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Emergence of quasiperiodicity in symmetrically coupled, identical period-doubling systems
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When two identical period-doubling systems are coupled symmetrically, the period-doubling transi-

tion to chaos may be replaced by a quasiperiodic transition. The reason for this is that at an early stage
of the period-doubling cascade, a Hopf bifurcation instead of a period-doubling bifurcation occurs. Our
main result is that the emergence of this Hopf bifurcation is a generic phenomenon in symmetrically

coupled, identica1 period-doubling systems. The whole phenomenon is stable against small nonsym-

metric perturbations. Our results cover maps and differential equations of arbitrary dimension. As a
consequence the Feigenbaum transition to chaos in these coupled systems —which exists, but tends to be
unstable —is accompanied by an infinity of Hopf bifurcations.

PACS number(s): 05.45.+b, 02.90.+p

I. INTRODUCTION

When two oscillators with diferent frequencies in-
teract, the dynamics is typically quasiperiodic for
sufBciently small coupling strength and may undergo a
quasiperiodic transition to chaos when the nonlinearity is
increased [1]. A similar transition is found, when two
identical period-doubling systems are coupled symmetri-
cally, although the uncoupled systems now oscillate at
the same frequency. This phenomenon has been observed
experimentally by Van Buskirk and Jeffries [2]. They in-
vestigated driven passive resonators composed of an in-
ductance in series with a p-n junction acting as a non-
linear capacitance. When varying the drive voltage the
single resonator showed a period-doubling transition to
chaos, whereas two resonators coupled resistively exhibit-
ed a quasiperiodic transition. The same phenomenon was
reported by Anishchenko [3), who investigated a system
of two inductively coupled electronic frequency genera-
tors.

Both Van Buskirk and Je6'ries, and Anishchenko, not-
ed that a replacement of a period-doubling transition by a
quasiperiodic transition also takes place if one couples a
logistic map symmetrically to another identical logistic
map. Systems of two identical, symmetrically coupled
one-dimensional (1D) maps have been studied in detail by
Fr@yland [4], in order to clarify the typical behavior of
these systems. He also found this change from a period-
doubling to a quasiperiodic transition. The same
phenomenon was also noted by Paulus, Gass, and Man-
dell [5] for a pair of multiplicatively coupled maps.
Based on a comparison of the numerically obtained bifur-
cations in coupled logistic maps and coupled sine maps,
Hogg and Hubermann [6] claimed that the bifurcations
in these systems are generic for coupled oscillators.

Apparently no general explanation for this replace-
ment of a period-doubling transition by a quasiperiodic

transition has been given so far. In this paper we de-
scribe in detail the bifurcations leading to quasiperiodici-
ty that arise when two identical period-doubling systems
are coupled symmetrically. Here symmetric coupling
means that the coupled system is invariant under the ex-
change x~y, where x and y are the state variables of the
two single systems. We show that the emergence of
quasiperiodicity in these systems is generic. These quasi-
periodic solutions need not be stable. In this case they do
not show up experimentally and the coupled system
behaves for weak coupling as the uncoupled system.

Nevertheless there is, as we show, a tendency for the
replacement of the period-doubling transition in the sin-
gle system by a quasiperiodic transition in the coupled
system. Therefore this change in the type of transition to
chaos may be observed in various coupled period-
doubling systems. It may show up, for instance, in two-
cell reactor experiments of the Belousov-Zhabotinsky re-
action [7,8] or the peroxidase-oxidase reaction, because
the single-cell reactor is known to undergo a period-
doubling transition to chaos [9—11]. The change in the
transition may also be observed in the dynamics of rail-
way wheel sets. In a model for a single wheel set a
period-doubling transition is found [12]. For waggons
with two wheel sets, these are coupled, and a quasiperiod-
ic transition may take place. Another example could be
the dripping faucet experiment [13]. The single faucet
shows a period-doubling transition and two dripping fau-
cets, interacting, for instance, via mechanical vibrations
transmitted from one to the other as a drop falls, may un-
dergo a quasiperiodic transition. A period-doubling tran-
sition has also been found in a model for isolated neph-
rons [14]. Nephrons, the functional elements of the kid-
ney, interact via a variety of difFerent mechanisms, and
with this coupling they may show a quasiperiodic transi-
tion instead of a period-doubling transition. Finally, we
expect that this change in the type of transition may be
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found in numerous coupled electronic oscillators, where
the single oscillator undergoes a period-doubling transi-
tion [15].

Before stating in more detail what we prove in this pa-
per, we illustrate in Figs. I, 2, and 3 how this change
from a period-doubling to a quasiperiodic transition
occurs in three difFerent pairs of symmetrically coupled,
identical period-doubling systems. The systems are cou-
pled logistic maps (Fig. 1), coupled Henon-type maps
(Fig 2),. and a pair of coupled Rossler systems (Fig. 3).
In all cases figure (a) shows the bifurcation diagram of the
single system. Numerically, these 6gures were obtained
by following the dynamics for a given value of the control
parameter A, over a long time and then taking the last
point as the initial value for the dynamics at a slightly
larger value for A, . The figures denoted by (b) were ob-
tained in the same way, but now with a second identical
system coupled symmetrically to the first. The result is
that the cascade of period doublings is interrupted and
instead of the usual period-doubling pitchforks now 611ed
pitchforks appear. %Shat typically happens inside these
6lled pitchforks is shown in Fig. 4. Here we plotted for
the two coupled logistic maps simultaneously their ampli-
tudes for several values of the control parameter k. For
values of A, close to the branching point of the 61led pitch-
fork, the motion covers a closed curve and is quasiperiod-
ic. For larger values of A, the curves get bumpy and-
interrupted by periodic windows (not visible in Fig. 4)—

a quasiperiodic transition to chaos takes place.
The clue to this change from the period-doubling tran-

sition to the quasiperiodic transition is the change of a
period-doubling bifurcation into a Hopf bifurcation not
present in the single system. Due to this Hopf bifurca-
tion the dynamics obtains access to the additional degrees
of freedom introduced by the coupling that finally allows
for the quasiperiodic transition to chaos instead of the
period-doubling transition. Therefore our study focuses
on the mechanism leading to this Hopf bifurcation.

The general bifurcation scheme leading to this Hopf bi-
furcation is sketched in Fig. 5. Figure 5(a) illustrates how
the single period-doubling system behaves. The fixed
point 6rst undergoes a bifurcation that produces a
periodic solution. In the case of maps this is a period-
doubling bifurcation and in the case of differential equa-
tions a Hopf bifurcation. Then the periodic solution be-
comes unstable by (another) period-doubling bifurcation.
In the coupled system, depending on the sign of the cou-
pling, two di8'erent situations are possible. The 6rst, real-
ized in the examples shown in Figs. 1 —3, is sketched in
Fig. 5(b). Here the first bifurcation of the symmetric
6xed point produces a periodic solution with a broken
symmetry. This nonsymmetric solution then undergoes
the Hopf bifurcation we are interested in. It turns out
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FIG. 1. Symmetrically coupled logistic maps; see Eqs. {2.1)
and (2.2). (a) Uncoupled: a=0; (b) coupled: e=O. 1. Beyond
k= 3.72 our algorithm failed to find an attractor.

FIG. 2. Symmetrically coupled Henon-type maps:
~.+i=f~(x. )+y. +e(p. —~. ), X.+i= —»., p. +i=f~(p. )

+q„+e(x„—p„), q„+,= bp„, where fz—is the logistic map Eq.
(2.2}. b =0.3. (a) Uncoupled: @=0 (b) coupled: @=0.1.
Beyond A, =4.39 our algorithm failed to find an attractor.
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that the nonsymmetric solution has the particular feature
that the two subsystems oscillate 180 out of phase. The
original symmetric fixed point still exists after the sym-
metry breaking bifurcation, but is unstable. It bifurcates
into a symmetric periodic solution. So the bifurcation of
the fixed point in the single system gives rise to two bifur-
cations in the coupled system. The second situation is
sketched in Fig. 5(c). Here the symmetry breaking and
symmetry conserving bifurcations of the fixed point ap-
pear in reversed order. In such a case, the procedure
used to compute Figs. 1 —3 would show a period doubling
of the symmetric solution instead of the Hopf bifurcation
of the now unstable nonsymmetric solution. Neverthe-
less, the Feigenbaum route may then be interrupted at
higher bifurcations, because the same bifurcations we so
far discussed only for a fixed point are possible for
periodic solutions as well. In Fig. 1(b) we see this for two
coupled logistic maps around A, =3.5, where a symmetric
orbit of period 4 doubles into a nonsymmetric orbit of
period 8. Here the period-8 orbit undergoes the Hopf bi-
furcation.

We show in the following that for sufBciently weak
coupling strength e, depending on the sign of e, one of
the bifurcation schemes Fig. 5(b) or Fig. 5(c) is generical-
ly valid for pairs of symmetrically coupled, identical
maps
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FICr. 4. Quasiperiodicity and chaos in the coupled logistic
maps [Eqs. (2.1) and (2.2)] for e=O. 1 fixed. Following the Hopf
bifurcation of the antiphase orbit at A, =3.245 quasiperiodic
solutions, frequency locking, and chaos appear. Shown are nine
quasiperiodic solutions for A, =3.25, 3.26, . . . , 3.33. Here,
larger A, corresponds to larger radius. At A, =3.34 a frequency-
locked solution with period 42 appears (not visible). The wild
structure is a chaotic orbit with Lyapunov exponent L =0.04
for A, =3.35.
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(x„,y„CR ) and symmetrically coupled, identical sys-
tems of differential equations

x =F&(x )+eG,(x,y ),
y =F~(y )+eG, (y, x )
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FICi. 3. Symmetrically coupled Rossler systems:
x = —{y+z), y =x+Ay, z =b+z(x —c)+a{w —z), si = —(U

+w ), U =u +A, U, w =b+ w{u —c )+e(z —w ) with parameters
b =2 and c =4. Plotted are subsequent extrema of x( t ). (a) Un-
coupled system: @=0;(b) coupled system: @=0.25.

(x,y &R ), supposing for the single systems
x„+&=fz(x„) and x=F~(x) the bifurcation diagram
Fig. 5(a) holds. We also show that these results remain
valid in the presence of weak symmetry breaking terms.

As shown in Fig. 5, the first bifurcation in the single
system splits into two bifurcations in the coupled system.
This splitting has been extensively studied for symmetri-
cally coupled, identical systems of differential equations,
where each single system is close to a Hopf bifurcation.
The seemingly first remark on this splitting is due to
Ruelle [16]. He noted that the symmetry of the coupling
results in a splitting into a symmetric solution and a non-
symmetric solution, where for the latter the two subsys-
tems are 180' out of phase. Later Neu [17] specialized
the problem to linear coupling and analyzed the stability
of the symmetric and nonsymmetric solutions by singular
perturbation methods. Using symmetry arguments Klic
[18] showed that a period-doubling bifurcation of the
nonsymmetric solution is nongeneric. Kawato and
Suzuki [19] realized in a special case that the solution re-
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FIG. 5. Schematic bifurcation
diagrams. (a) Bifurcations in the
single system, or, equivalently,
in the uncoupled system. (b) and
(c) Bifurcations in the symmetri-
cally coupled system. Abbrevia-
tions: PD =period-doubling bi-
furcation, SY=symmetric solu-
tion, NS =nonsymmetric solu-
tion.

II. TWO SYMMETRICALLY COUPLED LOGISTIC MAPS

The emergence of quasiperiodic behavior in coupled
period-doubling systems can be studied in detail in the
following system of two symmetrically coupled logistic
maps [3,4,6,27—29]:

x„+,=f,(x„)+e(y„—x„),
y. +)=f~(y. )+e(». y.»—

with

f)„(z)=Az(1 —z),

(2.1)

(2.2)

where A, is the bifurcation parameter of the logistic map f
and e the coupling strength. In the following we explicit-

suiting from the second Hopf bifurcation, which is usual-
ly unstable, recovers stability by a secondary bifurcation
[20,21]. They argue that this is a general phenomenon in
symmetrically coupled, identical oscillators. Preliminary
results indicate that these secondary bifurcations indeed
show up in our three examples, but we will not consider
them in the following.

For this case, where both N-dimensional subsystems
are close to a Hopf bifurcation, the center manifold of the
weakly coupled system is four dimensional, because the
center manifold of the single-system Hopf bifurcation is
two dimensional. Therefore the whole 2N-dimensional
problem can be reduced to the study of a pair of coupled
two-dimensional systems close to a Hopf bifurcation.
Many studies of this situation exist [22—26]. But the situ-
ation we consider here is different: In our case the single
system undergoes two subsequent bifurcations, where the
second is a period-doubling bifurcation, and this period-
doubling bifurcation is only possible if the single system
of differential equations is at least three dimensional.
Therefore studies of coupled two-dimensional systems do
not lead to the phenomenon of the emergence of quasi-
periodicity we analyze here.

The paper is organized as follows. In Sec. II the exam-
ple of two symmetrically coupled logistic maps is dis-
cussed in detail in order to understand the relevant
features of the problem. In Sec. III we prove our claims
for coupled maps and in Sec. IV for systems of coupled
differential equations. This will be done by a perturba-
tion expansion in the coupling strength e. Section IV de-
pends on Sec. III, because we repeatedly take over results
from Sec. III. In the Appendix we prove two proposi-
tions that are needed in Secs. III and IV.

(2.3)

Because of this symmetry the system has either sym-
metric or nonsymmetric solutions. The specia1 coupling
in (2.1) vanishes for x„=y„so that the symmetric solu-
tions of (2.1) are related to the solutions z„of the logistic
map (2.2) by

x"
=z„

1
with z„+,=f)„(z„}. (2.4)

&n

Therefore all symmetric orbits of the coupled system can
be inferred from solutions of the logistic map.

From (2.1) and (2.2) one obtains that the symmetric
fixed point of the coupled system is given by

x" 1

y'(,)
=z with z=f~(z)= (2.5)

A symmetric period-2 orbit reads
'& (s)

(s)—
y(s) n

n

where

with z„+,=f)„(z„)=a+b( —1)",

(2.6}

A+1 bP (A, —1)'—4
(2.7)

But although symmetric orbits of the coupled system
(2.1} follow from orbits of the logistic map, they may
have diFerent stability. If (»„'+),y„'+)~ )=(x„",y„") is a
period-p orbit of the coupled system, then its stability is
determined by the eigenvalues of the matrix

fz(x„")—e
~= II (2.8)f ~ (y(s))n=1

For a symmetric orbit (z„+~,z„+ ) =(z„,z„) the stability
matrix Jhas the eigenvalues [30,31]

I,= II fq(z„),
n=1

(2.9)
P

g2= II (fg(z„)—2e) .
n=1

ly show that, depending on the sign of e, one of the bifur-
cation diagrams Figs. 5(b) or 5(c) is valid.

The coupled system (2.1) is invariant under the symme-
try operation
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n=1
(2.10)

of the period-p orbit (z), of the logistic map itself.
A periodic orbit of the coupled system is stable if and
only if ~7)&~ and ~gz~ are smaller than 1, but the stability
of the orbit (z)& ~ of the logistic map guarantees only

~ q& ~
( 1. Whether ~gz~ is smaller than 1 depends also on

the coupling strength e. For the symmetric fixed point
(2.5) one finds

The first of these two eigenvalues is equal to the stability
coefficient

sidered is invariant under 4 the orbit (Sq„), 2 has also to
be a solution. There are only two possibilities: (a)
Sq„=q„, i.e., the solution is symmetric, or (b) Sqo=q„
Sq& =qo, i.e., the solution has the antiphase property
(2.15). This reasoning holds not only for coupled logistic
maps, but for symmetric maps in general and has a coun-
terpart for coupled systems of differential equations with
symmetry.

The eigenvalues of the stability matrix Jof the period-2
antiphase orbit (2.13) and (2.14) are

g& 2=5(e 1—) —(A, —1) +e

g1 2

$2=2 —A, —2E,
(2.11)

(2.16)

For A, & 1+&5(1—e) these two eigenvalues are complex
conjugate and leave the unit circle at

and for symmetric period-2 orbit (2.6) and (2.7) AH=1++2(l —e)(3—2e) . (2.17)

pl=5 —(I,—1)

g~=5 —(A, —1) +4e(e+1) .
(2.12)

Because the eigenvalue q1 of the stability matrix J of
symmetric solutions is equal to the stability coefficient y
of the logistic map, period-doubling bifurcations of sym-
metric orbits appear at the same parameter values as in
the logistic map and thus produce a new symmetric orbit.
Therefore at A,

&

= 3 the symmetric fixed point (2.5) under-
goes a period-doubling bifurcation to the symmetric orbit
(2.6) and (2.7), which itself doubles into a symmetric
period-4 orbit at A,2=1+&6. Nevertheless, the syrn-
metric orbits produced in these bifurcations need not be
stable. Whether they are stable or not depends on the
sign of e. For example, for positive e the eigenvalue g2 of
the symmetric fixed point becomes —1 at A, =3—2e be-
fore g1 becomes —1. So here another period-doubling bi-
furcation occurs, not present in the logistic map.

This period-doubling bifurcation produces the nonsym-
metric period-2 orbit

(n) Z(n)Xn nq„= („) = („) with z„=c+d( 1)
yn Zn +1

(2.13)

where

A, +1—2e z (A, —1) —4(e—1)
2A, 4g

(2.14)

This period-2 orbit has the interesting property that the
iteration n ~n + 1 is equal to the symmetry operation

(n) g (n) (n) g (n)
qo ~ qo (2.15)

Solutions with this property have been called antiphase
solutions by Marek and Schreiber [32,33]. (In the litera-
ture other names also such as "out-of-phase" solution [6],
"incoherent" solution [4], or simply "asymmetric" solu-
tion [3] are- in use. ) Correspondingly the symmetric solu-
tion is sometimes called an in-phase solution. The anti-
phase property (2.15) is a direct consequence of the sym-
metry of the system. For e+0 each period-doubling bi-
furcation of the syrnrnetric fixed point produces exactly
one period-2 solution (q„), z. Because the system con-

Hence the antiphase orbit undergoes a Hopf bifurcation
and for almost all e, quasiperiodicity emerges (compare
Fig. 4). This completes the analysis of the first bifurca-
tions. It shows that —depending on the sign of e—one
of the bifurcation diagrams Fig. 5(b) or 5(c) applies.

With regard to the following sections it is interesting to
consider the behavior of the system (2.1) in the weak-
coupling limit e~O. For e=O, i.e., when the system is
uncoupled, the in-phase and antiphase solutions are given
by

and

(s)
qo

ZQ
(s)

Zp

T

Z1

Z1
(2.18)

(n)
qp

ZQ
(n)

q1
Z1

ZQ
(2.19)

g( 2=y —2e(5+&y)+O(e ), (2.20)

where y=5 —(A, —1) is the stability coefficient of the

respectively, with zo =f&(z& } and z, = f&(zo}. So the in-
phase and anti-phase solutions of the coupled system
emerge from the in-phase and anti-phase solutions of the
uncoupled system that may be constructed from the pos-
sible combinations of the single-system period-2 solutions
zp, z1. This remark is not restricted to coupled logistic
maps, but is generally true for coupled identical systems.
Moreover, this explains why the two period-doubling bi-
furcations of the symmetric fixed point (2.5) produce an
in-phase and an antiphase solution, and not only solu-
tions of one type: Already the uncoupled system
possesses an in-phase and an antiphase solution. These
remarks are of special importance for an understanding
of our procedure in the next section, where we expand
the antiphase solution of the coupled system up to order
e in the antiphase solution of the uncoupled system in or-
der to prove that the antiphase solution undergoes a
Hopf bifurcation for ~e~ sufflciently small but nonzero.

In continuing the analysis of the weak-coupling limit
we expand the eigenvalues (2.16) of the stability matrix J
of the antiphase orbit in e. This gives
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period-2 orbit zp, z, of the logistic map. For a =0, (2.20)
reduces to g& 2=y and the antiphase orbit of the uncou-
pled system undergoes a period-doubling transition when

y crosses —1. This is in accordance with the known
single-system behavior. For e%0 there is an additional
imaginary contribution to g& 2 because v'y is imaginary
for y close to —1. So close to the period-2 —period-4 bi-
furcation of the logistic map the coupled system has two
complex conjugate eigenvalues. Moreover, for
sufficiently small e, Eq. (2.20) shows that it is always pos-
sible to change A, so that ~il, 2~ gets larger than 1, because
by changing A, we can sweep ~y~ through 1. This illus-
trates once more —here in order e—that the antiphase
solution undergoes a Hopf bifurcation. Moreover, the
discussion shows that the emergence of this Hopf bifurca-
tion is intimately connected with the period-2 —period-4
bifurcation in the single system. This type of behavior
will be recovered in the general cases of symmetrically
coupled systems. Specifically, an equation with the same
structure as (2.20), which relates the stability of the anti-
phase solution to the stability of the period-2 solution of
the single system, will be recovered.

III. TWO IDENTICAL, SYMNIKTRICALLY
COUPLED MAPS

In this section we consider the following general sys-
tern of two identical, symmetrically coupled period-
doubling maps:

x„+i
=fi (x„)+eg, (x„,y„),

y„+,=fi (y„}+eh, (x„,y„),
with

(3.1)

h, (x,y ) =g, (y, x ) (3.2)

guaranteeing the symmetry x~y, x,y ER and g, an an-
alytic function of the coupling parameter e. The single
system

z„+i=fi(z„), zER (3.3)

is assumed to have a fixed point z that undergoes a
period-doubling bifurcation at the control-parameter
value A, =A, i resulting in a period-2 orbit zp, zi that be-
comes unstable in another period-doubling bifurcation at
X=X2) A, &. Under these conditions it will be shown that,
depending on the sign of e, one of the bifurcation dia-
grams shown in Figs. 5(b) and 5(c) is generic for the cou-
pled system. Deviations from this behavior are possible
but nongeneric.

To prove. the validity of the bifurcation diagrams 5(b)
and 5(c), one has to show two things: First that the fixed
point in the coupled system undergoes two period-
doubling bifurcations, one leading to an in-phase orbit
and the other to an antiphase orbit; and second that the
antiphase orbit undergoes a Hopf bifurcation. These
proofs are the content of the first two subsections III A
and IIIB. In the remaining two subsections IIIC and
IIID the results will be extended, first to higher-order
period doublings (Sec. III C) and then to systems where

the symmetry is broken by additional terms on the right
hand side of (3.1) (Sec. III D}.

A. Period-doubling bifurcations of the Sxed point

(Xn +1&yn +1 }J=
B(x„,y„) (z,z)

Bx

af,
By

+e
3h,
a

Bh,

i' (,r)
(3.4)

The system (3.1) is symmetric under the symmetry opera-
tion

x
y x (3.5)

Therefore, and because (z,z ) is a symmetric fixed point,

From the assumed properties of the single system it
follows immediately that the uncoupled system

(x„+i,y„+i)=(fi(x„),f&(y„))

has for A. &A, i a symmetric fixed point (z,z). At A, i this
fixed point undergoes a degenerate period-doubling bifur-
cation resulting in a symmetric in-phase orbit
(zp zp) (zi zi ) and an antiphase orbit (zp, zi ), (zi, zp). In
this period-doubling bifurcation two eigenvalues of the
stability matrix of the fixed point (z,z ) pass through —l.
If now the coupling is turned on these orbits persist but
the two eigenvalues depend on e and thus —in the gener-
ic case —di6er. It will be shown below that for
suKciently weak coupling the two eigenvalues are still
real valued. Therefore the coupling does not change the
type of bifurcation: both eigenvalues pass through —1

but now at diff'erent parameter values A.. Moreover, the
coupled system is still symmetric, which implies that its
period-2 orbits bifurcating from a symmetric fixed point
have to be in-phase or antiphase orbits (compare Sec. II).
Also, because the type of an orbit cannot change abruptly
in the limit e —+0, in-phase and antiphase orbits in the
coupled system relate to in-phase and antiphase orbits in
the uncoupled system. So, because there are already an
in-phase and an antiphase orbit in the uncoupled system,
one of the two period doublings in the coupled system
has to produce an in-phase orbit from the fixed point and
the other an antiphase orbit. Hence the first part of the
bifurcation diagrams 5(b) or 5(c) correctly describes the
situation in the coupled system.

It remains to be shown that the eigenvalues of the sta-
bility matrix of the fixed point remain real for small cou-
pling. The alternative would be a pair of complex-
conjugate eigenvalues. But this alternative can be exclud-
ed as follows. Let (z,z) denote the symmetric fixed point
of the coupled system. For the stability matrix at this
fixed point one obtains from (3.1)
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the stability matrix J obeys the symmetry relation

SJS=J, (3.6)

and (U')N+, N+i. Hence, from Proposition 1 in the Ap-
pendix one gets for the eigenvalues g, 2 of the coupled
system

where the representation

0 I
0 (3.7)

rj 1 q
=y 1+@51 2+ 0 ( e ),

where 5I 2 are the eigenvalues of the 2 X 2 submatrix

(3.15)

of S has been used. Here I is the AX%unit inatrix. Ex-
panding the fixed point (z,z ) of the coupled system at the
fixed point (z,z) of the uncoupled system in orders of e
gives

( V )N+1, 1 ( V }N+1,N+1

(3.16)

J=U+eV+O(e } (3.8)

with

I 0 A B
U= 0 I- and V= B A

r

(3.9)

where A and B are NXN matrices whose details are
without interest in the present context, and

(3.10)

is the stability matrix of the single system at the fixed
point z. In order to compute the eigenvalues of J up to
order e we now diagonalize U by a coordinate transfor-
mation K so that Proposition 1 from the Appendix ap-
plies. By this proposition we will be able to reduce our
2N-dimensional problem to a two-dimensional problem.
Because we are interested in the generic behavior, we can
assume that I is diagonalizable. So if Ko diagonalizes I,

r

0

Ko I Eo= (3.11)

(z,z)=(z,z)+e(u, u)+O(e ) .

This expansion conserves the symmetry and thus all
terms of an expansion of J in orders of e obey the same
symmetry relation (3.6) as J itself. One finds

of V'. Since V,
'

b is Hermitian its eigenvalues 5I z are real
so that up to order e the eigenvalues gI 2 of J are real.
This holds true also for higher orders in e: In the generic
case (B')11%0so that r)1 and rlz difFer in order e. Taking
into consideration possible imaginary contributions in
higher orders in e, this result means that the real part of
gl and g2 already differs in order e. Because J is a real
matrix its eigenvalues gl 2 are real or complex conjugate.
If they were complex conjugate their real parts would
have to be identical in every order e. But this contradicts
our previous result for order e. So qI and g2 are real to all
orders in e.

B. The Hopf bifurcation of the antiphase orbit

In this section our main result that the antiphase orbit
generically undergoes a Hopf bifurcation is proved. The
proof will be performed by expanding the antiphase orbit
of the coupled system in e around the antiphase orbit of
the uncoupled system and we will subsequently discuss
the stability in e. Higher orders in e do not change the
picture. The discussion reveals that the stability matrix
has for A, close to A,2 a pair of complex eigenvalues that
leave the unit circle when A, is changed appropriately. In
the generic case (no resonances) this implies a Hopf bifur-
cation.

The Jacobian matrices at the two points (zo, z, ) and
(z„zo) of the antiphase orbit are given by

0

then EC can be chosen as

Ko 0

0 Zo

Thus one obtains

(3.12)
and

B(x„,,y„,)

B(x„,y„)

()(xn+ i yn+ i )

i}(x„,y„}

ZO'Z1

ZI yZO

(3.17)

J'=K 'JK = U'+@V'+O(e )

with

(3.13) The stability matrix J of the antiphase orbit is related to
Jo and JI by

I" 0 A' B'
U'=

0 ~, and V'= (3.14)

where A'=X, 'AXo and B'=Zo 'BZo.
Without loss of generality it is now assumed that y, is

the eigenvalue of the single-system stability matrix I that
passes —I at A,

&
and produces the period doubling. This

eigenvalue turns up twice in U': at the positions (U')1,

J=JIJo . (3.18)

q„+,= P(q„) (3.19)

and because of the symmetry of (3.1}the function V obeys

To discuss the eigenvalues of J we first express J in
terms of Jo and eV instead of Jo and J, . Let q„—=(x„,y„).
With this condensed notation the coupled system (3.1)
can be rewritten as
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SP(Sq )=V(q), (3.20) J= U+eV+O(e ) (3.28)

where the matrix 4 was defined in (3.7). In this notation
one has for J,

with

r]r0 0

On+1a

aq„ (z),zo)

B$9'(Sq„}

~qn (z),ZO)

0 r,r,
(3.29)

On+1

Qq h'(zi, zp)
(3.21)

'r, A+Dr, r,a+Cr,
ar, +r,c wr, +r~

J, =SJOS . (3.22)

where the last step results from an application of the
chain rule and the fact that 4 is a constant matrix [com-
pare (3.7)]. Expressing Jp also in this condensed notation
and recalling the antiphase property $(zi,zo)=(zo, z& }

one obtains

Before we enter the somewhat lengthy discussion of the
eigenvalues of J for arbitrary dimension N, we consider
the case of two coupled 1D maps, i.e., N=1, where the
Hopf bifurcation now follows immediately. In this case
A 8 C D I p and r

&
are c numbers, and hence com-

mute. As a consequence of (3.23} one thus gets for J the
simple expression

Inserting this into (3.18) gives

J=SJOSJO . (3.23}
y 0 g priJ= 0 +e r +O(e ),0 y pro q

(3.30)

So J is completely determined by Jo and S. As we show

in the following, (3.23) implies a special structure of J
that will turn out to be an important precondition for the
appearance of the Hopf bifurcation.

From (3.1) one obtains

where the abbreviations q = AI, +DI 0 and p =8+C
have been used. y =r,r, =r,r, is the stability
coeScient of the single-system orbit zo, z&. The eigenval-

ues ofJ are given by

n»=y+~(q+S &y )+O~(' ). (3.31)

Jo=
0

zo

Z)

Bg~

(jX (zp zi) , (zo, z) )

+e

~ 0'i~ ~y ~ 0'i~

(3.24)

This is so far exact. Now the point (zp, z, ) of the anti-

phase orbit of the coupled system is expanded in e around
the respective point (zo, z, ) of the antiphase orbit of the
uncoupled system:

ZO ZO Q
+e +O(e2) . (3.25}

Z]Z]

Entering this expression into Jo gives

ro 0 A 8
0 r +'ca+o(")

I
(3.26)

where the explicit expressions for the N XN matrices A,
8, C, and D are not needed in the following and

af, af„
Io —— and I

&

——

zo z)
(3.27)

are the Jacobian matrices of the single-system period-2
orbit. With this expression for J0 one thus obtains from
(3.23)

This is the same type of expression we already obtained
for the coupled logistic maps in (2.20). Because the single

system is assumed to undergo a period-doubling bifurca-
tion at A, =X@,y is close to —1 for A, close to A,2 and thus

negative. Therefore &y is purely imaginary and the ei-

genvalues g& 2 are complex conjugate up to order e. The
inclusion of higher orders in e could change this result

only if the sum of higher-order terms in e could remove
the imaginary part already present in order e so that q& 2

become real. (Different imaginary. parts in rii z are not al-

lowed, because J is a real matrix. ) Even if this were the
case for a given value of e, an in6nitesimal change in e
would make the imaginary part of g, 2 once more un-

equal to zero, because the higher-order terms have a
different dependence on e than the term of linear order in

e. So generically complex conjugation of g, 2 in order E'

implies complex conjugation in all orders.
Moreover from (3.31) one obtains

[il, 2i
= iy [+eq+O(e ) . (3.32)

y and q are functions of the control parameter A, . Ex-
panding these at A.2 in the deviation hA, —:A, —A, 2 one ob-

tains

~g, z~=l+eqz+y'hA+O(e, ehA, , (bA) ), (3.33)

with q=qz+O(bA) and ~A~=1+y'bA+O(hk) . So for
given e &(1 it is always possible to change hA. so that the
modulus of q, z crosses 1. Remembering that q& z are

complex conjugate this means that g& 2 cross the unit cir-
cle when k is varied appropriately. For the generic non-

resonant case we have hereby shown that the considered
antiphase orbit of coupled 1D maps undergoes a Hopf bi-
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~f~
I &ro= — and I oI &=

Zo Z)
(3.34)

We intend to use once more Proposition 1 from the Ap-
pendix for the computation of eigenvalues. To this end
we introduce a coordinate transformation E that diago-
nalizes U. In the generic situation I &ro and roI

&
are di-

agonalizable. Let Eo and E
&

denote XXX matrices that
diagonalize I &ro and roI &, respectively. Because these
stability matrices have the same eigenvalues one can
write

0

furcation.
We now continue with the general case of arbitrary di-

mension N. We will once more arrive at an equation like
(3.31) so that all conclusions apply.

The matrices I &ra and I oI &
appearing in Uhave the

same eigenvalues, because both are a stability matrix of
the period-2 orbit zQ, z, off1,

of V'. From the viewpoint of bifurcation theory this
reduction is the reduction to the center manifold [34].

Our next aim is to determine the eigenvalues ~& 2 of
V,'„b. From (3.35) one obtains with the definitions (3.39)

(3.42)

0

p. 0

(3.43)

so that in these new coordinates both stability matrices of
the single-system period-2 orbit are diagonal. This equa-
tion implies that I o and I

&
can be simultaneously diago-

nalized by a simple permutation of indices (see Proposi-
tion 2 in the Appendix). Without loss of generality it can
be assumed that this permutation is contained in the
coordinate transformations Eo and E& so that I 0 and I ',

are already diagonal:

=KQ-'I, I ~0——K]-'rQI, K1 .

(3.35)

Therefore one gets

q =(I",2'+D'I 0)1,=Ply '1, +D',
1 a,

= ( A 'I ', +1 QD'), , (3.44)

Therefore the coordinate transformation

Eo 0
E—:

diagonalizes U and one obtains

(3.36)

and the diagonal elements of V,'„„are identical. For the
nondiagonal elements one obtains

(I'I&'+C'I'l», =Pal, 1+CI1P1=(%1+Cl )P =I'Pl

(3.45)

J' =K 'JK = U'+ e V'+ 0(e )

with

(3 37) alld

0 0 )1, 1 +1,1+1+~1C1,1 (+1,1+C1,1)~1 J ~1

I 0U'=0 r
I )A'+D'I o'"' '= Br+re0 0

r', B +c'r',
A 'I"1+1QD'

(3.38)

with

.p—=Bi i+Cd i .

(3.46)

where we introduced

A —=E'
) AEO C:Eo CEO

B':—E) BE), D'=ED 'DE),

rQ'—=K I ~0,
r =K- I K (3 39)

0 1 1 V,'„b =
pcs) q

Thus V,'„b can be written as

S'Pl
(3.48)

11, z
=y 1

+ez, 2+ 0 ( e ), (3.40)

U' is diagonal because I is diagonal. Therefore Propo-
sition 1 from the Appendix can be applied. All eigenval-
ues y„. . . , y& appear twice in I . Without loss of gen-
erality it can be assumed that the eigenvalue y, produces
the period doubling in the single map. This y& appears in
U' at the positions ( U')1, and ( U')N+1 N+, . Therefore
one has from Proposition 1 that the related eigenvalues

g& 2 ofJ up to order e are given by

~1 2 0+7+71 (3.49)

Entering this into (3.40) one obtains for the two eigenval-
ues g& 2 of the stability matrix J

~, ,=y, +~(~+pQy, )+o(~') . (3.50)

This structure of V,'„b is once more a result of (3.23).
Remembering that 1 = I Ql ', one has y, =a,p, and thus
the eigenvalues of V,'„b are

where ~& 2 are eigenvalues of the submatrix

( V')1,N+1
I

)N+1, 1 ( V )N+1, N+1

(I 13 +D IQ)1 1 (I 18 +C I 1)1

(B IQ+IQC )1 1 (2 I'1+IQD )1
(3.41)

This equation is the same as we obtained in the case of
two coupled 1D maps (3.31). There we concluded from
this equation that the eigenvalues q& 2 are complex conju-
gate for A, close to A,2 and leave or enter the complex unit
circle when A, is changed appropriately so that the anti-
phase orbit undergoes a Hopf bifurcation. This same
reasoning applies here if one can show that q and p are
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real numbers, because this was implicitly assumed. That
p and q are real is not immediately obvious, because the
coordinate transformation X we performed to diagonalize
the e-independent part U of J may have introduced com-
plex numbers. In the following it will be explicitly shown
that p and q are real, so that indeed from Eq. (3.50) the
Hopf bifurcation follows.

We first show that q is real. Ko diagonalizes the matrix
I &I 0. If its right eigenvectors belonging to the eigenval-
ues y, , . . . , yz are denoted by a&"', . . . , az', respective-
ly, then Ko is given by

(r) (r) (r)IC0 (a I Q P ~ 0))( ) (3.51)

The eigenvalue y& is real and therefore the eigenvector
a &"' is also real. The same arguments apply to the inverse
Ko ', so that Eo ' is given by

~—I —(g(I) u(I) g(l))T (3.52)

where a &, . . . , a& are the left eigenvectors of I,I 0 be-(l) (l)

longing to the eigenvalues y„.. . , y&. Because y& is
real, a(I" is also real. Now from (3.44) and (3.39) one has

q =(I 1~ '+D'I o) I
=

I II'o ' (I I ~ +D I o)&0]),I

=a'" (I 3+DI 0)a'"' (3 53)

This last equation shows that q is real, because
I

&
3 +D I 0 and a '," and a &"' are real.
This same type of reasoning can be used to show that p

is real. KI diagonalizes I 01, [see Eq. (3.35)]. Therefore
K

&
and X

&

' can be written as

—(b (~) b(~) b (~)
)

A, =3.45 a symmetric period-4 orbit that undergoes at
A, =3.5 a period doubling to an antiphase period-8 orbit
that becomes unstable by a Hopf bifurcation at k=3.52.
In the single system one sees instead a period-2 orbit that
undergoes two subsequent period-doubling bifurcations.
Another example is shown in Figs. 6(a) and 6(b), where
part of the period-3 window of the logistic map is plotted
for the single system and the symmetrically coupled sys-
tem. The first two period doublings of the period-3 orbit
change in the coupled system to a period doubling fol-
lowed by a Hopf bifurcation.

This behavior is a direct consequence of the considera-
tions from the last section. It is easy to show that the p-
tirnes iterated system (3.1) is once more symmetric. So a
symmetric period-p orbit of the original system results in
p symmetric fixed points of the iterated system. And if
the period-p orbit of the original system undergoes two
subsequent period doublings, each symmetric fixed point
of the iterated system will do the same. So all results
from the previous section carry over to the bifurcations
of symmetric orbits of arbitrary period. Note that the ex-
istence of a period-p orbit in the single system not only
implies the existence of a symmetric period-p orbit in the
coupled system, but also the existence of nonsymmetric
period-p orbits. But our considerations are concerned
only with the bifurcations emerging from a symmetric or-
bit.

0.60

and (3.54)

11+ 11 ( 1 1)11+( 0 0)1, 1

a)b(l) gb(r) + (I) ga(r) (3.55)

All quantities in this last equation are real, and so p is
also real. This finishes the proof that generically the anti-
phase orbit undergoes a Hopf bifurcation.

It
—I —(b(l) b(l) b(i))T

(l)where the bk"' and bk" are right and left eigenvectors of
I DI &

belonging to the eigenvalues yk. b&' and b'," are
real because y 1 is real. From (3.47) together with (3.39)

MINI I ~ I' I

RS

~050X
I

'I

0.40 "''"'i"'"
i

'
'I ''I

3.82

0.60

I I I I I ) I I I I I

3.84
'A

I I I I

3.86

C. Extension to higher-order period doublings

So far we considered the consequences of a symmetric
coupling of systems with a fixed point that undergoes two
subsequent period doublings. The first period doubling
produces an in-phase and an antiphase orbit in the cou-
pled system and the second period doubling is responsible
for the Hopf bifurcation of the antiphase orbit. Similar
phenomena exist for symmetrically coupled systems with
two subsequent period-doubling bifurcations from a
periodic orbit of arbitrary period.

For example, in the case of coupled logistic maps [see
Figs. 1(a) and 1(b)] one sees in the coupled system at

I

I
I

~ 0.50—

0.40 "'"I"''"I "'I'"' 'I

3.82
I I I I I j I I I I I

3.84

l a) .."
L%%)IWl

I I %

I I P M%

3.86

FIG. 6. Symmetrically coupled logistic maps [Eqs. (2.1) and

(2.2)]: the period-3 window. (a) Uncoupled: e=O; (b) coupled:
e= —0.01.
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D. Small asymmetry

Until now we have only considered coupled maps that
are symmetric under the exchange of x and y. But in
macroscopic systems, to which our considerations apply,
symmetries are never perfect. So if the bifurcations so far
proved for symmetric systems are a real world
phenomenon, they should be stable against small asym-
metric perturbations. This is indeed the case, as will be
shown in the following.

To this end the following extended system is con-
sidered:

x„+,=fi (x„)+eg, (x„,y„)+an, ,(x„,y„),
y„+,=fi (y„)+eg,(y„,x„)+am, ,(x„,y„)

(3.56)

with the symmetry breaking parameter a, ~~~ &&1, and
the symmetry breaking functions n„, and m, that are
assumed to be analytic in ~ and e at v= @=0.

First the bifurcations of the initial fixed point are con-
sidered. By the introduction of the small asymmetry the
eigenvalues of the stability matrix J of the fixed point are
given by

rt, 2=rt, ~+~/, 2+O(e, ex, ~ ), (3.57)

where gi 2(e) are the eigenvalues (3.15) obtained in the
symmetric case. Because we consider only rea1 map-
pings, the eigenvalues g& 2 are both real or complex con-
jugate. In order to show that in the asymmetric case the
bifurcations of the fixed point are still period-doubling bi-
furcations, one has to exclude the latter possibility. To
this end we recall that for A, close to k& the eigenvalues

g& z of the symmetric case are real and —in the generic
case —differ. So it is obvious that, whatever the values of
g, z might be, the real parts of rti and gz can be identical
only for very specific choices of a. Therefore g, and g2
typically cannot be complex conjugate and thus in the
generic case are real valued. The same arguments hold
when higher orders in e and ~ are included. This shows
that the bifurcations of the fixed point in the symmetric
and weakly asymmetric cases are the same; only the
values of A, where the bifurcations appear are shifted by
an amount depending on ~.

Next the Hopf bifurcation of the antiphase orbit is con-
sidered. In the strict sense of Eq. (2.15), an antiphase or-
bit no longer exists in the asymmetric system.
Nevertheless —as we saw above —the bifurcation struc-
ture of the original fixed point has not changed, and there
is a period-2 orbit in the asymmetric system that has the
antiphase property (2.15) in the limit a —+0. So for a&0
this orbit obeys (2.15) in an approximate sense and we
continue to call this orbit the "antiphase" orbit.

The eigenvalues pi 2 of the antiphase orbit in the asym-
metric system typically differ from the respective eigen-
values g& 2 in the symmetric system in order z:

gi q=7)i 2+ii/i q+O(&, «~ir ) . (3.58)

This is formally the same relation as (3.57), but here, for
X close to the Hopf bifurcation in the symmetric system,
the eigenvalues q, 2 are complex conjugate. Now a simi-
lar reasoning as above reveals that the corrections g, 2 in-

troduced by the asymmetry can remove the imaginary
parts of g, 2 only for very specific choices of ~. Therefore
in the generic case the eigenvalues g& 2 are complex
conjugate —even if higher orders in ~ are considered —so
that the Hopf bifurcation of the antiphase orbit persists.

These considerations show that even for small asym-
metry one of the bifurcation diagrams Figs. 5(b) or 5(c)
applies.

IV. TWO IDENTICAL, SYMMETRICALLY COUPLED
SYSTEMS OF DIFFERENTIAL EQUATIONS

We saw in Fig. 3 that two symmetrically coupled
Rossler systems behave as symmetrically coupled maps.
In this section we show that this is not incidental, but
generally true. There is only one minor difference com-
pared to coupled maps: In differential equations a
periodic solution emerges from a fixed point not by a
period-doubling-bifurcation but by a Hopf bifurcation.
So in addition to the case of two subsequent period-
doubling bifurcations in the single system, one has to
consider here the case of a Hopf bifurcation followed by a
period-doubling bifurcation.

More explicitly we consider the symmetrically coupled
system

x =Fi„(x)+eG,(x,y),
y =Fi (y )+eG, (y, x )

(4.1)

with x,y HIE and e small. It is assumed that the single
system x =Fi(x) undergoes two subsequent bifurcations
at A, =A, , and A, =A,2. The first of these bifurcations can be
either a Hopf bifurcation (if a fixed point gets unstable) or
a period-doubling bifurcation (if a periodic orbit gets un-
stable). The second bifurcation is always a period-
doubling bifurcation [compare Fig. 5(a)]. Under these
conditions we show that generically —depending on the
sign of the coupling parameter e—one of the bifurcation
diagrams 5(b) or 5(c) holds. More specifically it will be
proved that the first bifurcation in the single system gives
rise to two bifurcations of the same type in the coupled
system, one resulting in a periodic solution that is sym-
metric, the other resulting in a nonsymmetric solution
with the generalized antiphase property

@x(t)y(t))= v t+ —,y t+—T T
2 ' 2

(4.2)

where T is the period of the solution and 4 the symmetry
operation x~y. Concerning the second bifurcation we
show that generically the antiphase solution undergoes a
Hopf bifurcation.

The case where the first single-system bifurcation is a
Hopf bifurcation is much simpler than the other possibili-
ty of a period-doubling bifurcation. Therefore we consid-
er this case first. In subsection IVA we show that the
Hopf bifurcation of the single system gives rise to two
Hopf bifurcations in the coupled system, one producing
an in-phase solution the other an antiphase solution. We
continue in subsection IVB by showing that the second
bifurcation in the single system —the period-doubling
bifurcation —changes into a Hopf bifurcation of the anti-



EMERGENCE OF QUASIPERIODICITY IN SYMMETRICALLY. . . 1429

phase solution of the coupled system. Here we partially
take over results from Sec. III. Thereby the proof for
the first case of bifurcations is complete.

In subsection IVC we then consider the remaining
case, where the first single-system bifurcation is a period-
doubling bifurcation. It will be shown that the single-
system period-doubling bifurcation gives rise to two
period-doubling bifurcations in the coupled system,
where once more one solution is symmetric, whereas the
other has the antiphase property. This completes our
proof of the validity of the bifurcation diagrams 5(b) or
5(c). Nevertheless, we finally consider in subsection IV D
briefly the inhuence of a small nonsymmetry, in order to
make sure that our results are relevant to macroscopic
systems.

A. The Srst bifurcation is a Hopf bifurcation

For A, (k& the single system has a 6xed point z. There-
fore the uncoupled system has a symmetric fixed point
(z,z). For e&O, ~e~ sufficiently small, this fixed point
generically persists and remains symmetric because the
coupling does not destroy the symmetry. Although the
uncoupled system (and thus also the coupled system) may
also have nonsymmetric fixed points, we are exclusively
concerned with the bifurcations of the symmetric fixed
point. Other 6xed points may show sequences of bifurca-
tions that are different from those of the symmetric 6xed
point.

In a Hopf bifurcation a pair of eigenvalues of the sta-
bility matrix crosses the imaginary axis. So the single-
system Hopf bifurcation implies a degenerate Hopf bifur-
cation in the uncoupled system (@=0), where two identi-
cal pairs of eigenvalues cross the imaginary axis. Because
the system (4.1) is real the eigenvalues can only be real or
come in complex-conjugate pairs. For 6nite imaginary
part —the generic case —ihe multipliers cannot become
real by introducing an infinitesimal coupling e&0.
Therefore with (sufficiently small) coupling there still ex-
ist two pairs of complex-conjugate multipliers. Generi-
cally their dependence on e differs, and the degenerate
Hopf bifurcation in the uncoupled system splits into two
Hopf bifurcations in the coupled system.

In each of these two Hopf bifurcations a single periodic
solution is created. If we denote such a periodic solution
by (x ( t ),y ( t ) ), then the symmetry of the system implies
that S(x(t),y (t ) ) is also a solution. But because only one
single new solution is created, the symmetry operation 4
has to map this new solution (x(t ),y(t)) onto itself, pos-
sibly with a phase shift ~. So one has

&( (&x),y(&))=(y(&), (&x))=( (&x+ ),yr(&+ )) r. (4.3)

If (x (t ),y (t ) ) is symmetric, then r= T (or equivalently an
integer multiple of T ), where T is the period of the solu-
tion. When the solution is nonsymmetric, then, because
twice the symmetry operation is the identity,

&'(x(&),y(&)) =(x(&),y(&)) =(x(&+2r),y(&+2~)) .

one can take without loss of generality 7=T/2. Conse-
quently, the nonsymmetric orbit emerging from the Hopf
bifurcation has the antiphase property (4.2).

Next we show that one of the two Hopf bifurcations
produces a symmetric solution and the other an anti-
phase solution. A periodic solution created in a Hopf bi-
furcation emerges in the eigenspace of the Jacobian J that
belongs to the eigenvalues that become unstable. There-
fore the symmetry of the periodic orbit is intimately re-
lated to the way the symmetry operation acts on that
eigenspace. This is well known from the theory of bifur-
cations in the presence of symmetries [21,35]. For the
symmetry 4 we are considering here, this relation can be
obtained as follows. Consider first the case @%0, where
we have two nondegenerate Hopf bifurcations. If the
periodic solution created in such a Hopf bifurcation is
symmetric, then S(x(t),y(t))=(x(t), y(t)), and we see
that 4 does not change points of the solution. It acts as
the identity on the related eigenspace: Sr =r for vectors
r from the eigenspace. If, instead, the solution created in
that eigenspace has the antiphase property

eV(x(t),y(t))=(x(t+ T/2), y(t+T/2)),
then points from the related eigenspace are changed un-
der the action of the syminetry operation so that SrXr.
But from the symmetry of the Jacobian ed/= J and the
fact that the considered eigenspace is spanned by two
complex-conjugate eigenvectors, one can conclude that
the whole eigenspace has a definite symmetry: either
eVr=r or Sr= r So w—ith. our previous result SrWr
only the second relation is possible. These considerations
so far show that an in-phase solution is related to an
eigenspace of J that is pointwise invariant under
whereas an antiphase solution is related to an eigenspace
of J that is fiipped by S. Next the case e=O is con-
sidered. Here the system is uncoupled and one can show
by explicit construction that the eigenspace of J that goes
unstable in the doubly degenerate Hopf bifurcation is
spanned by a pair of eigenvectors of 4 belonging to the
eigenvalue +1 (pointwise invariant) and a pair of eigen-
vectors belonging to the eigenvalue —1 (fiip). Finally, by
comparing this result with our previous result for eAO in
the limit e~O, we conclude that they fit only if one of the
two Hopf bifurcations produces an in-phase orbit and the
other produces an antiphase orbit.

B. Hopf bifurcation of the antiphase solution

In this section it will be shown that, as a result of the
period-doubling bifurcation of the single system, the anti-
phase solution undergoes a Hopf bifurcation. To this end
we temporarily introduce a condensed notation that
simplifies some of the calculations. Let q —=(x,y). Then
the coupled system (4.1) can be rewritten as

(4.5)

where Pi, is invariant under the symmetry operation 4:
(4.4) SVi,S(q ) = V&,(q ) . (4.6)

So 2v. has to be an integer multiple of the period T and Most objects introduced in the following depend on A, and
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@T/2(qt ) (4.7)

The stability of this antiphase solution is determined by
the eigenvalues of the stability matrix

B@T(q)J=
()q q=qp

(4.8)

where qo is here and in the following a given point of the
antiphase solution. In order to take advantage of the an-
tiphase property we de6ne

()~'rn(q ) BC zy2(q )
Jo =— and J& —=

Bq qp Bq
(4.9)

with q) —=@T&2(qo)=Sqo another point on the antiphase
orbit. With 4'z. (q)=4T&z(C'z&2(q)) one finds

J=JiJo (4.10)

Next we prove as a counterpart of (3.22) the relation

J, =SJoS .

If the derivative of the Sow is denoted by

(4.11)

e. For simplicity we usually do not indicate this depen-
dence and also omit the indices on X

The fiow of the system (4.5) will be denoted by @,(q ).
For a point q, from the antiphase solution one has ac-
cording to (4.2)

(&Ji(qo)&)= l&J«qo») .
dt ()q @,(q()

(4.17)

J,(q, ) =()'J,(qo)$ . (4.18)

Therefore the derivative of the How along the antiphase
solutions has also a kind of antiphase property. With the
obvious identities Jazz(qo)=Jo and JT&2(q, )=J, the spe-
cialization of (4.18) to t = T/2 finally proves (4.11).

Coming back to our original notation, where the vari-
ables x and y of the subsystems show up separately, one
can formally write for the How of the coupled system

O, (x )+eq)(t')(x, y )

@,(x,y)= S (y )+eg"(x y )
(4.19)

Here S, denotes the single-system fiow, so that (4.19) has
the correct limit for e—+0. The new functions y", and

are implicitly defined by (4.19). Once more the
dependence of all these functions on the control parame-
ter A, is not explicitly indicated.

For the point qo of the antiphase solution we write
qo =(zo,z, ). Then for the Jacobian Jo defined in (4.9) one
obtains

Because for t =0 one has SJt —o(qo)et= 1 a comparison of
this equation with (4.14) reveals by the uniqueness of its
solutions

()@,(q )
J,(q) =

Bq q

then one obtains from (4.5)

d
J«qo)=

Z
Ji(qo)

d ()9'(q )

dt Bq +(q )

(4.12)

(4.13)

Jo=

OT
BX zp

OT/2

By Z ]

and the analogous equation

J,(q, )= J,(q, ) .aV(q)
dt Bq +,(q, )

With the initial conditions

(4.14)

Zpqz )
+E'

gq(e)

ZpqZ )

Qy zp, z
&

y zo

(4.20)

Ji=o(qo)=Jr o(qi)==& (4.15)

' (~v~( ))
Qq e, (q ) Qq 4, (q )

()P(q )

Bq

()V(q)'
aq

(4.16)

Therefore operating 4 from left and right on (4.13) gives

that are a consequence of the definition (4.12) of J„these
equations uniquely determine J,(q;) because the original
ditferential equation (4.5) as a model for a physical system
uniquely determines the fiow. Now the symmetry of V
implies

Expanding the point (z(),z, ) of the antiphase orbit of the
coupled system in e around a nearby point (zo, z, ) of the
antiphase orbit of the uncoupled system, the matrix Jo
reads

Jo=

where

Io 0 A B
0 r +E C D +O(E'),

1
(4.21)

O Ty2 ()Sry2Io=— and I
&

—=
zp z)

(4.22)

ae, (x)
zp

ae„,(e„,( ))
BX Z

=r,r, (4.23)

The details of the matrices A, B, C, and D are not needed
in the following. The meaning of I o and I

&
becomes ob-

vious when recognizing that the eigenvalues of the matrix
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J=JiJO=SJOSJO= U+eV+O(e ) (4.24)

determine the stability of the single-system solution
z(t )=8,(z 0).

With (4.10) and (4.11) the stability of the antiphase
solution of the coupled system up to order e is completely
determined by the expression (4.21) for Jo:

4z(q, )=Sq, , (4.26)

where T is the period of q, . At a given point qo of the
solution q, the stability matrix reads

in analogy to Eq. (4.7) the following symmetry of the
How:

with

and

0

0 IOI )

(4.25)

B@rJ=

Because of (4.26) J obeys

J=SJS .

(4.27)

I &A+DI 0 I iB+CI
BI +I C AI, +I'+

This stability matrix has the same structure as that we
obtained in Sec. III in the context of coupled maps [com-
pare Eqs. (3.28) and (3.29)]. There we showed that be-
cause both single-system stability matrices I,I O and
I oI i have an eigenvalue that passes —1 at A, =A.2, the
matrix J generically has a pair of complex-conjugate ei-
genvalues passing the complex unit circle when A, is
changed appropriately. Because here once more I &I 0
and I Ol I are the single-system stability matrices with an
eigenvalue passing —1 at A,z, the same conclusion can be
drawn here. With this result we have shown that the an-
tiphase orbit of the coupled system (4.1) generically un-
dergoes a Hopf bifurcation.

With the result of Sec. IV A this completes the proof
that one of the bifurcation diagrams Fig. 5(b) or 5(c)
holds if the first bifurcation in the single system is a Hopf
bifurcation.

J= U+eV+O(e ),
where

(4.29)

I 0
U= (4.30)

and I is the stability matrix of the single-system periodic
orbit. Because the symmetry (4.26) is independent of e,
each term in (4.29) has to obey the same symmetry.
Therefore a short calculation using the representation
(3.7) of S shows that V can be written as

A B
B A (4.31)

Hence up to order e one has

Once more this is Eq. (3.6) obtained in the context of
maps.

Now J depends on e and can be expanded in the un-
coupled case @=0:

C. The first bifurcation is a period-doubling bifurcation

ro ABJ—
0 ~ +e B A +O(e). (4.32)

In this section we show that, if the first bifurcation in
the single system is a period-doubling bifurcation instead
of a Hopf bifurcation, once more one of the bifurcation
diagrams 5(b) or 5(c) applies to the coupled system. To
this end it is sufficient to show that the single-system
period-doubling bifurcation gives rise to two period-
doubling bifurcations in the coupled system, one leading
to an in-phase solution and the other to an antiphase
solution. This is sufficient because it is already known
from the previous section that the antiphase orbit, as the
result of the second single-system (period-doubling) bifur-
cation, undergoes a Hopf bifurcation.

A periodic orbit x(t) in the single system implies an
infinity of periodic orbits (x(t),x(t+r)), r arbitrary, in
the uncoupled system. If the coupling e is made nonzero,
the translational invariance in t in the two subsystems is
no longer independent. Therefore the coupling dramati-
cally reduces the number of possible solutions [17]. Be-
cause of the symmetry of the system only two types of
possible solutions remain: the in-phase and antiphase
solutions. We are concerned in the following exclusively
with the sequence of bifurcations arising from an in-
phase solution.

For such an in-phase solution q, =(x(t ),y(t)) one has

This is the same expression as (3.8) and (3.9) obtained in
Sec. IV A in the case of coupled maps. And because here
also the single-system period-doubling bifurcation implies
a real eigenvalue of I that passes —1 at A, =A, &, the same
conclusions for the eigenvalues of J apply; namely, for
sufficiently small e, the eigenvalues of J remain real and
generically differ. So the degenerate period-doubling bi-
furcation in the single system splits into two period-
doubling bifurcations in the coupled system.

Following the same line of reasoning as in Sec. IVA,
one can finally show that one of these period doublings
leads to an in-phase solution, whereas the other leads to
an antiphase solution. The period-2T solution is created
in that manifold of the period-T solution that becomes
unstable. For @%0 the related eigenspace of J is generi-
cally one dimensional and thus spanned by a single eigen-
vector of J and because of (4.28) this eigenvector of J is
also an eigenvector of 4 belonging to one of its eigenval-
ues + 1 or —1. If the period-2T solution is created in the"+1"eigenspace, the solution is mapped point by point
onto itself and is symmetric. If instead the solution is
created in the "—1" eigenspace, points of the period-2T
solution are not mapped onto themselves and it is conse-
quently (because of lack of other possibilities) an anti-
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D. Small asymmetry

We now consider brieQy the inQuence of a small asym-
metry on the bifurcation structure so far proved for the
symmetrically coupled system. As in the case of maps
(Sec. III D) generically a sufficiently small asymmetry will
not destroy this bifurcation structure.

To be more definite we consider here the extended sys-
tern

x =Fz(x )+eG,(x,y)+aN, ,(x,y ),
y =I'z(x )+eG, (y, )x+aM, ,(x,y ),

(4.33)

where ~ is the symmetry breaking parameter and the
symmetry breaking functions N„, and M, , may depend
on e and ~. In order to show that the bifurcation struc-
ture is not changed for sufficiently small ~, one has to
prove the persistence of all bifurcations shown in Fig.
S(b) and 5(c). For every bifurcation the eigenvalues of the
related stabi1ity matrix can for sufficiently small x be
written as

g, ,=g, ,+~(, ,+O(e', ~e,~'), (4.34)

where the g& 2 are the eigenvalues of the stability matrix
in the symmetric case. The same reasoning presented in
Sec. IIID for the asymmetric coupling of maps applies
here. In short, the considered dynamical system is real.
Therefore the eigenvalues g&2 belong to one of two
classes: either q, and g2 are real or g, is the complex con-
jugate of qz. The same holds for q& 2. Now because
generically g, Agz it is easy to show that if g, z belong to
one class, g, 2 cannot belong to the other class. There-
fore, g& z and q& z belong to the same class. This means
that for sufficiently small asymmetry sc, the type of bifur-
cation does not change.

V. DISCUSSION

In this paper we proved that in symmetrically coupled
identical oscillators quasiperiodicity emerges, if the single
oscillator exhibits two subsequent period-doubling
bifurcations —in the case of systems of differential equa-

phase solution. So once more in-phase and antiphase
solutions are related to the way the symmetry operation
acts on the eigenspace of J that becomes unstable. For
@=0 the period-doubling bifurcation is doubly degenerate
and one can show by explicit construction that the eigen-
space of J becoming unstable in the bifurcation is
spanned by an eigenvector belonging to the eigenvalue
+1 of 4 and an eigenvector belonging to the eigenvalue
—1 of S. So by continuity in e one can conclude that for
@&0 the two simple period-doubling bifurcations must
produce an in-phase and an antiphase orbit. Together
with the result from the previous section that the anti-
phase solution undergoes a Hopf bifurcation, this com-
pletes the proof that also for the case of two subsequent
period-doubling bifurcations in the single system one of
the bifurcation diagrams Fig. 5(b) or Fig. 5(c) correctly
describes the sequence of bifurcations in the weakly cou-
pled system.

tions the first bifurcation may be a Hopf bifurcation.
This result depends on two restrictions. First it holds
only for almost all systems and almost all syrnrnetric cou-
plings. For example, it may happen that in certain sys-
tems the antiphase orbit of the coupled system undergoes
period-doubling bifurcation instead of a Hopf bifurca-
tion. This irregular behavior cannot be excluded, but is,
as our proofs show, nongeneric. The second restriction is
related to the magnitude of the coupling parameter e: our
result holds only for su+ciently small e. On first sight
this restriction looks rather severe, but actually it is not.
Throughout the paper the scale for e was not specified-
and it could not be specified because e appears in a prod-
uct with the coupling functions (g, G), so that the magni-
tude of e depends on the choice of the magnitudes for the
coupling functions. What really counts for our proofs is
not the magnitude of e, but whether the expansions in e
performed in the proofs converge. Therefore "sufficiently
small" means that e should be inside the radius of conver-
gence for the expansions. This radius of convergence is
determined by a critical value of e, where the coupling
gets so strong that new bifurcations occur that destroy
the solutions we discussed so far. Without such bifurca-
tions the radius of convergence may extend to infinity.

We also showed that our results remain valid in the
presence of sufficiently small symmetry breaking terms.
This is important, because in macroscopic systems, to
which our considerations apply, symmetries are never
perfect. Concerning the admissible magnitude of the
nonsymmetry sr, the same remarks as those for the cou-
pling parameter e apply.

Finally we apply our results to the coupling of two sys-
tems with a Feigenbaum transition to chaos. In this case
there is a good chance that the Feigenbaum transition is
replaced by a quasiperiodic transition. Whether this last
transition occurs or not crucially depends on the order in
which the in-phase and antiphase orbits appear in the
coupled system as a function of the control parameter. If
the antiphase orbit appears first, it is stable and the sys-
tem undergoes a Hopf bifurcation typically followed by
quasiperiodic motion and a quasiperiodic transition is
possible. If instead the in-phase orbit appears first, this is
stable and the decision is delayed to its next period dou-
bling. Here the question is once more whether an in-
phase or antiphase orbit appears first, so that the system
has once more the chance to change to a quasiperiodic
transition instead of a period-doubling transition. Be-
cause the order by which in-phase and antiphase orbits
appear depends on the sign of the coupling e one could
think that in this way the system had at any stage of the
Feigenbaurn cascade the same chance —,

' to change the
type of transition so that the probability for this change
would be gi" ( —,')"=1 and thus almost sure. But this is
wrong: due to the self-similarity of the Feigenbaurn tran-
sition at the transition point, asymptotically the order of
the appearance of in-phase and antiphase orbits is identi-
cal at all stages of the transition [36]. Therefore, if the
change to quasiperiodic behavior did not appear at an
early stage of the Feigenbaum cascade, this change be-
cornes improbable. Nevertheless, these considerations
show that the probability for a replacement of the
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Feigenbaum transition by a quasiperiodic transition is
larger than —,', so that there is a tendency for this replace-
ment.

Independent of the question of the replacement of the
Feigenbaum transition by a quasiperiodic transition our
results show that the Feigenbaum cascade in the symme-
trically coupled system (which may be unstable) is generi-
cally accompanied by an in6nity of Hopf bifurcations and
so these should appear in a renormalization description
[36]. This is a qualitatively different feature of the
period-doubling transition in higher-dimensional systems
compared to the transition in 1D maps [I]. Whether this
also holds for period-doubling transitions in strongly cou-
pled or strongly asymmetric systems is not known.
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APPENDIX

K)

0

0

(A7)

diagonal. So A has the eigenvalues ak =5k +eKk
+O(e ). For K we make the ansatz

%=M(1+EL)+O(e ) .

Entering this into (A6) gives with K '=(1 eL)—M
+O(e ) the two equations

M DM=D,
DL, —I.D+M 'BM=D) .

(A9)

(A10)

5, =5z= =5„=5 (Al 1)

and all other eigenvalues are different. All remaining
cases are obvious generalizations.

The matrix M is chosen as

We treat only the case where the 6rst n eigenvalues of D
are identical

In the paper we made use of two propositions. These
are proved in this Appendix.

Proposition 1. Let D be a diagonal N XN matrix

Mo 0
(A12)

0 where Mo is an n X n matrix that diagonalizes the subma-
trix

and 3 and 8 two other N XN matrices related to D by
B..b =

8„)

Bi„
(A13)

A =D+eB+O(e ), (A2)

where e is a small parameter, ~e~ ((l. If A is diagonaliz-
able then the eigenvalues ak of A up to order e can be
computed as follows.

(1) If 5k is a nondegenerate eigenvalue of D then

of 8, i.e.,

Mo 'BMo =
0

0

(A14)

ak=5k+eBkk+O(e ) . (A3)

(2) If an eigenvalue 5 of D is n fold degen-erate, so that
one has a sequence of indices k& & kz « . k„with
5k =5k = =5k ——5 then one has for the related ei-

1 2 n

genvalues of A D —
0

0

Because for the case considered

(A15)

ak =5+EK+0(6 ), J'= 1, . . . , n
1

(A4)

where the Kj are eigenvalues of the following submatrix
of 8.

Bk, k

the matrix M obeys (A9). Moreover if we write
r

B,„b 8)8= (A16)

Bsub =
8kwkx

(A5) we obtain

0
Proof. Let IC be a coordinate transformation that diag-

onalizes A up to order e: 8=—M BM 0 (A17)

E 'AIC=D+eDi+O(e ) (A6) 82Mo 83

with Entering this into (A10) gives in components
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(~k ~ )Lkj +Bkj +k~kj

The solutions to these equations are

(A18)

0

0

(A24)

I., = for J &n &k or k &n &Jkj (A19)
and thus has the eigenvectors

and L,k otherwise arbitrary. Hence we have found a
coordinate transformation that diagonalizes A up to or-
der e. The diagonal elements of (A18) reveal that the ei-
genvalues of D

&
are given by

ek =(0, . . . , 1, . . . , 0)

where the entry "1"is in the kth row. Let

IC =(u&, . . . , u„) .

(A25)

(A26)
B kk=p kf rok n

(B3 )kk Bkk
(A20) Then K simultaneously diagonalizes A and B:

0
So in agreement with our proposition in the present case
the eigenvalues of A are given by

5+ePk+O(e ) for k ~n
25+eBkk+O(e ) for k & n . (A21)

Along the same lines the proposition can be proved for
other combinations of sets of degenerate and nondegen-
erate eigenvalues.

Propasition 2. If A and B are diagonalizable n X n ma-
trices and D a diagonal n X n matrix that obey

But

0

E 'BK =

Dvk = ABuk =akpkvk .

(A27)

(A28)

(A29)
AB =BA =D, (A22)

then A and B can be simultaneously diagonalized by a
permutation of indices.

Proof. According to (A22) A and B commute. There-
fore they have a common set of eigenvectors with

Uk =e~(k) ~ (A30)

Therefore vk is also an eigenvector of D and thus there is
a permutation p: I I n ] ~ I I n I so that

Auk =crkuk and Buk =Pkuk .

D is diagonal

(A23) Therefore the transformation E is equivalent to a permu-
tation so that with (A27) and (A28) A and B are diagonal
up to a permutation of indices.
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