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When applied to measures that are not multifractal at all, standard methods of multifracta1 analysis
(MFA) may produce results that make the measures appear multifractal. This is because such methods,
which are based on the scaling properties of moments of the measure of interest, tend to produce en-
velopes of the actual spectrum that look like the [a,f(a) ] spectra of legitimate multifractal measures.
We show examples and consequences of this property through the application of MFA to analytic func-
tions, for which the actual spectrum can be easily evaluated, and to measures obtained from empirical
data. It is shown specifically that application of MFA to the "width function" of river basins has led in
the past to erroneous conclusions. We develop tools to distinguish between legitimate and spurious mul-
tifractal spectra, in part by using existing MFA procedures in unusual ways and in part by modifying
such procedures. Finally, we discuss the extension of MFA to properties other than the scaling of local
integrals. We illustrate this possibility by considering increments and integrals of increments of a func-
tion. We find that width functions are to a first approximation monofractal relative to differences, with
an a of about 0.3. This means that at small scales, such functions behave like fractional Brownian
motion with a fractal dimension of about 1.7. This is in essential agreement with previous findings. Nu-
merical issues in the application of MFA algorithms are brieAy discussed.

PACS number(s): 05.45.+b

I. INTRODUCTION

The initial stimulus for this study was the inadequacy
of certain previous applications of multifractal analysis in
geomorphology and hydrology. While we make frequent
reference to such applications in the text, and some re-
sults refer to measures that arise in those contexts, most
of the considerations regarding common multifractal
analysis procedures and proposed alternatives are of gen-
eral applicability.

In recent years, multifractal analysis (MFA) has been
used to describe a variety of morphologic and hydrologic
characteristics of river basins [1—7]. The main motiva-
tion behind these applications has been that monofractal
models and their simple scaling implications appear too
restrictive to interpret the local fluctuations of many
river basin parameters.

In its standard formulation [8—11], MFA refers to the
scaling properties of normalized measures, and more
specifically to the power variation (as r ) of the measure
content of boxes of size r centered at different points x, as
r ~0. In brief, the multifractal spectrum may be viewed
as a collection of [a,f(a)] pairs, where a is the above ex-
ponent and f(a) is the Hausdorff'dimension of the set of
points x with scaling exponent a. In the special case
when a(x)—:a for all x, the measure is said to be
monofractal. The analysis can be readily extended to
non-negative integrable functions g (x), which may be re-
garded as measure density functions; in this case scaling
refers to the integrals of g(x) over boxes. While in a
theoretical sense a function g (x) must be very erratic to
be fractal or multifractal relative to the scaling of local
integrals (it must be singular; see Mandelbrot [12]), a
not-so-erratic function may still display fractal properties

at finite and practically more interesting scales.
An example of a geomorphologic measure to which

MFA has been extensively applied is the width function,
which is defined as the probability distribution of the How
distance to the outlet of a point or raindrop with uniform
distribution over the basin (e.g. , Marani et al. [7]). This
measure has important implications for the hydrologic
response of river basins. Examples of non-negative
geomorphologic functions that have been analyzed using
the multifractal formalism are the slope and the contrib-
uting upstream area, for which x is the vector of geo-
graphic coordinates (e.g. , Ijjasz-Vasquez, Rodriguez-
Iturbe, and Bras [1]).

All hydrologic and morphologic applications in the
above quoted references use the definition of the mul-
tifractal spectrum [a,f( a ) ] summarized above and
therefore refer to the local scaling of measures or in-
tegrals of non-negative functions. A point argued in this
paper is that MFA can be extended to more general func-
tions and to other local characteristics, which may be
chosen depending on the application.

From both the traditional and this broader perspective,
we take a critical view of the way in which MFA has
been previously applied. We argue mainly two points:
first, as is well known [12,13], standard MFA procedures
tend to generate a top envelope of the true multifractal
spectrum. This fact has two specific drawbacks: (1)
when the true spectrum is discrete (i.e., a attains only a
discrete set of values), the envelope includes many spuri-
ous points, which are added by the procedure through in-
terpolation between actual spectral points; and (2) the en-
velope fails to identify interior points, when such points
exist (by interior point we mean a point that does not be-
long to the top envelope of the spectrum); see Fig. 1. The
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FIG. 1. Illustration of a discrete multifractal spectrum in-

cluding both exterior and interior points. The latter remain in-

visible to algorithms that generate top envelope estimates of the
actual spectrum.

existence of spurious points can clearly be seen in certain
previous applications of MFA. We shall specifically
show this for width functions. These problems are of
course not specific to geomorphology applications, but
are limitations of existing MFA algorithms.
Modifications to such algorithms are described, which ac-
complish both objectives of eliminating spurious points
and detecting interior points of the multifractal spec-
trum. The modifications require repeated application of
standard MFA methods, complemented by procedures to
focus on part of the spectrum.

After the removal of spurious points, the standard
[a,f(a) J spectrum is found not to capture the fine struc-
ture of some geornorphologic variables. Specifically, we
show that the local integrals P„(x) of width functions
scale linearly with r everywhere except at the end points,
where they scale as r with a approximately 2. From
this we conclude that the multifractal spectrum of width
functions consists of essentially two points, one at
(a= 1,f= 1) and the other around (a=2,f=0). A spec-
trum of this type indicates that the measure is too smooth
to be regarded as multifractal in the standard, sense, i.e.,
with respect to the power scaling of local integrals.

Monofractality or multifractality may still apply rela-
tive to other properties, which is the second point made
in this paper. We illustrate this concept by considering
the scaling of increments and the scaling of integrals of
increments. Analyzing a function in terms of increments
corresponds to making a standard multifractal analysis of
its derivative function (except that the derivative is not
necessarily positive). The analysis of integrals of local in-
crernents leads to a spectrum which rejects the
differentiability conditions of the function. We denote
such spectrum by [P,f(P) j. Still other properties might
be considered through the multifractal formalism, al-
though this further extension is not pursued here.

We start by reviewing the definition of the a-spectrum.
We then analyze the spectra of simple analytic functions

and of width functions, which bring out the limitations of
the numerical algorithms noted above. We present a sim-
ple diagnostic tool to evaluate the soundness of an es-
timated spectrum, which consists of repeatedly perform-
ing MFA inside a moving s window of the original func-
tion, say, from x —s/2 to x+s/2 for a scalar x, deter-
mining the range [a;„(x,s),a,„(x,s)] of the multifractal
spectrum for this window, and plotting this range as a
function of x. One should be suspicious of situations
when this moving-window analysis produces ranges of n
(or other multifractal spectrum characteristics) that vary
significantly with x or s and hence are significantly
difFerent from the range obtained for the entire function.
We also propose a modification to existing MFA methods
to deal with the problem of spurious and interior points.

Finally, we discuss the application of MFA to incre-
ments and integrals of increments (P-spectrum). Deter-
mination of the associated rnultifractal spectra requires
only minor modifications to existing algorithms for a-
spectra. We show through numerical examples that these
ways of applying MFA produce more interesting results
for width functions than standard MFA does.
Specifically, they indicate that the central part of a width
function may be regarded as the realization of fractional
Brownian motion with a fractal dimension around 1.7.

II. a SPECTRUM

There is no standard definition of the multifractal spec-
trum of a function or measure, as difFerent authors have
used different characterizations of multifractality (see
Ref. [12] for alternatives and for a historic perspective on
the subject). A definition that is quite general and intui-
tively appea1ing is as follows.

Let g (x) be a non-negative function defined in a region
0 of R" (but what follows holds also for measures) and
P& a local property of g, where 0 is a parameter. For ex-
ample, Ps might refer to the fact that ~grad(g(x)) ~

=8, or
that g (x))8, or that the local integral of g (x) over a box
of size r scales as r . In genera1, 0 may be a vector, al-
though in the applications that follow we shall consider
only scalar parameters. Also denote by 0& the set of x's
for which 8(x)=8. A way to define the multifractal spec-
trum of g relative to property Pe is as [B,f(8)], where
f(8) is a suitably defined fractal dimension of Qs. Only
values of 8 for which Q& is nonernpty are included in the
spectrum.

The conventional definition of the multifractal spec-
trum (e.g., [10]) may be seen as a special case of the
above: it applies to functions g that are non-negative and
integrate to 1 (or to similarly normalized measures) and
refers to the way in which local integrals of g over boxes
of size r scale with r. Specifically, let P„(x) be the integral
over the box of size r centered at x. The property P of in-
terest is the scaling exponent u(x) defined as

a(x) = lim logP„(x)/logr,
r —+0

The parameter a plays the role of 6j in the previous gen-
eral definition, and a(x) is often referred to as the local
Holder exponent of g (x) at x; see Evertsz and Mandel-
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brot [11]. The spectrum [a,f(a)j, with f(a) the Haus-
dorff dimension of the set 0 of points x with a(x) =a, is
referred to here as the standard multifractal spectrum, or
more simply as the a spectrum of g (x).

Various procedures have been developed to estimate
[a,f(a)j and sometimes the MF spectrum has been
defined directly as the product of such estimation algo-
rithms. This has created some confusion. For example,
if the spectrum is defined over a continuous range of a
and if over that range f (a) is a convex function, then
[a,f(a)j is also the Legendre transform of a function
v(q) defined as follows [9]: Consider a partition of the
support Q into boxes of equal size r and let
Cq(r) =g; [P,(x; )]q, where x; is the centerpoint of the ith
box. Then

r(q) = limlogC~(r)/logr .

a(q) dT(q )/dq

f(a(q))=qa(q) —r(q) .
(3)

The entire spectrum is obtained by letting q in Eqs. (2)
and (3) range from —ae to + ae. We stress that this way
of calculating [a,f(a) j is valid under the continuity and
convexity conditions on f(a) stated above [8,12]. Also,
the procedure of Chhabra and Jensen [14], which avoids
the use of the Legendre transform but it too is based on
the moments C (r), requires these conditions to produce
reasonable estimates of the spectrum. The relations ex-
ploited by Chhabra and Jensen are

For each q, the Legendre transform of r(q) produces a
point (a(q),f(a(q ) ) ) of the spectrum as

A. The apparent multifractal spectrum of nonfractal functions

We start by considering simple analytic functions, for
which we can compare the theoretical multifractal spec-
tra with estimates produced by the method of moments.
%'e purposely select functions that one would immediate-
ly dismiss as nonfractal and nonmultifractal, to illustrate
the deceiving nature of multifractal spectrum estimates.

Figure 2 shows the a spectra from applying the Legen-
dre transform algorithm [r(q) method] of Halsey et al.
[9] and the direct algorithm of Chhabra and Jensen (CJ)
to the parabola g(x)=2x —x, in the interval 0=[0,2].
The function has been sampled at the 1024 points
x; =(2i —1)/1024,and the range of q considered in each
analysis is [—6, 6] (unless otherwise indicated, the same
discretization and range of q will be used in all subse-
quent numerical examples). At all interior points of 0
the integral P„(x) has the form P„(x)=(2x x)r —r /12—
and therefore scales as r, whereas at x =0 and x =2 the
integrals are P„(0)=P„(2)=r r /3 and—scale as r .
This means that the [a,f(a) j spectrum contains just two
points, one at (1,1), because the Hausdorff dimension of
the set where a = 1 is 1, and the other at (2,0), because the
Hausdorff dimension of the set where ca=2 is zero. While
the algorithms identify these two points well, they add a
string of spurious points along a slightly convex curve be-
tween (1,1) and (2,0).

The source of the spurious points is readily identified:
in the Legendre-transform method, it is related to the
fact that the theoretical ~(q) function for the parabola
has the form

r(q)=min[q —1,2q] .

1ogl"

f(a(q))=lim
r~0 g )Lt„(x;;q )log)M„(x;;q )

a(q) = lim ~ g p„(x;;q }logP„(x;)
r~O

(4)

logr -,

Due to discretization, the corner point at q = —1 is
rounded off in the estimation; see Fig. 3. This apparently
minor effect is responsible for all the points of the spec-
trum in Fig. 2 except (1,1) and (2,0). Discretization is
also the cause of the spurious points in the CJ algorithm.
The reason why we have chosen a parabola to exemplify
the consequences of a discrete multifractal spectrum is

where

p„(x;;q ) = [P„(x;) ]~/g [P„(x ) ]~ .
J

1.2

CJ method

r(q) method

Direct application of Eq. (4) with the smallest value of r
available may lead to large errors in the estimates
of a and f(a }. A better procedure is to estimate
these quantities as the slopes of the linear
regressions of g;p, „(x;;q)logP„(x; ) against lnr and
g;)u„(x;;q)logp„(x;;q) against logr, respectively. This is
how the Chhabra and Jensen method is applied here. In
commenting on applications of the Chhabra and Jensen
(CJ) method, we shall make frequent reference to the
range of r values used in these regressions.

Following Evertsz and Mandelbrot [11], methods
based on the Legendre transform or on the scaling with r
of the moments C (r) are referred to here as variants of
the method of moments. They include the numerical
procedures most often used in practice, such as the
methods mentioned above.
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FICx. 2. Multifractal spectra obtained by applying a Legendre
transform [w(q)] method and the method of Chhabra and Jen-
sen (CJ) to the parabola Y =2x —x, in the range [0,2].
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FIG. 3. Function v(q) for the parabola in Fig. 2: theoretical
function (solid line) and numerical estimate (circles).

FIG. 4. Multifractal spectra obtained by applying a Legendre
transform [r(q)] method and the method of Chhabra and Jen-
sen (CJ) to the modi6ed parabola Y=x (2x —x ), in the
range [0,2].

that, as will be shown below, width functions have similar
u-spectra.

Measures with discrete MF spectra are often not re-
garded as multifractal measures (e.g. , [9,11]). Although
in some cases this discrimination may appear unjustified,
for the parabola it would indeed make little sense to talk
of a multifractal. Beyond semantics, it is difficult from a
superficial inspection of Fig. 2 to determine whether the
true spectrum is itself continuous and hence whether the
measure under consideration has rnultifractal properties.
Examination of the r(q) function in Fig. 3 is in this
respect more revealing: its nearly bilinear shape should
alert one that the true r(q) function might in fact be bi-
linear, with an associated two-point o, spectrum. Rather
than relying on visual inspection, one can devise diagnos-
tic procedures and modify the MFA methods mentioned
above to identify spurious spectral points. Specific pro-
cedures for this purpose will be described in Sec. II B.

A second example is shown in Fig. 4, where the same
methods are applied to the modified parabola
g (x)=x (2x —x ) in the interval 0= [0,2]. The
discretization is the same as for the unmodified parabola.
Also for this function, the local Holder exponent is 1 at
all the interior points of Q, and is 2 at x =2. However,
contrary to the unmodified parabola, a(0)=1.5, so that
the a-spectrum is now composed of three points: (1,1),
(1.5,0), and (2,0). The interesting feature of this spectrum
is that (1.5,0) is an interior point, which does not belong
to the top envelope of the spectrum itself; see the inset in
Fig. 4. Both moment-method algorithms produce con-
vex envelopes of the [a,f(a)I spectrum and miss the
point (1.5,0). While it is common for moment methods to
produce such convex envelopes of actual spectra and to
essentially ignore interior points, below we shall show
some applications in which the estimated spectrum is not
convex, and also that exterior points are missed. A pro-
cedure will then be proposed to identify hidden points of
both types.

B. Application of MFA to width functions
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FIG. 5. %'idth function for the North Fork of the Coeur
d'Alene River Basin.

Consider next a width function, such as that shown in
Fig. 5 for the North Fork of the Coeur d'Alene River
Basin in Idaho. The function has been obtained from di-
gital elevation maps with a spatial resolution of 60X90
m, using the algorithm of Tarboton, Bras, and
Rodriguez-Iturbe [15] to evaluate the local direction of
the flow. The How distance to the outlet has been discre-
tized into 1024 bins of equal size, and normalized so that
the maximum travel distance equals 1. Figure 5 shows
the number of 60X90 grid cells whose How distance falls
inside each bin. The a-spectrum generated by the CJ al-
gorithm is plotted in Fig. 6 (open circles). Multifractal
spectra of other width functions can be found in the
above quoted papers, for example Marani et al. [7]. The
spectra are all very similar: they have a maximum near
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FIG. 6. a-spectrum estimates for the North Fork width func-
tion generated by the Chhabra and Jensen method.

[a=1,f(a)=1], and f(a) decays sharply below a=1
and varies smoothly with a slight negative curvature be-
tween (1,1) and a point close to (2,0).

In order to interpret the shape of the spectra, one
should notice that width functions of real basins have two
properties: (1), they are everywhere positive and finite, ex-
cept at the extreme points x =0 and x =1 where they
vanish; and (2) at the extreme points, they have a finite
nonzero derivative. One would therefore suspect that the
a-spectrum of such functions be simply [(1,1),(2,0)], as
in the case of the parabola. Indeed, the spectra generated
by the CJ algorithm in the two cases are very similar
(compare Figs. 2 and 6).

To confirm that our interpretation is correct, we have
repeated the analysis within the interval [0.1,0.9], there-
fore excluding the terminal portions of the width func-
tion. The result, which is also shown in Fig. 6, is a very
narrow spectrum around the point (1,1). This indicates
that, at least at the level of resolution shown (but we
suspect at all resolutions of hydrologic interest), the cen-
tral and most important part of this width function has
no multifractal properties in the ordinary sense and that,
except for the terminal points (1,1) and (1.7,0), the spec-
trum obtained from the entire function is spurious. In-
cidentally, the frequent observation that the width func-
tion is simply scaling because the multifractal spectrum is
peaked around the point (1,1) is erroneous. the correct
interpretation is that the function is positive and smooth,
with P„(x)-r at all interior points, just like the parabola.
An explanation for why the estimated full spectrum in
Fig. 6 has a maximum a of only about 1.7 will be given
below. In fact it will be shown that a point around (2,0)
does exist, but is missed by the CJ procedure.

trum changes drastically when a small portion of the
measure is excluded. We can generalize that approach by
repeating the analysis over a moving window of width s,
hence over intervals of the type [x —s/2, x+s/2] for
different x. The multifractal spectra obtained for these
subintervals should then be examined for consistency.
This is not a novel idea, as sliding window fractal analysis
has been previously suggested for the segmentation of sig-
nal and images (e.g. , [16,17]).

For the a-spectra it is often sufhcient to display how
simple characteristics of the spectrum vary as a function
of x. For example, Figs. 7(a) and 7(b) show plots of the
range of a for a sliding window of length —,', (s =32) of
the total length (1024 points), respectively for the parab-
ola and the North Fork of the Coeur d'Alene River Basin
width function (hereafter, North Fork width function).
The range of a is indicated at the location of the center-
point of the moving window. As one can see, for the pa-
rabola the range reduces to virtually one point
(a;„=a,„=1) for all intervals except those close to the
end points. From visual inspection of these results one
can immediately conclude that the scaling exponent a is
1 at all interior points and is 2 at the extremes. Figure
7(b) displays similar general characteristics, except that

2.2
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C. Elimination of spurious spectral points
and detection of missed points

Figure 6 suggests a simple diagnostic procedure to de-
cide whether an estimate of the a-spectrum is reliable or
not. In that case, it was found that the shape of the spec-
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FIG. 7. %'idth of the multifractal spectrum inside moving
windows of 32 points: (a) parabola, (b) North Fork width func-
tion.
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the scaling exponents at the extremes are not exactly 2
and there are some Auctuations in the spectral range for
interior windows. The local peaks of a,„and local val-
leys of a;„are associated with the inclusion at one end of
the window of very steep portions of the width function.
The range of a is narrower where the width function has
higher values or is smoother. These fIuctuations are rela-
tively small and the plots strongly suggest that the spec-
trum of the width function is narrow around a = 1 every-
where except near the extremes.

A more direct procedure for the detection of spurious
and hidden spectral points can be based on the following
observations: (1}as already shown, estimation algorithms
based on the method of moments tend to produce a top
envelope of the actual spectrum (this is always the case as
r ~0; see [11];and (2) the deletion of r intervals that con-
tain no point with scaling exponent a(x) above a given
value ca* should not affect the spectrum for a& a . The
effect of such a deletion, which we exploit in the pro-
cedure described below, is that interior spectral points
immediately above a* become exposed and visible to the
algorithm. As we shall see, the same operation may ex-
pose and make estimable also hidden exterior points.

The procedure works as follows: Suppose that the al-
gorithm considers box sizes r

&
& rz » - r„. Prior to

application of the algorithm, each r; box is analyzed to
determine the maximum a inside that box, say a,„(r;,x )

for the box of size r, centered at x. After this has been
done, the moment-method algorithm is used with
different cutoff exponents a*. For each a, only the r,.

boxes that have a,„(r ,x ) & a' for j=. 1, . . . , n are used.
Examples are given next for the case of the unmodified
parabola, the modified parabola, and the North Fork
width function.

Unmodified parabola. Figure 2 already displays the es-
timated spectrum for the case when +*=0, i.e., for the
case without cutoff. The function clearly displays a
prominent spectra point at (1,1). A second point is
suspected to exist at (2,0). In order to evaluate whether
the points between these two extremes are real or spuri-
ous, we have set a*=1.2. The result is a single point at
(2,0), indicating that all other points are indeed spurious.

Modified parabola. Figure 8 shows results from a se-
quence of a* analyses made on the modified parabola.
Following standard analysis (a*=0), the cutoff exponent
has been set to 1.20, which is a value not much larger
than the minimum detected in the first analysis (u;„=1).
The analysis shows that above a = 1.20 the spectrum con-
tains just two points, one at (1.5,0) and one at (2,0). Con-
sistently with this conclusion, a final analysis with
Q, '=1.60 produces a single point at (2,0).

One may wonder how we could conclude about the ex-
istence of two points at (1.5,0) and (2,0) from the result
for a*=1.20 in Fig. 8. One can perform a theoretical
analysis of the behavior of the Chhabra and Jensen algo-
rithm for the case when the condition a & a eliminates
all but two intervals for each box width r. Suppose that
for one interval P„(x

&
) =r ' and for the other

P„(x2)=r ', with az&a, . Notice that P„(x, ) &P„(x2) for
r (1 and that the reverse is true for r & 1. The question

1.2
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FIG. 8. Analysis of the a spectrum of the modified parabola
in Fig. 4 using the cutoff method.

is, what is the shape of the a-spectrum estimated by the
CJ algorithm? The spectrum depends on a, and uz and
on the ranges of q and r used in the regression against
logr described immediately following Eq. (4). One can
obtain an accurate estimate of such a spectrum by replac-
ing the numerical regressions with the derivatives with
respect to logr, which in this case can be calculated ex-
plicitly and are given by

acJ(q)=d g p„(x;;q)logP„(x;) d(logr)

=a, + (1—p, )b a+ (lnr )p, (1—p, )(b a) q,

fcJ(~(q))=d Q p„(x;;q)logp„(x;;q) d(logr)

(6)

=p, (1—p, , )(4a)q ln[(1 —p, ) /p, ],
where b,a=a& —a, and p, =p„(x&, q ) = 1/(1+r' '~).

Plots of fCJ(a(q ) } against acJ(q ) for a, = l. 5 and
a2 =2.0 (these values have been chosen because they are
of interest in the interpretation of Fig. 8), and for
different values of r are shown in Fig. 9. The resemblance
with the plot for a*=1.20 in Fig. 8 is clear. Notice in
Fig. 9 that the CJ spectra can be divided into two specu-
larly symmetric families: those with negative fcJ are as-
sociated with r & 1 and therefore with P„(x, ) & P„(x2 ).
In this case the portion of the spectrum to the right of the
point (1.75,0) is generated by negative values of q, and the
portion to the left comes from positive q. The reverse is
true for the spectra with positive fCJ, for which r & 1 and
P„(x&)&P„(xz). This second case occurs when the box
widths r used in the Chhabra and Jensen regressions are
too large, causing a reversal of the order between P„(x, )

and P„(x2) that holds for small r and, as we shall see in
the next example, makes some exterior spectral points
disappear from the CJ spectrum. Finally, notice that the
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0.8 D. Numerical issues
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Not in all cases are the numerical results as clean as
those represented above. In the authors' experience, mul-
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actual spectral points are obtained in Fig. 9 as q ~+~.
North Fork width function. We present three sets of

analyses, one for the entire width function [Fig. 10(a)],
one for the first half of the function [points 1 —512, Fig.
10(b)], and one for the second half [points 513—1024, Fig.
10(c)].Results in the last two figures are easily interpret-
ed: following an analysis without cutoff; a* has been set
to 1.2. In both cases this second analysis identifies a sin-
gle point at about (1.7,0) for the first half of the function
and at about (2.0,0) for the second half. This indicates
that, in essence, the spectrum for the entire width func-
tion consists of three points: (1,1), (1.7,0), and (2.0,0).
The analysis of the entire function Fig. 10(a) confirms this
conclusion, as setting cz' =1.20 produces a spectrum that
is characteristic of two (a,f(a)) points, one at (1.7,0) and
the other just to the right of (2.0,0); see Fig. 9.

An interesting question is, why is the point at (2.0,0)
not detected by the CJ algorithm when no cutofF' is
specified, but it is detected in the analysis with +*=1.20?
Notice that the shape of the CJ spectrum for +*=1.20
conforms to those with too large r in Fig. 9, and therefore
that the CJ procedure generates spectral points close to
(2.0,0) for large positive values of q. When no cutoff is
imposed, these same values of q generate the lower part
of the spectrum, near the point (1,1). The reason why the
(2.0,0) point remains invisible to the algorithm is that the
points with a near 1 dominate the expressions in the
numerators of Eq. (4). When these points are removed by
the condition a ) 1.20, the algorithm is able to recognize
the point at (2.0,0). Another way in which the point at
(2.0,0) could be detected is by decreasing r; however, this
operation would hide the other singularity point, at
(1.7,0), and in the case of the North Fork River Basin
would be questionable, as the resolution of the original
digital elevation model (DEM) data does not allow a
more refined estimation of the width function.
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tispectral estimates by any numerical procedure are sub-
ject to considerable variability, depending on the discreti-
zation of the original data and on the box widths used to
estimate the spectrum. While one can give some gui-
dance on how to select these parameters, the best advice
is perhaps to use MFA as an exploratory tool, to learn
about interesting properties of the measure under con-
sideration rather than to produce unique results. For ex-
ample, we have already indicated how plots of the r(q)
function, as shown in Fig. 3, and of the multifractal
range, as exemplified in Fig. 7, may contain more infor-
mation than the spectrum itself. We have also warned
against producing a single multifractal spectrum when
exploratory plots indicate nonstationarity or singularities
in the spectrum.

While in the study of analytical functions results can
always be improved by using smaller box sizes r and
hence more refined discretizations, this is not always the
case for measures and functions that are obtained from
empirical data, because the influence of measurement or
numerical errors on the integrals P„(x) usually increases
as r decreases, and in practice one may be interested in
the multifractal properties at certain finite scales. For ex-
ample, in the case of the North Fork width function the
two singularity points at (1.7,0) and (2.0,0) are sensitive to
the discretization around the minimum and maximum
flow distances, but these details are of no conceivable
practical or conceptual interest. Hence a coarser discret-
ization and use of larger box sizes is considered appropri-
ate. In all numerical results presented here for the North
Fork width function, we have used the Chhabra and Jen-
sen algorithm with values of r equal to 16, 32, 64, and 128
intervals, with a total number of discretization intervals
of 1024. Such a range of box widths is small enough to
capture local scaling, but not so small that scaling would
be unappreciated by the naked eye.

In all previous analyses with a cutoff scaling exponent
a*, we have avoided using values of a* just above 1.0.
This is because the numerical analysis produces spurious
a values, mostly in the range 1.0—1.15, which, if not
filtered out, would make interpretation of the results
more dificult. An example of values of a that depart
from the theoretical value of 1 is given in Fig. 7(a), where
one can see that the width of the estimated spectrum of
parabolic segments widens from the theoretical single
point of (1,1) as the segment approaches the extremes.
This widening is a product of the finite discretization of
the algorithm, and for an analytic function like the pa-
rabola could be reduced at will by using a smaller discret-
ization. However, for reasons explained above, such
refinement is not usually appropriate or possible in
empirical functions.

Among the many numerical pitfalls and inaccuracies in
the determination of multifractal spectra, one is often
easy to avoid: because numerical algorithms usually par-
tition the support of the function into boxes of variable
size r, in the case when singularities exist at the boundary
of the support it is important that the boxes include such
singularities. For example, if a function of one variable is
discretized into n subintervals, then n should be an exact
multiple of r. A convenient way to accommodate this re-

= [(n /r)/(n r+ 1)]—g [P„(x;))~, (7)

where {[P„(x)]& denotes averaging of P„(x) with respect
to x and the summation is for i from 1 to n —r +1. All
that changes in the Chhabra and Jensen algorithm is the
expression for f{a(q)) in Eq. (4), which becomes

f(a(q ))= lim [log(n r+ 1)—log(n/r—)
r —+0

+ g p„(x;;q)logy„(x, ; q ) ] /logr

In the applications of MFA described next there are no
special singularities at the end points; therefore we have
estimated the spectra using these running-average
variants of the original procedures.

III. MULTIFRACTAL ANALYSIS OF
INCREMENTS AND THEIR INTEGRALS

As previously explained and as typically applied, mul-
tifractal analysis consists of determining the dimension
f(a) of the subsets Q where the local integral P„(x) of
g (x) scales as r . We have shown that, when this tech-
nique is applied to width functions, the results are not
very interesting, as the integrals P„(x) scale almost every-
where as r and therefore do not capture the fine structure
of these functions. If indeed such fine structure obeys
monoscaling or multiscaling laws, then scaling must refer
to properties other than the integrals P„(x). In what fol-
lows, we extend MFA to two characteristics other than
P„(x) and show results from the application to width
functions.

quirement is to choose both n and r as multiples of 2.
Nesting smaller partitions within larger ones also seems
to stabilize the numerical results, as it avoids using small-
er boxes that overlap larger boxes. One way to achieve
this objective is to use values of r from a power series,
e.g. , r, =2'. A disadvantage of this restriction is that it
reduces the number of r values that can be used in es-
timating the spectrum.

Satisfying the requirements of complete coverage and
nested partitions is far less important in well-behaving
multifractals, which display essentially the same a-
spectrum over any subregion. In this case a variant of
the standard algorithms to make more eKcient use of the
data typically proves advantageous: Rather than parti-
tioning the support 0 into boxes of size r, one can use
overlapping boxes. Consider, for example, a measure on
a segment of the real line, discretized into n subintervals
(e.g. , as in the case of the width function), and denote by
P, (x; ) the total measure of r subintervals starting at x;.
In order to use all the P„(x; ) for i from 1 to n —r + 1 and
not only the (n/r) measures of nonoverlapping r inter-
vals, the following revised expression for C (r) should be
used in Eq. (2):
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A. Analysis of increments

An alternative to standard MFA for functions or mea-
sure densities g (x) that are everywhere finite and general-
ly nonzero, such as the width functions of natural basins,
is to look at the scaling behavior of the local increments
g (x +r) g(x—). Because these increments can be
thought of as integrals of the derivative dg(x)/dx (also
when the derivative itself does not exist), MFA of the in-
crements of g(x) corresponds to standard MFA of its
derivative. An example application to turbulence is given
in Frish and Parisi [8].

Another interpretation of MFA for increments comes
from the theory of fractal functions: For example, it is
well known that fractional Brownian motion with mean
power spectral density S(f)-f r satisfies for 1 &y &3
the scaling relation E[~g(x+r) g( x)~ ]q—r~-' r "~ In.
our notation, this means that fractional Brownian motion
is monofractal relative to increments, with scaling ex-
ponent a=(y —1)/2. The value a=0. 5 corresponds to
Brownian motion. For smaller n, the function is more
variable locally but is relatively less variable at large dis-
tances. For example, a is zero for a stationary indepen-
dent process. The opposite is true for larger e; for exam-
ple, a linear function has a=1. Interestingly, the mul-
tifractal spectrum for increments remains the same under
translation and positive scaling of g (x), i.e., is the same
for g (x) and a +bg (x), if b & 0. This is not true for the
standard spectrum.

The numerical procedures described earlier, whether of
the Legendre transform on the direct Chhabra-Jensen
type, can still be used with P„(x) replaced with
~g(x;+r/2) —g(x; —r/2) ~. Doing so ignores the sign of
the increment. Alternatively, if one suspects a different
scaling behavior of the function depending on whether it
is locally increasing or decreasing, then one should ana-
lyze separately the positive and negative increments. In
this case one would proceed as follows.

In order to distinguish between the scaling of positive
and negative increments, we take n to have the sign of
the increment; this means that o. satisfies

calculated o. values.
The Chhabra and Jensen method is equally easy to

adapt to analyze increments: all one needs to do is re-
place P„(x;) in Eq. (4) with ~g(x;+r/2) —g(x; —r/2)~
and, in the case of separate analyses for positive and neg-
ative increments, limit the summations in the same equa-
tion to the increments of interest. It is also straightfor-
ward to extend to increments the analysis with cutoff
scaling exponents a* that was described earlier for con-
ventional MFA, and to perform moving-window analy-
ses.

Figure 11 shows an application of multifractal (abso-
lute) increment analysis to the North Fork width func-
tion. Using a window of 241 points, the figure displays
the range (a;„,a,„) of the increment spectrum, es-
timated by the Chhabra and Jensen method by setting the
exponent q in that method to 0 and 6. The reason why
negative values of q are not used is that the results from
such values are very sensitive to small increments, which
in turn are affected by numerical errors and are in any
case of little interest. In order to reduce the effect of nu-
merical noise in the width function, the regressions that
define u and f (a) in the CJ algorithm have been fitted
using r =12, 15, 18, . . . , 241, i.e., excluding very small
values of r.

The most interesting plot in Fig. 11 is that of a,„(ofa
for q =0). Following the interpretation of a given above,
n,„is largest for the 241-point windows where the func-
tion displays small oscillations around a linear trend (so
that the increments reflect mainly the trend) and is close
to zero where the function resembles a stationary process
with correlation that decays fast relative to the incre-
ments r considered in the analysis. Negative values of a
should be seen as the product of statistical variability.

There is a noticeable overall trend in a,„, with max-
imum values in the terminal regions and a minimum at
the center. This trend is for the most part due to nonsta-
tionarity in the mean of the width function. Specifically,

lim[g(x +r) g(x)]/ri ~ =c, —
5~0

where c has the same sign as a. A Legendre transform
approach to the estimation of the spectrum for positiUe a
uses power sums C„+(q) of positive increments defined as

0.8
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0.4 - whole
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C„+(q)= g ~g(x+r) —g(x)~~, (10)
I
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where g.+ indicates summation over the r intervals for
which g(x+r) —g(x))0. If the number of a points
scales for small r as r f' ~ then, for small r, C„+(q) scales
as r' (q) where r+(q)=min+[qa —f(a)] and min
denotes the minimum over all spectral points with posi-
tive a. This means that a top envelope of Ia)0,f(a)]
can be obtained as the Legendre transform of the func-
tion r+(q). To obtain the top envelope of the negatiue
semispectrum [a&0,f(a) j, one may repeat the analysis
for positive a on —g(x) and then change the sign of the
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FIG. 11. Moving-window analysis of absolute increments for
the North Fork width function. Values of the scaling exponent
o, within 241-point windows for q =0 and 6. Horizontal lines
give the same values of a when the entire width function is used,
and when the terminal portions of the function are removed.
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the large e's at the beginning and end are associated with
the nearly linear increase and decrease of the width func-
tion in these regions. One may argue that, if one excludes
these terminal regions, what remains is a homogeneous
function. For comparison, we have performed MFA of
the absolute increments for the entire width function and
for a truncated signal in which the first 150 and the last
100 points are left out. In both cases, the multifractal
spectrum is narrow and can be represented adequately
through the values of a for q =0 [at this point, f(a) = 1]
and for q =6. These values are indicated in Fig. 11 by
horizontal lines. As expected, there is a shift toward
lower cx values when the terminal portions of the signal
are deleted. The narrowness of the spectra is consistent
with viewing the central portion of the width function as
monofractal relative to increments, with a close to 0.3.
Indeed, visual comparison with simulated fractional
Brownian motion with spectral density exponent
y =2a+ 1=1.6 (see, e.g., Turcotte [18]) confirms the va-
lidity of this interpretation. Similar spectral densities
have been obtained by Marani et al. [7] for several other
width functions. Figure 12 shows a smoothed version of
the North Fork width function, obtained by locally
averaging over Ave increments of the abscissa. We have
repeated the analysis of Fig. 11 using this smoothed func-
tion, obtaining very similar results (because, as already
explained, the CF regressions have been fitted for not
very small values of r). We just note, for later use, that
for the smoothed function without truncation and q =0,
the value of a is approximately 0.38.

B. Analysis of integrals of increments

Another possibility for functions that are too smooth
for standard MFA is to consider integrals of increments,
of the type

P„'(x)=f [g(x+5)—g(x)]d5—r/2

=P„(x)—rg(x),

and study their scaling properties as r ~0. We denote by

P the scaling exponent of this modified integral, so that
~P„'(x)

~

-r~, and by IP,f(P)] the associated multifractal
spectrum. As was the case for increments, these integrals
may be positive or negative and the analysis may be per-
formed either using absolute values or considering sepa-
rately positive and negative integrals. In the latter case,
P is assigned the sign of P„'.

Subtraction of rg (x ) from P„(x) eliminates the
influence on P„'(x) of the semisymmetric component of
g (x) around x. In fact, one may write

P„'(x)=2f [g (5)—g(x)]d5, (12)

where g„(5)=0.5[g(x —5)+g(x +5)] is the symmetric
component of g(x) around x. As a consequence, the P-
spectrum is also invariant under translation and positive
scaling of g (x).

Example functions with selected positive values of P
are shown in Fig. 13 to provide an intuitive understand-
ing of P. Negative values would apply to the same cases
with the sign of g reversed. Values of ~P~ less than 1

would generally not be encountered, as they imply ex-
treme irregularity of the function.

Another way to intuitively think of P is in the context
of random processes: Suppose that g (x) is a stationary
Gaussian process with mean value m and correlation
function p(5). Then the expected increment
[g (5)—g(x)] given g(x) is

&[g.(5)—g (x) lg(x) ]=[I—g(x)][1—p(5) ] (13)

If 1 —p(5) has scaling exponent a so that
[1—p(5)]-5 p, then P„'(x) evaluated from the expected
increments in Eq. (13) scales with exponent ~P~ =a~+1.
For example, ~P~ =2 if [1—p(5)]-5, i.e., if the process is
mean square continuous but nondifferentiable.

The results of a P analysis are shown in Fig. 14, where
the smoothed North Fork width function in Fig. 12 is ex-
amined using sliding windows of width s =121 points.
%'hat is shown as a function of window location is the
value of P produced by the CJ algorithm for q =0 and 6,
using absolute P,' integrals. The values for q =0 are
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FIG. 12. Moving average of the North Fork width function
using a five-point window.

FIG. 13. Examples of functions with different values of the
local exponent P.
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FIG. 14. Moving-window analysis of integrals of increments
for the smoothed North Fork width function. Values of the
scaling exponent P within 121-point windows for q =0 and 6.
Horizontal lines give the same values of P when the entire width
function is used.

FIG. 15. Empirical correlation function of the smoothed
width function in Fig. 12, and comparison with the power-law
model derived from u-analysis.

IV. CONCLUSIONS

P„'(x)=2J E[g„(5) g(x)ig(x)]d5—
2a+ 1 (14)

and a theoretical scaling exponent p=lim„o[logP„'(x)/
logr ]=2a+ 1. For a =0.38, this gives p = 1.76, which is
in excellent agreement with the value 1.81 in Fig. 14. %'e
conclude that the p analysis confirms the findings from
the analysis of increments.

those of greater interest. Low values of p are associated
with segments where the function varies smoothly or
resembles a weakly correlated stationary process,
whereas large values come from segments that contain
sharp peaks and valleys. Although there is evidence of
some nonstationarity in P (notice in particular the high
values between pixels 600 and 740), it appears reasonable
to perform a P-spectrum analysis using the entire width
function. The values of P produced by such analysis for
q =0 and 6 are shown by horizontal lines in Fig. 14. The
range is very narrow, indicating that the function is
monofractal relative to integrals of increments.

One can relate the value p=1.81 obtained for q =0 to
the estimates of a found earlier in the analysis of incre-
ments: Fig. 15 shows the empirical correlation of the
smoothed width function in Fig. 12. Following our
analysis of increments and the interpretation of the width
function as fractional Brownian motion, the semicorrelo-
gram 1 —p(5) should have the form 1 —p(5) ~ 5, with a
around 0.38. Indeed, as Fig. 15 shows, the empirical
correlation function can be fitted quite well in the initial
and more relevant portion by the function
p(5) = 1 —0.02255, where 5 is in units of discretization
intervals. For a power semicorrelogram, integration of
E[g (5)—g(x) ~g(x)] in Eq. (13) gives

Standard multifractal analysis methods suffer from
several shortcomings when the function or measure to
which they are applied is not multifractal. The main
problem is that the methods tend to produce top en-
velopes of the true spectrum. By so doing, they may add
spurious points and conceal actual interior points, mak-
ing the results look multifractal. Also, in some cases,
points that belong to the top envelope of the spectrum
are not detected. We have shown these effects through
the application to simple functions with known spectra
and to width functions of river basins derived from DEM
data. We f][nd that previous multifractal spectra of width
functions are seriously conditioned by artifacts from the
numerical methods used in their derivation.

We have developed ways to detect both spuriously add-
ed points and hidden points. When these techniques are
applied to width functions, they reveal that the Ia,f(a)]
spectrum is composed of basically two points, one at
[a=1,f(a)=1] and the other around [a=2,f(a)=0].
Because such spectra are characteristic of functions that
are too smooth to be multifractal in the ordinary sense,
we have explored extensions of the notion of multifractal
functions and measures. If one views the multifractal
spectrum as a fractal dimension of the set of points where
the function has a certain local property, then there is no
reason why the property to be considered should be limit-
ed to the scaling of local integrals.

We have illustrated the use of such an extended mul-
tifractal concept by considering the scaling of local incre-
ments and the scahng of integrals of local increments of a
function. In both cases, the analysis requires only minor
modifications to existing cx-spectrum algorithms. The
analysis in terms of increments corresponds to perform-
ing standard MFA on the derivative of the function, and
hence may be appropriate when the original function is
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too smooth. When this analysis is applied to width func-
tions, it shows, in accordance with previous studies, that
such functions resemble fractional Brownian motion with
a fractal dimension of 1.6—1.7. The analysis in terms of
integrals of increments also supports this finding.

Numerical implementation issues including ways to
stabilize the multifractal estimates have been discussed.
However, in this regard our conclusion is that multifrac-
tal results are sensitive to several arbitrary parameters
and therefore that MFA should be used as an exploratory
tool rather than a method to make Arm quantitative as-
sessments. In a sense, the main theorem of this paper is
that MFA can be refined and extended, but has to be used
with understanding and judgment to avoid falling into er-
roneous conclusions. For example, it makes little sense
to use standard (stationary) multifractal analysis if a func-
tion is nonstationary relative to the scaling of local in-
tegrals. Also, there are functions that display isolated
singularities which, if not removed, would strongly condi-

tion the estimate of the spectrum. We have found that
moving-window plots of the type shown in Figs. 7, 12,
and 14 are very useful diagnostic tools in both cases. Ex-
isting numerical estimation methods produce single mul-
tifractal spectrum estimates, with no assessment of accu-
racy or robustness. There is clearly a need to improve
such methods and to make them more flexible, for exam-
ple by considering properties other than local integrals,
as was illustrated in Sec. III B.
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