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Monte Carlo simulation of phase transitions in a two-dimensional random-bong Potts model
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Using the "multihit" Swendsen-Wang cluster flipping method, we performed extensive Monte Carlo
simulations to investigate the critical behavior of the two-dimensional (2D) eight-state random-bond
Potts model. We applied finite-size-scaling techniques to extract the critical exponents for two different
sets of bond strengths, from which we concluded that the transition is second order with critical ex-
ponents for both sets falling into same universality class, that of a 2D Ising model. A variation of the
Lee-Kosterlitz method for determining the order of a phase transition was also applied. The double-
peaked structure of the specific heat, which was found in some of the bond configurations, was also stud-
ied by simulation on periodic arrangements of strong and weak bonds.

PACS number(s): 64.60.Fr, 05.70.Jk, 75.40.Mg

I. INTRODUCTION II. THE RANDOM-BOND POTTS MODEL

The effect of quenched impurities on phase transitions
has been of substantial interest for many years [1—11].
One prediction about the effects of quenched bond impur-
ities comes from the Harris conjecture [1], which states
that bond randomness changes the numerical values of
the critical exponents only if the specific-heat exponent cz

is positive. Field randomness, however, always affects
the numerical values of the critical exponents [2] and can
even completely eliminate the phase transitions in low-
dimensional systems [4—6]. Because of this more pro-
found effect on the transition, most early studies were in-
terested in field randomness. Only recently has it been
shown that bond randomness can also have a drastic
efFect on the nature of a f'trst order phas-e transition
[6—11]. Recently, a phenomenological renormalization-
group argument [9] by Hui and Berker and a rigorous
proof of the vanishing of the latent heat [10] by Aizen-
man and Wehr came to the same conclusion that bond
randomness will induce a second-order phase transition
in a system that would undergo a symmetry-breaking
first-order phase transition.

The purpose of our work is to provide numerical evi-
dence for this prediction by large-scale Monte Carlo
simulations. The nature of the phase transition in the
two-dimensional pure Potts model [12] has been known
to be first order for q )4 and continuous for q (4 [13],
which suggests that the two dimensional q-state Potts
model with q )4 might be eligible for testing this predic-
tion. In Secs. II and III we first introduce the random-
bond Potts model [12] and methods for simulations, fol-
lowed by a brief description of the data analysis tech-
niques. In Sec. IV we then present and discuss the results
obtained from finite-size-scaling techniques [14] and the
Lee-Kosterlitz method [15]. A summary is given in Sec.
V. A study of the double-peaked structure of some ther-
modynamic quantities for a system with a periodic ar-
rangement of different bond strengths is described in the
Appendix.

The q-state Potts model [12] can be described by the
Hamiltonian

P(K)=p5(E IC, )+(1—p)5(K ——K2) . (2)

For a system with p =0.5, the system is self-dual and the
exact critical value of K& and K2 can be derived by duali-
ty relations [16]. This has been done by Kinzel and
Domany and is given by the implicit equation [17]

SC ~i

(e ' —1)(e ' —1)=q, (3)

where K; and K2 are the corresponding values of E
&

and
K2 at the transition. For the rest of this paper, we will
discuss this model in terms of the ratio of the strong cou-
pling to the weak one r =EC2/IC, and K, will be our tem-
peraturelike variable. In the simulations we chose q =8,
which is known to have a strong first-order transition, in
the hope that we would not have too much trouble in
determining the order of the transition in the random-
bond system. We also avoided choosing q larger than 8
in the hope that we could observe the asymptotic
behavior without needing very large systems.

For a system with quenched randomness, the fluctua-
tion of the thermodynamic quantities is large for different

pH= g It'—;J5
(i,j )

where P= 1/ktt T. The spin cr can take the values
1,2, . . . , q and 5 is the Kronecker delta function. The
sum runs over all nearest-neighbor bonds in the system
and E; is the dimensionless interaction between o.; and
o. . In a pure system, K;. is constant for all bonds and
the value of the transition temperature is known for all q
as are the critical exponents for q 4 [12]. The random-
bond Potts model (RBPM) discussed by Wu [12] is de-
scribed by the above Hamiltonian with the couplings K,"
randomly selected from two ferromagnetic couplings E

&

and K2 according to the distribution
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bond distributions so configurational averaging over ran-
domness is necessary to produce a correct result. To
minimize the number of bond configurations needed for
the averaging, we confined our study to bond distribu-
tions in which there are the same number of strong and
weak bonds in each of the two lattice directions. This
procedure should reduce the variation between different
bond configurations, but we expect that this restricted
version of the random-bond Potts model will have similar
behavior in the thermodynamic limit.

III. METHODS

A. The multihit Swendsen-Wang algorithm

Near a phase transition, traditional (single-flip) Monte
Carlo algorithms suffer from critical slowing down. Clus-
ter flipping methods [18] can greatly reduce the correla-
tion time; however, they are quite slow, in terms of the
amount of CPU time needed per spin compared to vec-
torized and/or multispin coding single spin-flip algo-
rithms. In order to increase the speed we developed a
"multihit" approach [19], based on the Swendsen-Wang
(SW) method [20], which can be substantially faster than
SW updating depending on the particular model being
simulated.

A S%' simulation algorithm has three main procedures:
(i) Find and label clusters in a bond configuration. (ii)
"Decorate" clusters by assigning a new Potts variable to
each cluster. (iii) Make measurements. In considering
the efficiency of the SW algorithm one must make two
points. First, cluster finding [step (i)] is the most time
consuming part of the algorithm in spite of attempts
made to speed it up, by vectorization or parallelization
[21]. Second, only one decoration [step (ii)] is chosen out
of a total number q possible choices, where X& is the
number of clusters present in a cluster configuration.
(Each of the Xc clusters is independent of the others in
the random cluster representation and is randomly as-

Nc
signed one of the q states. Therefore, there are q dis-
tinct decorations for each cluster configuration. ) The
idea behind the multihit SW algorithm is to take advan-
tage of this large number of possible decorations of the
cluster configuration by choosing more than one decora-
tion ("hit") per cluster configuration. In other words, a
multihit method repeats steps (ii) and (iii) multiple times
after step (i).

Let tcluster& tdecorate& and tmeas re represent the time need-
ed for each step respectively. The time per measurement
for a SW update is given by

SW ~cluster + tdecorate + ~measure

In the multihit algorithm each cluster configuration is
decorated n times resulting in n spin configurations and n

measurements. The time per measurement of an n-hit
update is therefore

cluster
MHSW ( ) + r decorate + t measure

Pl

The speedup of the algorithm is given by the ratio
tsw«MHsw

tsw

r MHsw ( n )

R+1
R/n+1

where ~MHsw is the integrated autocorrelation time, the
true efficiency of the multihit Inethod, relative to the
single-hit (SW) algorithm, is

( I+X)
( I+A/n)b (n)

where b(n) is [2rMHsw(n)+ I]/[2rMHsw(l)+ I]. For an
eight-state Potts model with linear size I. =64, the in-

tegrated correlation time for the SW algorithm
[equivalent to the n = 1 multihit SW (MHSW) algorithm]
is approximately 5000 Monte Carlo steps (MCS) for the
pure system, 400 MCS for r =2, and 25 MCS for r =10.
For n hits, the correlation time varied from
-0.8nrMHSW( 1) to -nrMHSW(1), depending on the bond
configuration. Therefore, the relative efficiency of the
multihit algorithm with three hits is —0.7 for the
random-bond Potts model and 1.1 for the 2D uniform-
bond Ising model.

In terms of the number of independent measureInents
per second, the SW algorithm is still more efficient than
MHSW. However, it has recently been shown, for stud-
ies that use histogram techniques [22,23], that it may be
advantageous to generate additional measurements, even
if these are correlated [24]. This is illustrated by Fig. 1,
in which we compare the K& dependence of the measured
statistical error in the energy for the two algorithms, us-

ing the same amount of CPU tiIne. The simulations were
performed at the infinite-lattice transition point for the
r =2 random-bond Potts model. From an examination of
Fig. 1 we see that the MHSW algorithm actually has a
smaller relative error over a wider range of coupling con-
stant K& than does the SW algorithm. Therefore, the
MHSW algorithm can give us reliable information over a
larger range of Kj to help us locate peaks in thermo-
dynamic functions.

where R =t„„„„/(td„„„,+r „,„„). As this ratio al-

ways ~ 1, the time consuming step of finding the clusters
is effectively eliminated for large n; however, the increase
in speed depends on the particular model being studied as
well as the particular computer used and the implementa-
tion of the algorithm since the time needed to find the
clusters depends on both the size distribution of the clus-
ters as well as the shapes of the clusters. For the two-
dimensional (2D) Ising model (q =2 Potts model) with a
program implemented on an IBM RS/6000 workstation,
he rat o of tdecorate o tcluster

t „,„„to t,l„„„is 0.08, which yields R =6.5; for the 2D
eight-state r =10 random-bond Potts model, these ratios
are 0.26 and 0.43, respectively, yielding R =1.45; for the
r =2 RBPM, the ratios are 0.35 and 0.43; thus R = 1.28.

To determine the efficiency of the multihit approach,
we must also consider the correlation time for the algo-
rithm. If the number of independent measurements (per
unit time) is given by

1N(n)=
tMHsw(+) X [2rMHsw(n)+ 1]
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[ =gMH (E,M}] as well as four constant-E averages
(M &, (M &, (M &, and (M &. We then calculated
Px (E) from H (E) and all of the necessary thermodynam-
ic quantities were calculated by using Eq. (5).

For a system with randomness, the configurational
average over randomness is necessary for obtaining
correct bulk properties. The configurational average
value of a thermodynamic function is obtained by first
calculating the reweighted average ( A & [Eq. (4)] for a
given bond configuration, summing up ( A & for all bond
distributions, then dividing by the total number of bond
configurations X,

Q.OOO 1

Q.QQ 0.9 1

I I ~ I I I I I

FIG. 1. Comparison of the relative error in F. determined by
SW and MHSW simulation for the r =2 random-bond Potts
model. The simulations were performed at infinite-lattice tran-
sition point (0.920 185) shown by the arrow. The horizontal line
represents 6 X 10 relative standard error.

A further advantage of the rnultihit SW algorithm is
that it is easy to implement on a distributed memory
parallel computer. A successful parallel version of the
multihit SW algorithm has been developed using the
Parallel Virtual Machine (PVM) [25]. The efficiency
(XpvM )/(Nsw Xnumber of processors) of this parallel al-
gorithm is -0.75 with two processors and three hits on
each processor.

B. Reweighting and configurational averages

Histogram techniques, which are used to increase the
amount of information obtained from a Monte Carlo
study, have been applied successfully to the study of criti-
cal phenomena [26,27]. Detailed descriptions of the his-
togram techniques used in this study have been presented
elsewhere [22,23]; here we only briefly describe the
method. In these methods the histogram H(E, M} for a
given simulation coupling Ko of dimensionless energy E
and magnetization M kept during the simulation is re-
weighted to provide an estimate for the equilibrium prob-
ability distribution PI„-(E,M) at any K. The average value
of any function of E and M, 3 (E,M), can then be calcu-
lated as a continuous function of K

[&~&]=' '

where [(3 &] represents the configurational average of
( A &. As ( 2 & is a continuous function of K, so is its
configurational average [( A &]. The maximum value for
any thermodynamic quantity such as C,„and y,„used
in the finite-size-scaling analysis is just the maximum of
the configurational average

(7)

C. Finite-size scaling and Lee-Kosterlitz method

Finite-size-scaling theory [29] is a traditional and
powerful method for studying second-order phase transi-
tions and also provides a way to determine the order of
the transition. The principal statement of the finite-size-
scaling formalism is that the finite-size rounding and
shifting of critical singularities are controlled by the ratio
between the correlation length g and the linear dimension
L of the system [29]. The singular part of the free energy
of a system that undergoes a second-order transition is
given by

F(L, T, h)=L ' ' V(tL' ' hL'i'+~' '),
where t =(T —Tc)/Tc (Tc is the infinite-lattice critical
temperature). The critical exponents a, P, y, and v are
all the appropriate values for the infinite system. The
various thermodynamic properties (for h =0) can be
determined from the above equation and have corre-
sponding scaling forms, e.g. ,

( A (E,M) &(K)= g A (E,M)P~(E, M) .
E,M

(4)

The average of a function with mixed terms such as
E"M can be expressed by

C .„-L-~-Z(tL "-),
y .„-Lr 'X(tL' )

K, (L)=K, +~L i~. . -

(9)

(10)

yE"&f & P (E)
&E"f(M) &(K)=

P~ E) (5)

where Pz(E)=QMP+(E, M) and (f &z is the constant
energy average of f (M) estimated from the simulation
data. The computer memory requirements are thus
greatly reduced. We have used the simulation data to
construct the one-dimensional histogram H (E) K,(L)=K, +A, 'L ' "(1+O'L ) . (12)

These expressions will be modified by corrections to
scaling and corrections to finite-size scaling [27,30].
Since the introduction of each additional term adds two
more parameters in a nonlinear fit, thus requiring far
more accurate simulation data, we combined these
corrections into a single term with an effective exponent
w. The size dependence of the critical coupling K, be-
comes
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ain&M" &

BKi
(13)

and the derivative of the fourth-order magnetization cu-
mulant BUii/BKi, where

It has recently been shown that other, less traditional,
quantities can be used effectively in finite-size-scaling
analyses [27]. For example, the maxima of logarithmic
derivatives of any power of the order parameter M

where E, and Ez are the energies at which PI (E, ) and
PI (Ez) have the maximum and the minimum value, re-
spectively. We have used a variation of this approach to
apply to the random system since in such a system a
configurational average over randomness is necessary.
We reweighted the histograms [22,23] until the two peaks
have the same height (this defines the Kc), then calculat-
ed the free-energy barrier using Eq. (20) for the given
bond configuration. We then performed the
configurational average over bond distributions [Eq. (6)]
to extract the final probability distribution and free-
energy barrier.

scale with system size as L, ', which allows us to directly
calculate v. In addition, these quantities provide further
estimates of finite-size transition couplings.

Finite-size effects at first-order transitions have begun
to receive attention comparatively recently [28—41]. Ac-
cording to the proposal of Fisher et al. , the singular part
of the free energy for a system with periodic boundary
conditions undergoing a first-order phase transition
[31,32] can be written as

F(L, T) =L "V(tL") (15)

IV. RESULTS AND DISCUSSIONS

We have performed simulations of the eight-state Potts
model with periodic boundary conditions. The strong to
weak bond ratios r ( =K i /K2 ) were chosen to be integers
for the convenience of establishing histograms. The
simulations were performed, using the MHSW algorithm,
on a cluster of IBM RS/6000 workstations. Part of the
simulations were carried out with MHSW algorithm im-
plernented using PVM. The number of hits was chosen
as 10 and 5 in each of the two sets of simulations respec-
tively. The first set of simulations, having the weakest
randomness (r =2), was done for linear size 12(L ( 128.
Some preliminary results for r =2 have been presented
elsewhere [43]. Data were taken near the corresponding
infinite lattice transition coupling obtained from Eq. (3)
(K =0.92018527. . . ). Between 6X10 and 1.5X10
Monte Carlo steps (complete lattice updates) were per-
formed for each simulation, which was always more than
10 times the correlation time. For a given bond
configuration, we performed five independent simulations
at the same temperature and applied the single-histogram
method [22] to find the position (Kc ) of the maximum

max

value of the specific heat. This procedure was repeated
until the change in Xz was smaller than the statistical

max

error of the simulations. Up to 40 different bond distri-
butions were simulated for each size and the
configurational average was performed over these bond
distributions by using Eq. (6).

Another set of simulations was performed for r = 10 to
investigate the effect of a different bond ratio. The
infinite-lattice transition coupling E, for r = 10 is
0.31265566. . .. The simulations were done for linear
size 24~L, ~84, with a run length of 10 Monte Carlo
steps for each simulation, which was at least 10 times
the correlation time. In the first stage, we simulated 30
bond configurations for each linear size up to I =48, us-

ing the single-histogram technique for the analysis. The
locations of the specific-heat peaks for some of the bond
configurations fluctuated over a wide range of couplings.
With some extra simulations, we used the multiple histo-
gram method to analyze the specific heat for some of
these "problem" bond configurations. The result showed
that the specific heat had two peaks for these bond
configurations. To help understand the origin of the
double-peaked structure in the specific-heat, we per-
formed a systematic study on systems in which strong

and the scaling forms for various thermodynamic quanti-
ties are

(16)X.. X(«»
C .„-L'C(rL"),

K, (L ) =K, + A, 'L

(17)

(18)

The qualitative theory of finite-size scaling at a
temperature-driven first-order phase transition was de-
rived in [34] and [35] by using double Gaussian probabili-
ty distributions for the energy.

Several methods have been proposed to distinguish nu-
merically between continuous and first-order transitions
[15,36—39]. One of these approaches [15] is due to Lee
and Kosterlitz, who suggest that the size dependence of
the free energy as a function of energy

(19)FL (E)= —lnPL (E),
where PI (E) is the probability distribution for a system
of linear dimension L, can be used to umambiguously
identify a weak first-order transition [42] even when the
system size is smaller than the correlation length. Their
technique makes use of the fact that for large systems the
free energy at a first-order phase transition will consist of
two minima of equal depth separated by a peak. (The
probability distribution will therefore have two maxima
separated by a minimum. ) If the free-energy barrier
(difference between the minima and the peak) grows with
increasing system size, the transition will be first order in
the thermodynamic limit; otherwise, the transition will be
second order. In Monte Carlo simulations, the free-
energy barrier can be estimated by reweighting the ener-
gy histogram [22]

(20)

Pl(E, ) H(E, )EF=ln =ln +(K —K )(E E), —
Pl (E2) H(E2)
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and weak bonds are arranged periodically. The results
are given in the Appendix. Although the specific heat of
some of the bond configurations has two peaks, the
specific heat resulting from the configurational average
has only one peak for all system sizes.

We then performed simulations, over a wide range of
couplings, for all bond configuration using 10—30 cou-
plings for L up to 48 and 10—15 for L =64. For each lat-
tice size (28 ~ L ~ 64), a total of 150—200 bond
configurations were simulated; only 60 for L =24. The
multiple-histogram technique [23] was used in obtaining
the average value of the thermodynarnical functions. As
in the analysis of r =2, the configurational average was
then taken by using Eq. (6).

For L =84, the simulations were performed only
around the expected locations of the specific-heat peak as
estimated from finite-size scaling. A total of 200 bond
configurations were simulated.

A. Results for the free-energy barrier

The energy distributions from some bond
configurations for r =2 have two peaks, which can be an
indication of a first-order transition. However, the per-
centage of double-peaked distributions decreases with in-
creasing system size. We applied the Lee-Kosterlitz
method to analyze the energy histograms to determine
the order of phase transition. The resultant free-energy
barrier b,F(L) is plotted as a function of inverse lattice
size in Fig. 2. The trend for large L is toward zero free-
energy barrier, which indicates that the transition has
indeed changed from first to second order. For the uni-
form eight-state Potts model, the analytical value of the
free-energy barrier [44] is 0.083 758L, which is
significantly larger [b,F(L =16)=1.3] and grows with in-
creasing system size. Note that for smaller L the trend
toward AF=O is not as clear, indicating that these sys-
tems may not yet be in the asymptotic regime. We also
investigated the energy histograms for r = 10, but found
that there was only one peak in the energy distribution
for L ~24, which strongly suggests that the transition is
second order.

B. Finite-size-scaling results for r =2

In applying the finite-size-scaling techniques, we first
determine the critical exponent v. Several thermodynam-
ic quantities can be used to obtain v from Monte Carlo
simulation data. The scaling behavior of the derivative of
Binder's fourth-order cumulant U~ is one example.
However, the locations of the peaks of the derivative of
Uz were too far from the couplings used for the simula-
tions, which were near the specific-heat peaks, to allow
accurate single-histogram technique reweighting. In this
study, we investigated the scaling behavior of the loga-
rithmic derivatives of M, M, and M to determine the
critical exponent v.

In previous studies of the Potts model, the quantity

qp —1
(21)

q 1

where p=L "max(M&, Mz, . . . , Mq) and M; is the num-
ber of spins in state i, has been used as an order parame-
ter [35], although it does not exhibit the full symmetry of
the model. In the early stages of this work [43] we kept
and used microcanonical averages for (p ), (p ), and
(p ) rather than (M ), (M ), and (M ). We corrected
the results for the logarithmic derivatives of (M ) and
(M ) for this paper, but because we did not keep (p ),
we were unable to correct the results for (M ) and the
curnulant Uz. We found, however, that the exponents
determined with the "incomplete" order parameter actu-
ally agree well with the "correct" results.

In Fig. 3 we plot these logarithmic derivatives as a
function of system size on a log-log scale. The solid lines
represent linear fits for L ~24. We have the values of v
listed in Table I. Combining these results we get a final
value v= 1.004+0.019. Within errors, this agrees with
the d =2 Ising model value v= 1. For the range of sys-
tem sizes in this study, we could see no indication that

In p
4

2
~ In M

1000

0.4

ELF(L)

0.3

0.2 100

0.1

0.0
0.000 0.0Z5 0.050 0.07 5

100

FICx. 2. Plot of the free-energy barrier AI'(L) for r =2 as a
function of inverse lattice size.

FIG. 3. log-log plot of the size dependence of logarithmic
derivatives of the order parameter of r =2. The solid lines are
linear fits including systems with L ~ 24. Errors in the individu-
al points are comparable to the symbol size.
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TABLE I. Fitted values of v for the logarithmic derivatives
of M, M, and p for bond strength ratio r =2.

0.922

quantity

Derivative Error

M
M
P

1.015
1.000
0.998

0.036
0.032
0.030 O.918

Kc(L)
first-order behavior will appear for large L (although, of
course, we cannot exclude this possibility). We therefore
conclude that the additional of bond randomness has
changed the order of the phase transition from first to
second.

As a further test of the d =2 Ising-like critical
behavior, we examined the specific-heat critical exponent
a. The critical behavior of the specific-heat in a 2D Ising
model has a logarithmic size dependence, i.e.,

0.9 14

0.910
0.00 0.0 1 0.02 0.03 0.04

C,„(L)=a+&lnL . (22)

80

We plotted the specific-heat maxima as a function of lat-
tice size on a semilogarithmic scale. The result, shown in
Fig. 4, indicates that the data can be well described by a
linear fit (the solid line), with background term
a = —42. 6 and a goodness of fit of 0.90, for systems
larger than I. =28 as would be expected for a two-
dimensional Ising model. Fitting the specific heat to a
power law yields a/v=0. 02+0.20, with a background
term —1252.5 and a goodness of fit of 0.86. The fact that
the quality of the fit is about the same indicates that it
hard to distinguish a small power-law divergence from a
logarithmic one. It is clear, however, that the divergence
of the specific heat is significantly slower than the I. ex-
pected for a first-order transition.

We also studied the location of the peaks in other ther-
modynamic functions. Those peaks occurred at difFerent
values of X& (L), but all of the positions moved toward
larger E as the lattice size increased. A contour plot has
been made to investigate the global g minimum from a
general linear least-squares fitting using Eq. (12). With

FIG. 5. Size dependence of the estimates for finite-lattice
critical couplings K, (r =2) for various thermodynamic quanti-
ties. The solid curves are fits to the finite-size-scaling form in-
cluding the lowest-order correction term [see Eq. (13)]. The ar-
row shows the location of the exact transition points 0.920 185.

v= 1, the minimum of y occurred at around w = 1. Us-
ing the 2D Ising value v=1 and a correction term with
w =1, we fitted the positions of the maxima using Eq.
(12). The result, plotted in Fig. 5, showed that for L ~ 28
all of the positions can be well fitted with an extrapolated
value K, =0.9202+0.0003, in excellent agreement with
the "exact" value L„=0.92018527. . ., quoted earlier.
Table II is a collection of the extrapolated values for vari-
ous quantities.

The analysis of the behavior of the moments of the or-
der parameter at X, gives us an estimate for p. The re-
sult for P/v, determined by the scaling behavior of M at
ICC, is 0. 118+0.008, while the value of 2p/v, determined
from M, is 0.247+0.006. Both of these are in agreement
with the d =2 Ising model values (0.125 and 0.25, respec-
tively).

C. Finite-size-scaling results for r = 10

40

We first analyzed the scaling properties of the magnet-
ic susceptibility, the maximum values of which have
smaller fluctuations than most other thermodynamic
quantities. The result is shown in Fig. 6, where we plot
the magnetic susceptibility maximum as a function of lat-

TABLE II. Infinite transition couplings extrapolated from
the locations of the maximum value of various quantities for
bond strength ratio r =2.

0
20 100

FIG. 4. Semilogarithmic plot of the specific heat vs lattice
size for the maximum value of the specific heat for r =2 as well
as the specific heat at the infinite critical point K& (r =2). The
solid lines are linear fits including data for I. 28. Where not
shown, error bars are smaller than the symbol sizes.

Quantity

BU,
BK,

B lnM
BE)

BlnM 2
BKl
Cmax

K'
1

0.9202

0.9201

0.9201

0.9204
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1000—
ln M'

~ in M'

10

2
20 100

100

FIG. 6. log-log plot of the size dependence of maximum
value of the susceptibility for r =10. The solid line is linear fit
including systems with L 28. Errors in the individual points
are smaller than the symbol size. 20

20

tice size on a log-log scale. The value of y/v, the slope of
the linear fit (solid line), is

y/v= 1.72+0.03 . (23)

From the analysis of the moments of the order parame-
ter M and M at E

&
we obtained

and

P/v =0. 126+0.013 (24)

2P/v=0. 258+0.023 .

From the scaling and hyperscaling laws

a+2P+y =2,
a+dv=2,

(25)

(26)

(27)

3.5

we would estimate a=0.02+0.05 and v=0. 99+0.05.
All these exponents are consistent with the d =2 Ising
model values.

As in the analysis for r =2, we investigated the loga-
rithmic behavior of the specific heat. Despite the
double-peak structure of the specific heat in some of the
bond configurations, the configurational average has only

FIG. 8. Log-log plot of the size dependence of logarithmic
derivatives of the order parameter of r =10. The solid lines are
linear fits including systems with L ~ 28. Errors in the individu-
al points are comparable to the symbol size.

one peak. (A systematic study of the double-peak struc-
ture in specific heat is included in the Appendix. } Figure
7 shows a semilogarithmic plot of the maxima of the
specific heat as a function of lattice size. The linear fit for
L ~ 28 (the solid line) gives a background term 2.17 and a
goodness of fit 0.86.

Further confirmation comes from the scaling behavior
of the logarithmic derivatives of M, M, and M . In Fig.
8 we plot these logarithmic derivatives as a function of
system size on a log-log scale. The values of v obtained
from the linear fit (solid lines) are listed in Table III.
Combining these results we obtain v=1.02+0.02, again,
in agreement with the 2D Ising value within errors.

As a final confirmation of 2D Ising-like critical ex-
ponents, we fitted the positions of the maxima using the
2D Ising value v= 1 and a correction term w = 1 (around
which the minimum of y occurred). The result, plotted
in Fig. 9, shows that for L ~ 28 all the positions could be
well fitted with the extrapolated value of
%&=0.3126+0.0008, which also agrees with the exact
value (0.312655. . . ).

max

3.0
V. SUMMARY

We have studied the effects of quenched bond random-
ness in the eight-state Potts model. The result of rather

2.5
20 100

TABLE III. Fitted values of v for the logarithmic derivatives
of M, M, and M for bond strength ratio r = 10.

Derivative Error

FIG. 7. Semilogarithmic plot of the maximum value of the
specific heat of r = 10 vs lattice size. The solid line is a linear fit
including data for L + 28.

M
M
M4

1.04
1.03
1.00

0.04
0.03
0.04
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quantity 2.7

0.3 15

K,(L)
0.3 05

2.3—

0.295

0.285
0.00 0.0 1 0.02 0.03 0.04 0.05

1.9
0.24 0.2 6

I

0.28
l

0.3 0 0.3 2

FICx. 9. Size dependence of the estimates for finite-lattice
critical couplings K& (r =10) for various thermodynamic quan-
tities. The solid curves are fits to the finite-size scaling form in-
cluding the lowest-order correction term [see Eq. (12)]. The ar-
row shows the location of the exact transition point.

extensive simulations for the q =8 Potts model with two
sets of randomly distributed ferromagnetic bonds of two
di6'erent strengths is that a second-order transition with
2D Ising exponents results. To significantly improve
these results would require at least an order of magnitude
more computer time ( —10400 h of CPU time have al-
ready been used) or the development of some new simula-
tion or data analysis methods.

Several studies have also shown that other models that
undergo second-order transitions in the pure system ap-
parently have Ising critical behavior when impurities are
present [3]. It is interesting that system with quenched
randomness, site or bond, appear to be in the same
universality class of a pure 2D Ising model, although
there is insufficient accuracy to say anything about possi-
ble logarithmic corrections. In contrast, simulations of
the q =8 ferromagnetic Potts model on random 2D lat-
tices show strong evidence for a first-order transition
[45]. We know of no theoretical prediction for the antici-
pated critical behavior in this bond impure model and
would encourage theoretical e6'ort to explain it.

FIG. 10. Plot of an example of the double-peaked structure
for r = 10 random-bond configurations.

W

I
I

I I

I I

I
I I

I I
I

I

I
I

I

I

I

I
I I

I

I

I

I
I

I
I
1I
I

I
I

I

I
I

I

I

I

j
I

I I

I I
I IJ r-

I I

I I

I I

I I

I

I IJ . J
I I

I I

I

J
I

I

I

J
I

I

impossible to determine which peak signals the phase
transition for that particular configuration. The work
shown in this appendix will provide an understanding of
the double-peaked structure of the specific heat by the
systematic study of a two-bond system without random-
ness.

The idea is that instead of choosing E,. "randomly"
from K, and K2, we assign them periodicaIly so that the
variation of the amplitudes and locations of the peaks
with bond configuration can be observed systematically.
Two types of bond configurations, "strip" and "square, *'

have been studied. Examples are shown in Figs. 11(a)
and 11(b), where solid and dotted lines represent strong
and weak bonds, respectively. L is the number of bonds
in each direction and 8'is the number of strong or weak
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APPENDIX: THE DOUBLE-PEAKED STRUCTURE
IN THE SPECIFIC HEAT
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In analyzing the specific heat for r = 10, we found that
the specific heat for some of the bond configurations has
two peaks (Fig. 10). The maximum can be either one of
the peaks depending on the bond distribution. Without
foreknowledge of the 1ocation of the phase transition, it is

FIG. 11. Plot of an example of the periodic, regularly formed
bond configurations, where solid and dashed lines represent
strong and weak bonds, respectively. I is the linear size of the
lattice and 8'is the width of the strip domain or the linear size
of the square domain.
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FIG. 12. Coupling dependence of the specific heat for vari-
ous size square domains with lattice size L =36. The arrow
shows the location of the exact transition point
(K„=0.312655. . . ) for the random system with r =10.

FIG. 14. Plot of the free-energy barrier hF(L) as a function
of inverse lattice size for 3 X 3 square domain bond
configurations.

bonds in one period. Monte Carlo simulations were then
performed over wide range of couplings for the q =8
Potts model with the arranged bond configuration. We
first observe the specific heat for the strip configuration
with only two regions, one with strong (coupling constantJ= la) and one with weak (J=1) bonds. The result
shows that the specific heat has two peaks with the am-
plitude of each peak increasing with lattice size. Intuiee

tively, we could expect that when the size of each strip
approaches infinity, the infiuence of the interface be-
comes relatively small, thus each domain (containing the
same type of bonds) approaches its own thermodynamic
limit properties, undergoing a first-order transition.

Second, we investigate the specific heat in the square
[Fig. 11(b)] bond configuration, which has more inter-
faces of strong and weak bonds compared to the two-strip
configuration. In Fig. 12 we plot the coupling depen-
dence of the specific heat for I. =36 with various 8'.

With increasing interfaces of strong and weak bonds or,
in other words, decreasing 8', the peaks move from the
infinite-lattice transition points K& and KJ, respective-

1 10

ly, to the transition point K„=0.31266. . . of the ran-
10

dom system with decreasing amplitudes. A third peak
has been observed in the position near K, , which was

10

not found in the two-strip configuration. When the width
of the squares is one, only one peak is observed. The ab-
sence of the third peak in the two-strip configuration sug-
gests that this peak is present only when the system con-
tains enough interfaces between "domains" of strong and
weak bonds and the width of the domain that contains
same type of coupling constant is not too large. It is very
likely that the third peak is the one signaling the phase
transition in the random system. Again, only one peak is
observed when the width of the domain is one.

Finally, to study finite-size effects we observed how the
specific heat varied with system size for a square
configuration [Fig. 11(b)] with constant width (W=3).
The result is shown in Fig. 13. It is clear that only the
middle peak increases with system size. The other two
peaks, which are indeed characteristic of the short-order
correlation length of a particular bond distribution, do
not increase with lattice size when 8'is invariant. Fitting
the specific heat for large lattices to a power law, we find
that a/v is very nearly equal to 2, the value it would take
at a first-order transition. Further confirmation of this
can be seen in Fig. 14, which shows that the Lee-
Kosterlitz free-energy barrier is increasing rapidly with
system size.

Our observations suggest that the local collection of
distinct bond domains might be responsible for the
multiple-peak phenomena in the specific heat, which hap-
pens in the periodically arranged or random-bond sys-
tern. However, the nature of the phase transition of the
periodically arranged bond system remains first order,
suggesting that it is the "randomness" that induces the
second-order phase transition.

60
a a a 3
~ace 24

12

0.5
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FIG. 13. Coupling dependence of the specific heat for vari-
ous lattice sizes for a 3X3 square domain bond configuration.
The arrow shows the location of the exact transition point of
the random system with r = 10. The figure in the top box shows
the coupling dependence of specific heat at high coupling side.
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