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Expected number of sites visited by a constrained n-step random walk
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We develop a formalism based on generating functions for calculating the expected number of sites
visited by a lattice random walk constrained to visit a fixed point at the nth step. Explicit results are
given in the large-n limit when the target point is not too far from the origin.
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I. INTRODUCTION

There have been a number of investigations of the
sometimes striking effects of constraints on the properties
of random walks [1—9]. The analyses of constrained ran-
dom walks are motivated by applications in polymer
physics and, more generally, in chemical physics [10,11).
A simple constraint whose effects have been studied is
that of requiring the random walk to reach a specified site
v at step n [8,9]. One effect of this type of constraint is
that the average displacement at step j ~n is equal to
vln, independent of any property of the probability dis-
tribution for a single step of the random walk [8]. This is
true, for example, even when the probability distribution
of a single step of the unconstrained walk has no finite
moments.

A property of lattice random walks whose analysis
presents a considerable mathematical challenge, as well
as finding many physical applications, is the number of
distinct sites visited by an n-step random walk [12]. This
random variable will be denoted by R„. Finding even an
asymptotic distribution for this random variable requires
quite sophisticated mathematical methods [13—15]. As a
consequence, very few results related to this class of prob-
lems are known at this time. However, it is sometimes
true that a particular physical application requires know-
ing less information than is contained in the full probabil-
ity distribution. Many investigators have focused their
attention on determining properties of just the first mo-
ment (R„). At this level the problem is formally simple
since the generating function for (R„) can be found.
Making use of this generating function, the application of
Tauberian methods is then able to provide information
about the large-n limit of (R„). Unfortunately this ap-
proach is unavailable for higher moments since the corre-
sponding generating functions have not been determined
except for a recently calculated one for (R„) [16].Nev-
ertheless, the average number of distinct sites visited by
an n-step random walk is interesting, for example, be-
cause it can be used to generate a lowest order approxi-
mation to the so-called trapping problem [12],as was first
suggested by Rosenstock [17]. The approach to such
problems based on a cumulant expansion was discussed

by Zumofen and Blumen [18,19].
In this paper we derive some specific asymptotic results

for (R„) for constrained random walks in different di-
mensions. This is relatively straightforward because, just
as is true for the unconstrained random walk, it is possi-
ble to find an explicit generating function for this vari-
able. It should be noted that this problem has been con-
sidered earlier from a somewhat more abstract point of
view [9],but no explicit results were generated there.

II. GENERAL FORMALISM

Let p(r) be the probability that the displacement in a
single step of the unconstrained random walk is equal to
r, and let p„(r) be the probability that such a random
walker, initially at the origin, is at r at step n. The first-
passage time probability fj(r) is defined as the probabili-
ty that the random walk, in the absence of constraints,
visits r for the first time at step j. Let g(r~v, n) be the
joint probability that the random walk visits r for the first
time at step j ~n, and subsequently visits v at step n.
This function can be written in terms of those for the un-
constrained walk as

n

g(r~v, n)= g f~(r)p„ I(v —r) .
j=0

This implies that the expected number of distinct sites
visited by an n-step random walk constrained as de-
scribed earlier is equal to

gg (r~v, n)

(R„(v))= (2)
S„(v)
p„(v)p„(v)

in which S„(v) is the sum over r appearing in the
numerator. It does not seem possible to find a generating
function for (R„(v)) directly because n appears both in
the numerator and denominator of this expression. How-
ever, since Eq. (1) is a convolution, it is possible to derive
a generation function for S„(v)=p„(v)(R„(v)). Large-n
approximations can then be obtained by means of a Tau-
berian theorem. When the second moment of individual
displacements of the random walk is finite, one can com-
plete the calculation in the large-n limit by inserting the
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The generating function of the set of functions p„(r) with
respect to n will be denoted by p(r;z), the exact expres-
sion being

e l8 f
P(r;z)= . . d 8,

(2~) —~ 1 —zp (8)
(4)

where D is the number of dimensions. We observe, from
Eq. (2), that the generating function with respect to n of
S„(v) can be written as a product of the individual trans-
forms, which is to say

g S„(v)z"=f(r;z)P(v—r;z) .
n=0

Continuing the calculation by taking the generating func-
tion with respect to v and denoting the result by S(8;z),
we find from Eq. (2) the relation

S(8;z)=f(8;z)P(g, z) .

An expression for the function p(8;z) is obtained by
summing Eq. (4) over all r, and making use of the identity

g e' '"=(2n. ) 5(8) .

In this way we find that

p(8;z) = [1—zp(8) ]

The function f(8;z) is found through the use of the for-
mulas

p(; )

p(0;z)
1 —"(o )", r=O
P(0;z)

[20]. On multiplying both sides of this relation by
exp(i8 r) and sum. ming over all r, one finally has

Cvaussian approximation for p„(v).
To proceed with our calculations it will be convenient

to recall a few results from the theory of random walks in
free space that are not constrained. The generating func-
tion for the single-step generating functions, the p(j)
with respect to j will be denoted by p(8), which is defined
by

P(8)= gp(r)e"'

S(8;z)=
p(0;z) Bz 1 —zp(8)

(12)

This expression for S(8;z) can be inverted with respect to
0, leading to

S(v;z) = P(v;z)
p(O;z) az

or

g e
—iv.e

(2~) p(0;z) —~ [1—zp(8)]

III. ASYMPTOTIC PROPERTIES

A. One dimension

The results up to Eq. (13) are exact. In order to obtain
asymptotic results we will pass to the limit z~1, which
generally corresponds to the singular behavior of the gen-
erating function, which enables us to make use of Tau-
berian methods. Referring to the integral representation
of p( j;z) in Eq. (4) we see that the denominator of the in-
tegral vanishes when z=l and 0=0. In assessing the
singular behavior we need only examine the behavior of
the integrand in the neighborhood of the origin in 0
space. Let cr be the variance associated with a single
step of the unconstrained random walk, assumed to be
finite. If we measure distances in units of o., then p(g)
can be expanded around 0=0 as

P(8)-1+i@8
02

2
(16)

where p is the value of the bias also scaled by o.. Since
our primary interest is in the contribution to the integral
from the neighborhood of the origin, we can also extend
the limits on the integral to +~. Thus the leading term
from which asymptotic behavior may be inferred can be
expressed as

Since singularities occur only when z is equal to 1 the
leading order terms in the large-n limit can be found from
the first term on the right-hand side of Eq. (11). Thus,
the lowest order in an asymptotic expansion of S„(v) is
related to the singular behavior of

1S(v;z)- . d 8
(2n. ) p(0;z) —~ [1—zp(8)]

in the limit z~1.

g Wp(8)

P(0;z)[1—zp(8)]
Hence it follows that

1S(v;z)-
2m@(0;z)

e
—iv8

-2d0,
02

1 —z —l p0+
2

S(g )
zp(8)

P(0;z)[1—zP(8)]
1 1

P(0;z) I 1 —zp(8) j

1

I 1 —zP(8) j

which is the starting point for our analysis. An alterna-
tive expression is found by noting that

in which U is taken as a scaled variable.
Both the integral shown and P(0;z) may be found by

using essentially the same technique. We integrate the in-
tegral shown in detail. To evaluate the integral in Eq.
(17) we can exponentiate the denominator of the in-
tegrand by making use of the identity u = Jo ge "~dg.
This gives rise to the representation
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e " '~ exp i p —iU
2% 0 00

2(1 —z)+p u &2(1—z)+p'

Xexp[pu Ivi+2(1 z)+p ]

A similar derivation can be used to prove that

dP

(18)

therefore be wrong to calculate corrections to Eq. (23) by
dividing by a Gaussian approximation for p„(v) without
invoking further properties of this function.

Note finally that the preceding calculations have all
been made in terms of scaled coordinates, which is
equivalent to setting o.=1. Taking the actual value of o.
into account requires multiplying Eq. (21) by that value.

B. Two dimensions

P(0;z)- 1
(19)

+2(1—z)+p
To find the asymptotic form of the inverse of $(u;n) in
the limit n ~ m, we consider S(v;z) to be a Laplace
transform by setting z =e and taking the limit s —+0.
The resulting transform can be inverted exactly, and after
dividing by

p„(u) — exp
1 (v —np)

+2m.n 2n

as in Eq. (2), we find, as the asymptotic result
1/2

exp erfc
u' lul

(
2n 2n

(R„(u) ) —lvl+ (21)

The first somewhat surprising result is that the bias pa-
rarneter p does not appear in the expression just shown.
Thus the function (R„(u)), just as the mean displace-
ment in a single step of the constrained random walk, de-
pends only on the location of the target site and on no
other property of the underlying displacement probability
p (8) [8]. We do not anticipate that this will also be true
for higher moments of R„(u), but proving this to be the
case presents quite difBcult problems.

To examine the properties of (R„(u) ) as given in Eq.
(21), we note that two regimes can be identified, accord-
ing to whether U «n or U ))n. In the first case we
have the expansion

1/2
U

2

+ + ~ ~ ~

2n
(22)

To lowest order in n the expected number of distinct sites
visited is proportional to n' just as for the uncon-
strained walk. In the second case in which the random
walk is relatively stretched one expects that

(R.(v)) - lvl, (23)

so that the feature that determines the behavior of
(R„(u) ) to leading order in this case is just the amount
by which the random walk is stretched. We remark that,
while the central-limit theorem implies that p„(v) is ap-
proximately Gaussian, this is generally valid only in the
neighborhood of the peak and not in the tails. It would

I

In two and three dimensions we will deal only with the
isotropic random walk in which case P(8) is approximat-
ed in the neighborhood of the origin as

P(8)-1—,8 =8i+8z,
g2

(24)

d O, d 612

p (0;z)—
2+ 2~+

2

f "e "~ f e-~"d8
0

(25)

which has the form of a Laplace transform. The limit of
this transform at small c, can be determined from the
behavior of the integrand of this transform in the limit
g~ ca, i.e.,

f e ~ d8- f e ~ d8=v'm/g, (26)

where the limits of the integral can be extended to +00
because the main contribution comes from the neighbor-
hood of 0=0. Application of an Abelian theorem for La-
place transforms [21,22] to Eq. (25) using the result in Eq.
(26) then indicates that

1 1
p (0;z)— ln2' (27)

A similar argument, based on Eq. (15) can be used to
calculate the behavior of S(v;z) in the limit z~1. We
write

where we again measure distances in units of o.. Because
the central-limit theorem does not, in general, furnish in-
formation about the behavior of p„(v) in the tails of the
distribution, we consider only the close-in regime defined
by v «n, where u =(v v)'~ . Our analysis will be based
on the expression for S(v;z) in Eq. (15). We first present
a heuristic argument that demonstrates that our formal-
ism leads to the known result for (R„) in the lowest or-
der of approximation. This requires determining the
behavior of both the integral in Eq. (15) and the function
P(0;z) in the limit z~1. The behavior of p(0;z) in the
limit z~1, or equivalently c,—+0, is found by focusing on
the singular behavior of the integral representation in the
neighborhood of 0, =02=0,

S(v;z)- f ge '~dg f f exp —~[8,+8&] iv 8 d8, d8—z2n. in(1/s) o 2
1/2

2

In( 1/s ) o 2g ln( 1/c, ) Ef exp —Eg — d g'= — K, (u v'2E ), (28)
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where ICi(z) is a modified Bessel function of order 1 and
where we have assumed that vAO. The extension to v=0
is straightforward. The relation in Eq. (28) can therefore
be expressed in terms of a slowly varying function L (z)
[21,22] as (R„(v))- (R„) 1 —', ln

2n 2n
+ ~ ~ ~ (33)

together with the fundamental formula in Eq. (2), we
finally find that in the regime defined by U (&n

S(v;z)- L-
E E.

L

(29)

where the specific form of the function L (1/e) is found
from Eq. (29) to be

which again is an increasing function of U. In writing this
relation we have neglected a term in brackets by invoking
the assumption that ~ln(v)~ &&ln(n), which is based on
fixing U and letting n become sufficiently large.

v&2eL (1/E) = Ir:, (v 2e), vAO (30)
C. Three dimensions

1/2

S(v;n)- U 2
'EC1 U

ln(n ) n

1/2
2

L

' 1/2
U 2+ K0 v
2n n

(31)

and L(1/e)=1 when v=O. The fact that L(1/E) in Eq.
(30) is slowly varying in the limit E~O, can be verified by
making use of the small-z expansion of the Bessel func-
tion Xi(z)-(1/z)+(z/2)ln(z/2).

The decomposition of S(v;z) in Eq. (29) implies that in
the limit n —woo one has S(v;n)-L(n)+nL'(n). After
some element steps this translates into

Essentially the same techniques that were employed in
the preceding section can be used to derive an expression
for (R„(v ) ) in three dimensions. Our analysis is based
on the approximation in Eq. (24) extended to allow for a
third parameter, 83. Let us return to Eq. (15), which is to
be expanded in the neighborhood of z= 1, or equivalently
c, =0. In the calculations to follow it will shortly be seen
that both of the terms in Eq. (11) contribute to (R„(v))
in the limit of large n. When z is set equal to 1 in the
second of these terms the result is finite. It will be denot-
ed by K ( v ), which is therefore representable as

(34)

z
IC (z)- —ln0

1 z z
Xi (z) ——+—ln

z 2 2
(32)

On making use of the small-z expansions of XD(z) and
Ki(z),

It will also be necessary to calculate a correction term for
the function p(0;z) beyond the constant p(0;1) in the
limit z —+ 1. To find this correction we write
P(0;z)=P(0;1)—[P(0;1)—P(0;z)]. The term in brackets
is easily seen to equal

p(0;1)—p(0 z)= d'8
( 2~ ) —7r rr —1r [ 1——p ( 8 ) ][ 1 —

( 1 —E )p ( g ) ]
(35)

On expanding the integrand around 8=0 and converting
the integrand to spherical coordinates we find

' 1/2
1 c.

(36)
7r 2

~1/2
P(0; 1)—P(0;z)- f 8'

2

1 oo 00 00

S,(v;z)-
(2~)'p(0;1) I -I -I-- —iv-8e -2d 8

g2

2

1
exp( —vv 2e) .2' (0; 1)&2e

(37)

If we regard c. as a Laplace transform, as is permissible in
finding asymptotic behavior, we can invert the resulting

We next turn our attention to the singular contribution
to S(v;z) in the neighborhood of z=1. The lowest order
term in the analog of Eq. (28) is equal to

transform, finding

1 US (v)- exp
(2m ) p(0'1)n

(38)

Hence, after dividing by p„(v), we find that the contribu-
tion from this term to (R„(v)) is

(R„(v)),— -(R„) .
P(0;1)

(39)

1 1

P(0;z) P(0;1)

1/2

1+ 1 E,

mP(0; 1)
(40)

The lowest order of approximation to the dependence on
v must therefore be due to the correction term in the ex-
pansion of p(0;z) around z= 1 as well as from the con-
stant indicated in Eq. (34).

Equation (36) implies that
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1Sz(v;z)- exp( —uV2e),
4m [P(0;1)]

(41)

which translates into

Thus, there is a contribution to S(v;z) which has the
form (R„(v)&

- (R„& . 1+ „, 1 u K(v)
2 ~ mp(0;I) n P(0;1)n

2

+0 (46)

or

v vS„z(v)- exp
Sm [P(Q'1)] n

(R„(v)&,= „, «„&—'.
2 i np(0; I )

(42)

IC(v)
n.[P(0;1)]

X(v)
(2nn) ~ [.P(0;1)]

(44)

which imJilies a contribution, to lowest order, to (R„(v) &

of

(R„(v)&,= —«„&„P(0; 1)n
(45)

The sum of the three contributions is

The 6nal contribution comes from the second term on the
right-hand side of Eq. (11), together with the expansion
of I/p(0;z) indicated in Eq. (40). In the transform
domain the only term contributing to the asymptotic
behavior is equal to

1/2

It can be remarked that since X(v) %0,
(R„(v) & ( (R„&, in contrast to the result found in two
dimensions. This di6'erence is undoubtedly due to the
fact that the three-dimensional random walk is transient
rather than being recurrent, so that a random walk that
returns to the origin at step n is more likely to have
stayed in the neighborhood of its initial position than
would be the case for a recurrent walk. An analysis of
(R„(v) & at larger values of u requires a more detailed
specification of the behavior of p„(v) in the regime in
which the central-limit theorem provides no useful infor-
mation.

It can be shown that the function X (v) appearing in
Eq. (46) decreases monotonically with u, so that the term
in brackets is a monotonically increasing function of v.
Hence, all of our results suggest that (R„(v) &, viewed as
a function of v, is monotonically increasing in this paper.
While this property of monotonicity has not been proved
rigorously, we believe it to be true, based on the con-
sideration that "stretching" the random walk forces it to
explore regions of space that it would otherwise tend not
to visit in the absence of constraints. The validity of this
conjecture remains a challenge for further investigation.
An extension of our calculations to random walks in
higher dimensions is straightforward and will not be de-
scribed here.
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