

(61)

P=PB,„. (62)

Since P and g are proper pressure and chemical potential,
they can be used directly, i.e., as ordinary pressure and
chemical potential, to set the conditions of equilibrium of
magnetizable systems in magnetic fields. These condi-
tions are

P =const. ,

g= const.

(63)

(64)

The significance of g can be shown with respect to pro-
cesses that involve mass transfer under the action of
fields. This field dependent chemical potential (which,
according to different field constraints, has multiple func-
tional dependence on field variables) can be used to deter-
mine driving forces for mass transfer. For example, at
fixed 8, the environment set by the magnetic field is such
that it enhances mass transfer in the direction of increas-
ing H. If this mass transfer produces a buildup of g [see
Eq. (51)] as a result of increased density (or concentra-
tion), then the driving force per unit mass is —Vg and
equilibrium prevails when Vg= Vg —V[(p0/2p)M. H] =0
is satisfied. The physical picture changes when the envi-
ronment set by the field, e.g., for mass transfer, is dictat-
ed by holding 8 fixed. In this case, the field enhances
mass transfer in the direction of decreasing 8, which
coincides with the one of decreasing local density (or con-
centration) of the permeable matter. It follows that ex-
cept for the cases where g can be changed by means other
than density or concentration (i.e., by temperature or
other fields), it reinforces the action of the magnetic field
in driving mass transfer away from regions of higher den-
sity or higher concentration.
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Bp P IJo+ BC
ap p

'
ap

In this case,

Pn ~ =P +—poH —H.B——H p
z 2~C

7 2 2
Qp

=P ——2p —pp+p H1 ABC
2 Bp

ga i, =(+ p()H — H B—
—,'H p

1 q 1, 2 BC
2p 2p Bp

(65)

(66)

Note that at fixed B (which implies fixed fiux linkage
with the current sources), the energy for the mass
transfer process of permeable matter is supplied by the
field into which the mass is transferred. At fixed H, this
energy, supplied by the external current sources as the
magnetic energy, which is stored in the region that ab-
sorbs the permeable mass, must increase.

If in Eq. (48) C is a sole function of p, i.e., C =C(p),
then

PH ~=P —
—,'H B+ M H/(1 —Kip),

pp
(76)

Po
gH i =g+ M.H/(1 —K,p) .

2p
(77)

Note that if Kip &&1, then K(p) =K becomes practically
a constant. In this case, Eqs. (74) and (75) reduce to Eqs.
(50) and (51) and Eqs. (76) and (77) to Eqs. (52) and (53),
respectively.

The different sets of constraints discussed up to this
point resulted in field dependent pressure and chemical
potential variables. It is possible, however, to impose
another set of constraints that results in pressure and
chemical potentials that are independent of the field.
This set of constraints is fixed V and p, and assuming that
at fixed temperature, p is a sole function of p, as per Eqs.
(48) and (49), this implies that N is also fixed. Combining
Eqs. (22) and (29) at fixed V and p, and, hence, also fixed
N gives

dU'=TdS+ VH dB .

po+p-'
2p Bp

PH, x P Tp()H +—,H p-, , ac

(67)

U'= TS+—,
' VH B+const.

Integration of Eq. (22) at fixed T, P, and g gives

(79)

Integration of Eq. (78) at fixed T, V, and p, and using
B=pH, gives

=P ——po
—

p H1 2 BC
2 Bp

H.B+—,'H
2p Bp

(68)

=(+ p —go+ p H1 ABC (69)
2p ()p

Note that in Eqs. (67) and (69), p —po+p BC/Bp can be
considered as an effective susceptibility of the matter. At
fixed C this effective susceptibility is simply M/H. Thus,
if BC/Bp)0, then the effective susceptibility exceeds
M/H, and vice versa.

Consider the case where the material satisfies the
Clausius-Mosotti model of magnetostriction [9]. In this
case,

U'=TS PV+gN+—,' VH B . — (80)

C. Thermodynamic variables of an electrically polarizable
continuum in an electric Seld

Hence, the constant in Eq. (79) is equal to PV+gN, —
where P and g are the same pressure and chemical poten-
tials that prevail in the absence of the field, i.e., they are
also independent of the field. In this case, the only source
for the change in the magnetic energy of the contents of
V can be H provided that it varies exclusively with the
sources, (e.g., currents) that generate the field. This is the
well known work of magnetization of a fixed volume that
contains a mass of fixed permeability. It follows that P, g
is the fourth, field independent, pair of pressure and
chemical potential that prevail under the constraint of
fixed Vand p.

3poK ip
+S o=«p)p+po

1 —X)p
3IJoK i

p

aK(p)/ap =
1 Kip—

(70)

(71)

(72)

The thermodynamic variables of a linear electrically
polarizable continuum can be obtained by substitution of
E, D, and s for H, B, and p in Eqs. (22)-(80), where E,
D, and c, are the electric field strength, electric displace-
ment, and permittivity, respectively. In Eqs. (50), (51),
(53)—(55), and (74)—(77), the electric counterpart of poM
is the electric polarization vector PE.

3poK i

(1—K,p)

K (p) P Po
(73)

1 K,p p(1 —K—,p)
'

D. Formulations of thermodynamic relations
for magnetizable systems

Po
Pa N=P —,'H. B— M H/(1 —Ki—p),

M.H/(1 —K,p),Pp

(74)

(75)

The conventional thermodynamic treatment includes
formulations of thermodynamic potentials and Maxwell
relations. These formulations depend on the possibility of
expressing the magnetic term in the same form as other
terms that appear in Eq. (2), i.e., as g, dX, , i =0, 1, . . . , n'
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The condition of fixed V applies here to the uniformly
magnetizable volume, i.e., to VM and not necessarily to
the volume of the whole system. Thus, unless the system
consists exclusively of magnetizable volume, then holding
V (which pertains to the term VH d8) fixed at V = VM

does not necessarily impose dV=O in the term —PdV.
We shall continue to use the same symbol (i.e., V) for
volume in the differentials of pressure and magnetic
work, but bearing in mind that it can have different
meanings. Thus for isotropic materials the definition of H
as the intensive conjugate of 8V gives in this case

H = [BU'( Vl =const. ,p=const. )/B(BV)]s v&, (82)

where V in 8V pertains to the magnetized volume,
whereas constant V concerns the volume of the whole
system.

The internal energy U ( VM =const. ,p =const. ) can
now be used to formulate Legendre transformations and
Maxwell relations in the ordinary way. These formula-
tions are available in standard literature and hence will
not be repeated here. Note that if the magnetizable
volume VM is indeed identical with V, i.e., the whole sys-
tem is magnetizable, and p is a sole function of N, then
from Eq. (32)

Equations (22) and (29) show that this can be achieved
subject to the condition of fixed V= V~ and p. In this
case,

dU'( VM =const. ,p=const. )

= TdS PdV—+gdN+ VH d8
=TdS —PdV+gdX+H d(8V) (81) dF'= —[S+ ,' VH —(dp/BT) ]dT .

It follows that the entropy at the field H is given by

SH =S+ ,' VH (dp—/dT)

(89)

where 5 is the entropy in the absence of the fie1d.
In the process where H is held fixed as the rise in tem-

perature decreases the permeability p, the whole heat in-
put is used to perform work on the current sources, i.e.,
via the decreasing 8 field. Thus, in this process there is
no net change in the internal energy of the system and,
recalling that V and p (and hence also N) are also fixed,
the entropy remains fixed at the level of SH. Note that,
in the general case, i.e., the case of nonlinear matter,
p =p(H, T,p ) and, hence, its partial derivative with
respect to temperature must be evaluated at fixed H and
p. It is only for the case of linear matter that
(Bp/BT)H~=(Bp/BT)~. Equation (90) agrees with the
entropy derived by Ciuggenheim [1] and by Landau and
Lifshitz [13] for dielectrics in an electric field. However,
the point made here is that this result is the consequence
of using directly the exact differential of the magnetic en-
ergy without the need to resort to transformations.

K. Thermodynamic variables of discrete systems

but not on H. This is the reason for the implied condi-
tion of fixed 8 in the expression of dH as a functj. on of
dp. Furthermore, at fixed 8 no exchange of magnetic en-
ergy between the contents of V and the current sources
exists. In this case, aH the energy input used to decrease
p appears in the form of magnetic energy.

Combining Eqs. (23) and (88) at fixed V and p gives

VH =(8U'/M) (83)

and, since Vis fixed,

H =[BU B/(B )V] sv~ (84)

In this case, U'(V=const. ,%=const. ) can be used to
formulate Legendre transformations of field variables.

The entropy ofa magnetizable continuum

d ( ,' VpH ) = ,' VH d—p+VpHdH—,

dp=(dp/dT) dT,
dH =d (BIp) = (BIp, ')dp, —

therefore,

(85)

(87)

The entropy of a magnetizable continuum can be eval-
uated as follows. At fixed V and p and hence also fixed X,
the change in the magnetic energy due to a change in
temperature is

The thermodynamic formulation of discrete systems in
electromagnetic fields must account for the following
effects.

(1) The capability to interact at a distance.
(2) The position of the system can effect its energy.

This property does not appear in ordinary thermodynam-
ics, i.e., in the absence of fields.

(3) The energy of a system of fixed extensive variables
and position is dependent on the strength of the field, in
this fixed position, or, alternatively, on the potential that
characterizes the field in this position. This property does
not appear in ordinary thermodynamics, i.e., in the ab-
sence of fields.

(4) The energy of a polarized discrete system involves
the whole space affected by this system. Consequently,
polarized discrete systems can overlap due to inter-
penetration of fields that each of them generates.

In order to illustrate the above effects, their
significance in a system of charges and a discrete magnet-
ized body is considered.

d( ,'VpH )= —,'VH (—dpldT) dT .— (88)

Note that p (which is independent of H) is assumed to be
the only parameter that is affected directly by the change
in temperature. Alternatively, the change in B or H due
to the change in temperature is assumed to be solely due
to the change in p which is dependent on temperature

l. Electric work on charges

We shall show that the work done to bring a new
charge from infinity into a field that exists due to a sta-
tionary assembly of other charges, is divided between the
work necessary to raise the potential of the stationary
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charges and the work actually done on the new charge.
The work 8' of assembling n charges q1, qz, . . . , q„

from infinity is given by [10,11]
n

W= —gq;P;,2
(91)

where P, is the electric potential at the final position of q,
after the assembly process has been completed. In a pro-
cess where the charges are brought one after the other
from infinity to their final position, the work 8'„done on
the last charge qn is

n
1

n —1

2 '
1

2

dynamic system inclusive of the charges. If the system
can be expressed in terms of a uniform charge density q,
in dV, where g can be considered as being fixed, then
dU =d( —,

' f ~fq, dV).
If g is fixed across V, then

dU"= TdS PdV—+gdN+d( ,' Vq„@—). (97)

The same procedure used to define thermodynamic vari-
ables under different constraints for the case of magnetic
fields can also be used here. Note that for the case where

dq„ is brought from infinity into the system, we have

n 1 n —1

d —gq;f; =—g q;dg;+ P„dq—„=g„dq„
i=1 i=1

Hence,

(93)

This result also applies to an infinitesimal charge dq„
which induces an infinitesimal change in the potential of
the rest of the charges.

n —1

g„dq„= g qdP; .
i=1

(94)

Equations (93) and (94) are in agreement with Green's re-
ciprocity theorem [11],which can be used as an alterna-
tive way to derive them.

Equation (94) shows that the work done in bringing
dq„ from infinity is equal to the work necessary to raise
the potential of the charges which are the source of P„.
Equation (92), in conjunction with Eq. (93), shows that
the work W„=q„f„ is divided equally between the part
that is necessary to raise the potential of the charges that
are the source of g„and the actual work done on q„.

This shows that the two alternative ways of changing
the energy of a charge, or an assembly of charges, i.e., by
moving them to a position of different potential or by
changing the potential at their fixed position, are com-
pletely equivalent. This expected result agrees with the
fact that q;f;, i =1,2, . . . , n, are state functions. Thus,
the incorporation of this state function as part of the
internal energy is acceptable provided that it is used as an
exact differential. Thus, the difFerential effect of n point
charges which are part of a thermodynamic system can
be expressed as

as required. However, Eqs. (95), (96), and (97) also ac-
count for the case where only f; are variable at fixed q;.

For example, suppose the thermodynamic system con-
tains the n —1 charges q1, q2, . . . , qn 1 and the charge

q„ is brought from infinity to a position which is outside
the system, where the potential is g„. The work done in
this process, which is g„q„, is evenly divided so that half
of it is used to raise the energy of the system, i.e., by
—,'if'r„q„; see Eq. (92). Thus, interaction at a distance and

the subsequent rise in the potentials of the charges of the
system constitute the mechanism by which the energy of
the system is raised, while keeping all its extensive vari-
ables fixed. Had we used, instead of Eq. (95),

dU = gQ;dq, ,
i=1

Eq. (96) would have been replaced by
n

dU"=TdS PdV+gdN—+ g P, dq, , .
i=1

(98)

(99)

where dq; is the change of the ith charge exclusively
within the system. Since, in the example above, there is
no change in either the position or the amount of the
n —1 charges and qn does not exist in the system, one
would obtain d U"=0 instead of the correct result, which
is dU"= —,'g„dq„. It is only when the charges are

brought into the system that Eq. (99) is acceptable. In
all cases where the field changes due to processes that
start and end outside the system, Eq. (96) holds while Eq.
(99) fails to provide the correct answer.

Similarly, had we used, as suggested by Hatsopoulos
and Keenan [12], instead of Eq. (95)

n

dU~ =d —g q;P;
i =1

Hence,

(95)

dU =gq, dg;,
i=1

Eq. (96) would have been replaced by

(100)

n

d U" =d U+ d U = TdS Pd V +AN +d ——g q; g;2
d U" = TdS Pd V +AN + g q—, d g, . (101)

(96)

where U" is the combined internal energy of the therrno-
Clearly, Eq. (101) does not account for the case of bring-
ing the charges q; at fixed levels of g;.
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2. Discrete magnetizable systems

Energy of a discrete magnetizable body. A discrete
magnetized body is defined here as a body having clear
physical boundaries that do not enclose the Geld lines
completely. Alternatively, the field lines of a discrete
magnetized body cross the physical boundaries that
separate this body from other materials, phases, or space.
Subject to this definition, an ideal continuous toroid
which is magnetized with no fringing field is a continuum
and does not qualify as a discrete body. If, in the same
toroid, a gap is opened, then the whole torroidal section
excluding the gap becomes a discrete body. This is due to
the fact that field lines cross its boundaries into and from
the gap. The same applies to magnetic circuits such as
yokes that are used in transformers. When the yoke is
continuous and no fringing of field lines exists, it acts as a
continuum. However, when a gap is opened, field lines
cross the yoke-gap interfaces and the whole yoke, exclud-
ing the gap, becomes a discrete body. A uniformly mag-
netized sphere, or ellipsoid, is a classic example of a
discrete body from which field lines extend all over space.
This is in contrast to the examples of the toroid and yoke,
where the Geld is usually confined to a relatively small
space. Note that in the above examples, internal parts of
the discrete bodies can still qualify as continua. The
theory of electromagnetism provides formulations of the
energy associated with discrete magnetized bodies. How-
ever, a serious question arises concerning which part of
this energy should be associated with the body when the
latter is defined as a thermodynamic system.

Consider a magnetizable discrete body of volume VM.
This body is defined as the thermodynamic system. The
work required by an external current source to magnetize
this body is given by

IVM= f f H dBdV, (102)
S

where V, denotes that the integration must be performed
over the entire space affected by the body. If the discrete
boay is infinitely permeable, then the Geld inside it van-
ishes and so does the energy that can be stored within its
boundaries, i.e., in V~. In this case [8] the energy is
stored outside the body, i.e., in Vz —VM. Thus, the mag-
netized body which is infinitely permeable stores all its
energy outside its boundaries. If the permeability of the
body is finite, then energy is stored inside as well as out-
side its boundaries.

Since ordinary thermodynamics assumes that the inter-
nal energy of a system is a function only of the contents,
e.g., entropy, volume and mass, of the system, it does not
provide an appropriate formulation for cases where ener-
gy is stored outside the system boundaries. Alternatively,
ordinary thermodynamics does not provide an appropri-
ate formulation for the case where the system is a source
of energy that may be stored outside its own boundaries.
If one attempts to apply Eq. (22) to a hypothetical linear
discrete body of infinite permeability by defining the body
as the thermodynamic system, then the magnetic term
vanishes and, consequently, the system acts as if it were
nonmagnetic thermodynamically. However, when this
system is demagnetized, it performs work on the electric

current sources that magnetized it in the first place. This
suggests that the energy stored outside the system should
be included as part of its own energy, as is indeed stated
by Landau and Lifshitz regarding polarized conductors
[13]. In this sense there is no such thing as pure internal
energy in the case of systems comprising magnetized
discrete bodies. However, if one still chooses to use the
term internal energy (which implies that all the energy is
confined to the boundaries of the system), then it must be
stressed that all the energy stored outside the system is
assigned (by definition) to this system as being its sole
source.

It follows that for a discrete one-component and uni-
formly magnetized system, the energy, or internal energy,
in its generalized sense as defined above, can be presented
in the form

dU"= TdS PdV+—gdX+d f f H dBdV . (103)
~s

Equation (103) shows the clear distinction between the
volume V of the system and the volume V& that is
affected by its field. Note that in the general case V& is
simply the whole space, whereas only for cases where the
field is completely confined within the boundaries of the
system is the use of Vz = Vjustified.

Equation (103) relates the difFerent components of the
energy to sources that either exist within the system
boundaries or are stored outside them. According to this
model, the energy stored in a gap of an excited and
infinitely permeable yoke pertains to the current sources
as well as to the yoke, and the latter can be defined as a
thermodynamic system. The yoke is a source of field and
hence this field pertains to the yoke system.

Suppose that we do not accept the notion that the field
which is excited by the yoke pertains to the yoke system.
This makes the gap an independent system having an en-
ergy of its own. Consider such a gap of volume V that
consists of free space. The magnetic energy stored in this
gap is —,

' VpoH . Consider a second system having a
volume V, (consisting of free space) which is enclosed by
nonmagnetic walls. This system can fit into the gap. Ini-
tially, the second system is placed on a nonmagnetic fric-
tionless horizontal plane that extends far away from the
gap and then it is moved quasistatically into the gap. In
this process, effectively no work is done on the second
system, but as it enters the gap the magnetic energy that
becomes enclosed by its boundaries rises from zero (when
it is outside and far away from the gap) up to —,

' V, poH
when it is completely inside the gap. Thus, at the end of
the process the internal energy of the second system in-
creased by —'Vi pDH', no work was performed and no heat
crossed its boundaries. This seems to contradict the first
law of thermodynamics. However, this discrepancy is el-
iminated once the magnetic energy stored in the gap is
assigned to its sources, i.e., to the yoke and current
sources. In the latter case, the insertion of the second
system into the gap does not change the status of the
magnetic energy. This is in spite of the fact that now
magnetic field energy resides within the boundaries of the
second system in addition to its being part of the gap.

Once we have accepted the notion that the energy gen-
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crated by a discrete system pertains to this system, ir-
respective of its being stored within or outside its boun-
daries, then the same must be true regarding the entropy
that depends on and arises due to the existence of this en-
ergy. If it were not so, then the fundamental principles of
thermodynamics would not hold in such systems. For ex-
ample, suppose that in the previous example the gap as
well as the space around the yoke consist of a permeable
gas at fixed mass, temperature, and pressure. When the
field is on, the field dependent energy and entropy of the
gas in the gap are positive and negative, respectively,
while far away from the gap they vanish. Repeating our
thought experiment of pushing the system of volume V&

into the gap (holding all properties of the yoke, gap, and
gas fixed) results in a simultaneous net rise in the energy
and decrease in the entropy. This violates the basic ther-
modynamic postulate that the entropy is an increasing
function of energy and vice versa. If we had assumed
that the energy pertains to the yoke system while the en-
tropy does not, then the result of our experiment would
indicate (e.g. , for the system of volume V, ) a spontaneous
decrease of entropy at fixed energy, which is also unac-
ceptable. Thus, both the field dependent energy and en-
tropy must pertain to their sources and not necessarily to
the region in space where they exist. It follows that a
fundamental aspect of thermodynamics in the presence of
quasistatic electric and magnetic fields is that the energy
and entropy that exist in a given region of space cannot
be separated from their sources.

3. Formulations of thermodynamic variables

The formulation of thermodynamic variables of
discrete systems must embody the fact that part of the
energy and entropy exist outside their physical boun-
daries. Further complications arise due to the fact that,
in the general case, the field is not uniform and hence the
implications of thermodynamic variables derived using
the conventional formalism may not be clear. Therefore,
we restrict the formulations to uniformly magnetized sys-
tems, but without restricting the field that may be nonun-
iform outside their boundaries.

Consider a uniformly magnetized discrete system of
volume V and homogeneous and isotropic permeability p.

UM = UM ( V, B,p ) . (105)

This is justified in view of the fact that in magneto-
quasistatic systems, the field outside the system is fully
determined if the field within and on its boundaries is set.
The above is a consequence of Maxwell's equations.

We proceed with the formulation of thermodynamic
variables using a similar approach that was applied to
continua.

dv =(av /av), „dv+(av /aB), „dB

+(aVM/ap);. dp, (106)

where, in the general case, the term involving the deriva-
tive with respect to 8 stands for the sum of three terms,
e.g., with respect to its components. Equation (106)
expresses the change of U~ as a function of variables that
are defined within the system, but the partial derivatives
involve the entire space affected by the changes in these
variables. The permeability is a function of the density p,
temperature T, and the field H.

p=p(p, T,H), (107)

dp=(ap/ap) dp+(ap/aT) dT+(ap/aH) dH,

(108)

dp= —pV 'dV+ V 'dN . (109)

Combining Eqs. (106), (108), and (109) and collecting
terms gives

The magnetic energy of this system, which equals the
magnetic work WM [see Eq. (102)], is given by

U~= 8 dB V, (104)
~s O

where, as before, Vz indicates the entire space that is en-
ergized by the field of the system. In the general case, the
boundaries of V& extend to infinity. Similarly to the case
of a continuum, the magnetic energy of the discrete sys-
tem can be presented as a function of its volume V, field
8, and permeability p.

dU =[(aU /av), „—(av /ap)„(ap/ap), Hpv-']dv+(av /ap)„(ap/ap), „v 'de+(av /aB-), „dB

+(aV /ap)„(ap/aT), „dT+(aV /ap, )„(ap/aH)„dH .

Ifp is independent of H, then, at fixed T, combining Eqs. (17), (21), and (110) gives

(110)

dU'=Tds —[P —(av /av), „+(av /ap)„(ap/ap) Hpv ']dv

+[/+(av /ap) (ap/ap) v ']dN+(av /aB) „dB .

If T is not fixed, then the use of F is called for and differentiation of Eq. (26) in conjunction with Eq. (110) gives

dF'= —[s —(aU /ap) (ap/aT) ]dT [P —(av /av)„—+(av /ap)„(ap/ap), Hpv-']dv

+[/+(av /ap) (ap/ap) V ']dN+(av /aB ) „dB . (112)
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Equations (111) and (112) facilitate the definition of the
first pair of pressure and chemical potential and of the
entropy of the discrete system, respectively. Using Eq.
(111)at fixed S, N, and B gives PB & as

+ ( 8 U~ /Bp ) i' n(Bp /Bp ) T~V

while at fixed S, V, and B, one obtains gn i as

g, ,=g+(aU /a~)„(a~/aq), „V-' .

(113)

(114)

The entropy SH is obtained from Eq. (112) as
(aP /aT), ,

S =S—

(BUM�

/Bp) i, n(Bp/BT ) (115)

+[(aU /a~)„+a(aU /aa), „]
X(Bp/Bp)T ~V

=g+[(BU /Bp)

+H(d UM /BB) V „](Bp/dp) T H V

(116)

(117)

Note that for the case in which UM satisfies Eq. (18), Eqs.
(113) and (114) reduce to Eqs. (35) and (36) and Eqs. (116)
and (117) reduce to Eqs. (39) and (40), respectively. The
meaning of Pz & and PH & in discrete systems needs fur-
ther investigation, since it can readily be shown that
(8U~/8 V)ii „depends on the geometry of the system and
on how the volume is changed. It seems that
(BUM/8 V)ii „represents a collective effect of the stresses
existing in the system rather than the conventional pres-
sure. In this sense, Pz ~ and PH & of discrete systems
should be construed as a consequence of applying direct
mathematical formalism to systems in the presence of
magnetic fields. The case of electric fields is obtained, as
before, by replacing, in the relevant equations, H, B, and

,u by E, D, and c,, respectively.

III. SUMMARY AND CONCLUSIONS

We summarize our work and draw conclusions as fol-
lows.

(1) The internal energy of a system in the presence, as
well as in the absence of the field, must be a state function
that has an exact differential. This condition can be
satisfied if the energy due to the field is also a state func-
tion that has an exact differential. It is this exact
differential that must be added to the differential of the
internal energy, i.e., of the field free system, so that the
sum also becomes an exact differential, e.g. , of the new
field dependent internal energy.

g) In the presence of fields, the classical intensive vari-
ables that become field dependent are modified and their
form is determined by the field constraints. This shows
that the effect of fields can generate different sets of inten-
sive variables under different field constraints.

The second pair of pressure and chemical potential is ob-
tained by setting H instead of 8 fixed.

PH x=P (BU~/B—V)ii „

(3) For linear magnetizable systems, four difFerent pairs
of pressure and chemical potentials are defined for four
different sets of Geld constraints. In this sense, the mean-
ings of pressure and chemical potential that depend on
the field are not unique. This rejects the effect of the
different environments imposed by the different field con-
straints on the system and its surroundings.

(4) Positive and negative magnetic chemical potentials
are obtained at fixed H and fixed B, respectively. At fixed
H the environment of the system, which is set by this
constraint, produces an increase in the energy when
matter is added to the system, while the reverse is true
when B is held fixed.

(5) The formulation of field dependent thermodynamic
potentials and Maxwell relations can be effected in the
conventional way using the internal energy at fixed
volume and permeability of the magnetizable system.

(6) The theory developed in this work facilitates the
evaluation of entropy without the need to resort to trans-
formations of the field variables.

(7) The work done in bringing a charge from infinity to
a position where the potential is fixed by other charges is
divided evenly between the work required to raise the po-
tential of these charges and the work actually done on the
charge considered. This shows that the internal energy of
a charged thermodynamic system can be raised by chang-
ing its potential while keeping its charges fixed.

(8) The effect of charges on the internal energy of a sys-
tem must be presented in the form of an exact
differential, i.e., of the electric potential energy of all the
charges included within its boundaries.

(9) The energy of a magnetoquasistatic field, which is
generated by a discrete magnetized system, can be as-
signed exclusively to this system irrespective of this ener-
gy being inside or outside the system's boundaries. This is
a unique property of magnetized systems unknown in or-
dinary thermodynamics, i.e., in the absence of the field.

(10) A fundamental property that governs thermo-
dynamics in the presence of quasistatic electromagnetic
fields is that the field dependent energy and entropy exist-
ing in a given region of space, or within a well defined
system, cannot be separated from their sources. Hence,
in general, this energy and entropy cannot be assigned ex-
clusively to this region or system and, as such, be treated
by conventional thermodynamic formulations.

(ll) Intensive thermodynamic variables can be formu-
lated for discrete systems, in electroquasistatic and mag-
netoquasistatic fields. This can be done provided that the
partial derivatives by which these variables are defined
involve the entire energy stored in the field, inside as well
as outside the system. As for the case of a continuum,
different pairs of pressure and chemical potentials corre-
spond to different constraints that can be imposed on the
field.
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APPENDIX: THE FORMULATION OF THE CHEMICAL
POTENTIAL USING THE ELECTRIC WORK AT THE

TERMINALS OF THE SOURCE OF THE FIELD

Note that multiplying 3 and dividing ni simultaneously
by l and recalling that H =ni II gives

id', = VH dB . (A7)
Haus and Melcher [8] state that the increments of elec-

trical energy put into the magnetoquasistatic system go
either into the total energy or into work on the external
mechanical system. We apply this statement to a process
in which dN moles of a linear matter are introduced into
a system which is depicted schematically in Fig. 1. The
system, which is kept at fixed temperature and pressure,
contains N moles of this matter that is uniformly
dispersed inside a long solenoid. The solenoid has n turns
and carries a current i. The cross-sectional area A of the
system and its length l are fixed. The dN moles are
brought along the symmetry axis of the coil from infinity
into the system, where they are dispersed evenly
throughout its fixed volume. Along the path of dN, a
balancing force to df (not shown in Fig. 1) is maintained,
i.e., by the external mechanical source, so that its ap-
proach to the system is quasistatic. For this process
(which is done at fixed temperature and pressure), the
differential electric work at the terminals, dS;, is given
by [8,10]

Equation (A7) shows that the addition of mass into the
system at fixed H requires that electric work id' be per-
formed at the terminals. This electric work, in terms of
field variables, is VH dB and we are set to show how it is
divided between the energy stored in the field, and that
delivered to the external mechanical source.

Combining Eqs. (31) and (A6), at fixed volume, gives

id A, =H ( Bp/Bp )dN

and, by virtue of Eq. (49),

id', =H (p po)d—NIp .

(AS)

(A9)

The work d8' done in magnetizing the dN moles is the
difference between the magnetic energy stored in the
volume dN/p (which is occupied by dN) after and before
its introduction into the system,

dW = ,'(p po)H—d—N/p .

It follows from Eqs. (A5), (A9), and (A10) that

dW, =id', =dW + f df&g, (A 1) f d AN= ,'(p po)H—'dN—/p . (Al 1)

df =adN, (A2)

where e is the proportionality constant defined here as

a=Bf/BN, f=f((,N) . (A3)

At a fixed coordinate, f is a sole function of N and,
hence, this gives

where A, is the fiux linkage at the terminals, g denotes the
coordinate of dN, and x is the position of dN at which
d8; is evaluated. The mass dN is small and, without re-
ducing the generality of the analysis, it is assumed to be
initially in the form of a cube or a sphere. For this mass
df is proportional to dN,

dW = ,'(p, po)H d—N—Ip—. (A12)

Thus, the addition of the mass dN to the system at fixed
H results in an equal split of the electric work done at the
terminals. This split is between the work required to
magnetize the mass dN and that delivered to an external
mechanical source used to counterbalance, quasistatical-
ly, the pull of the field.

If we elect to hold A, instead of H fixed, then no electric
work is done at the terminals and the work delivered to
the mechanical source is at the expense of the magnetic
energy stored in the field within the system. In this case,
combining Eqs. (Al) and (All) gives

df =(Bf/BN)dN, (A4) The internal energy of the system can be expressed as

idk=dW + ,f dgdN . (A5) d O' = TdS Pd V +gdN+—id A, f d—AN, (A13)—~ BN

id A=id(BAn, )= AniHdp . (A6)

At fixed i the field H within the system is also fixed and in
this case

where the first three terms on the right-hand side of Eq.
(A13) have their usual nonmagnetic significance. At fixed
S, V, and H, combining Eqs. (A9), (Al 1), and (A13) gives

cross sectional
area A

n turns solenoid

boundaries of system

dN

(Bf /BN) dN

dUs vH = g+ M.H dN, (A14)
2p

where use was made of (p —po)H =poM.
Hence, (BU'IBN )s v H can be defined as the chemical

potential gH v given by Eq. (53). At fixed S, V, and A, ,
which here is equivalent to fixed S, V, and 8, combining
Eqs. (Al 1) and (A13) gives

uniformly
dispersed N

rnoles of matter

Po
dUs, vs= 0 M H dN

2p
(A15)

FIG. 1. A system of uniformly dispersed matter excited by a
solenoid.

Hence, (BU'/BN)s v a can be defined as the chemical po-
tential ga v given by Eq. (51).
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