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Influence of spatial inhomogeneities on the Freedericksz threshold
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By analyzing the Freedericksz transition induced by an external magnetic field on a nematic liquid
crystal, we determine the elastic contribution to the anisotropic part of the anchoring energy. Our
result is in good agreement with the one obtained by other groups for the same problem. In the
simple case in which the elastic constants change in a surface layer whose thickness is very small with
respect to the thickness of the sample, our analysis shows that the extrapolation length of elastic
origin is of the order of the thickness of the surface layer. The in6uence of the spatial variation of
the diamagnetic anisotropy is also analyzed. It is shown that the contribution to the surface energy,
arising from this spatial variation, is negligible.

PACS number(s): 61.30.cd, 64.70.Md

Let us consider a nematic liquid crystal (NLC) slab of
thickness d. The surface anchoring energy is supposed
strong and the easy direction homeotropic [1]. In the
presence of an external Beld H parallel to the bounding
walls, the bulk free energy density is [1]

1 2 2fb= —kQ — yH sin —P,
2 2

where the first term on the right-hand side is the elas-
tic contribution and the second one is connected with
the magnetic anisotropy. P is the tilt angle defined by
P = arccos(n z), where n is the NLC director and the z
axis is normal to the boundaries. A: and y are the Frank
elastic constant and the diamagnetic anisotropy, respec-
tively, and P = dP/dz. The total free energy, per unit
surface, of the sample under consideration is given by [1]

In the case in which the surface anchoring energy is
finite, instead of (2) it is necessary to minimize the quan-
tity [3]

d/2
G = [zkP —2y H sin P]dz

—d/2

+fs ( d/2) + f—g (d/2),

where f~(+d/2) takes into account the anisotropic part
of the surface energy. In the Rapini-Papoular approxi-
mation, fs(+d/2) = W~/2 sin P(+d/2), where W~ are
the surface anchoring strengths [3]. In the framework of
a symmetric sample, W+ ——W = W and (4) writes,
taking into account that P(z) = P(—z), as

d/2

2k/ —2y H sin P dz.
—d/2

(2) d/2
G = 2k/ —2y H sin Q dz+ Wsin $s, (5)

—d/2

By minimizing (2) it is possible to obtain the profile

P = P(z; H) and the critical field for the Freedericksz
transition Hc [2]. This critical field is defined by the
condition that for H ( H~, P—:G, Vz C (—d/2, d/2),
minimizes E given by (2). This effect has been impor-
tant in the past because the Brst experimental determi-
nations of the Frank elastic constants have been done by
analyzing the threshold field in di8'erent geometries. A
simple calculation shows that if k and y are position
independent, Hc is given by [1]

H~ d fvrHc l= tan
Hc 7rI g2Hc ) ' (6)

known as Rapini-Papoular equation. In (6) I = k/W is
the extrapolation length and H~ is still given by (3).
In the limit of relatively strong anchoring (I (( d), (6) is
well approximated by [3]

where Ps = P(+d/2). In this situation the analysis of the
stability of the undeformed state shows that the critical
field is given by [3]
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H~ =H~

Equation (6) holds in the hypothesis in which k and y
are position independent.
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Recent papers devoted to the evaluation of the elas-
tic constants by means of semimicroscopic models show
that, actually, the elastic constants near the bounding
walls are expected to be position dependent [4—7]. The
surface layer over which the elastic constants are position
dependent has a thickness of the order of several molec-
ular dimensions. Long ago, Mada [8] suggested that the
k(z) dependence may be macroscopically interpreted as
a weak anchoring, even if actually the surface energy is
very large, i.e., the anchoring is strong. Despite the fact
that the analysis performed by Mada was not completely
correct, the idea was physically sound [9]. More recently,
Yokoyama et al. [10], Faetti [ll], Barbero and Durand
[12], and Alexe-Ionescu et al. [13 have analyzed in what
manner it is possible to de6ne an effective anchoring en-
ergy connected to the spatial variation of the elastic con-
stants. By means of a rather complex analysis they show
that the effective anchoring energy is connected to the
k(z) dependence by [10-13]

1 kl, —k(z) kl, —k(z)= p = dz~
W krak(z) p krak(z)

(8)

d/2
-'k(z) P —-'y (z)H sin P dz,

—d/2

where

k(z) = kg —hk(z), y = y g
—hy (z). (10)

In (10) kq and y q are, respectively, the bulk values of the
elastic constant and of the diamagnetic anisotropy. Both
bk(z) and hy (z) take into account the spatial variations
of k(z) and y (z). They are localized in two surface
layers of thickness o. This thickness coincides with p or

where p is the thickness of the surface layer in which
k(z) changes and kg is the bulk value of the elastic con-
stant. The spatial variation of the elastic constant has
two origins. The erst one is due to the fact that the inter-
action volume is incomplete near the surface, in a layer
whose thickness is of the order of the range of the inter-
molecular forces responsible for the nematic phase [4,5].
The second origin is connected with the fact that near a
bounding wall there is a pro6le of scalar order parameter
S = S(z) [1]. The spatial variation of S takes place over
a few coherence lengths $ and S passes from the surface
value, which depends on the NLC-substrate interaction
and on the temperature, to the bulk value, which depends
only on the temperature [1]. Since the elastic constants
are, in a first approximation, proportional to S [14], it
follows that S = S(z) implies k = k(z). Of course if
S = S(z) not only the elastic constants are expected to
be position dependent, but also the diamagnetic or di-
electric anisotropy, which are proportional to S.

Now we want to rederive the effective anchoring energy
(8) in a simple way by considering the Freedericksz efFect.
We will suppose that the NLC is characterized by strong
homeotropic anchoring, but k = k(z) and y = y (z). In
this framework (2) needs to be rewritten as

( according to the fact that the incomplete interaction or
the spatial variation of the scalar order parameter is the
most important source for the k(z) and y (z) variations.
Hence bk(z) g 0 and by (z) g 0 for z E (—d/2, —d/2+0)
and z 6 (d/2 —o, d/2). For H close to Hc, P « 1,
Vz C (—d/2, d/2). By expanding P(z) in Fourier series
and retaining only the Grst harmonic we have

d(z) = dc cos (
—z),

since P(kd/2)=0 for the strong anchoring hypothesis. By
substituting (11) into (9) one obtains

1 2 VrE = —dc* (
—

) k(z) sio (—z) dz
2

d/2
dd i—c (z) cos —z) dz

d/2

From (12) in the case in which k(z) = kb and y (z) = y~l,
simple calculations give E ( 0 for H ) Hc de6ned by
(3). In the present case the above-mentioned condition
F & 0 gives

f ~ z k(z) sin ( ~ z)dz

f ~&~ y (z) cosz( ~ z) dz
(13)

for the threshold field. If we now consider (10), Eq. (13)
can be rewritten as

ac =BC
1 2

1 ——f cos ( —z)dzd —d/2 d

(14)

Since usually 0 « d and max
] hk(z) ] is of the order

of kl, and max
~

by (z)
~

is of the order of y g, (14) is
equivalent to

C —~C~ ~ —— san —z
bk(z) . ,

d dg2 kb

cos —z dz
by (z) ~ vr

gab d
(15)

By comparing (15) with (7) we derive that to a k(z) and
y (z) dependence it is possible to associate an efFective
anchoring energy whose extrapolation length is given by

1 ~ b'k(z)I sin —z dz.
2 d)2 k

(17)

I = — sin —z — cos —z dz.bk(z) . , ~ by. (z)
2 d~2 kb d Xa,b

(16)

Since hk(z) is difFerent from zero only in the two layers

(—d/2, —d/2 + o) and (d/2 —o, d/2), cos~(&z) is prac-
tically zero in the case in which o. (( d. Consequently,
from (16) one derives that
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This means that y (z) does not contribute in a signifi-
cant manner to the efFective extrapolation length, or to
the effective anchoring energy. From (17) the efFective
anchoring energy is found to be

(18)

Since cr « d, (17) is equivalent to

imation of (21) only if bk(z) is small with respect to k~.
In the opposite case in which bk/ks 1 the difFerence
between (19) and (21) could be important. In this situa-
tion the equivalent anchoring energy, which is possible to
defI.ne by means of the Freederickz transition, no longer
corresponds to the one usually de6ned according to Gibbs
theory of interfaces [10—13].

However, if k = k(z) due to the spatial dependence of
the scalar order parameter S, a simple calculation shows
that

bk(z) &S(z) &
'

l S i '
kb ( ~s ) &~s)

(22)

In the limit 0 && d, I is an intrinsic property of the NI C,
independent of the thickness of the sample. For a rough
estimation of (19) we can assume for bk(z) an exponential
behavior of amplitude kt, /2 [4—6] and relaxation length o.
In this case, froin (19) we obtain

L o., (2o)

which is consistent with the estimation of the same pa-
rameter obtained in [10—13] in a difFerent manner.

However, there is a difFerence between the result ob-
tained by us and the previous one reported in [10—13].
Formula (19) is approximated in the sense that ks ap-
pears in the denominator. On the contrary, in the one
obtained by means of (8), which is

where S, and Sg are the surface and bulk values of the
scalar order parameter. Usually S, is not very difI'erent
from Ss [15], and hence bk/ks « 1. This means that, at
least in this case our model works well.

In conclusion we can stress the main results of our pa-
per. By considering the well known Freedericksz eKect
we have shown that to a spatial variation of the elastic
constants it is possible to associate an efFective anchor-
ing energy, even if the true anchoring energy is strong.
The result obtained by us is in agreement with the one
obtained by other authors in a more complicated man-
ner. We have shown, furthermore, that in the case in
which the thickness of the surface layer o is very small
with respect to d, the spatial variation of the diamag-
netic anisotropy does not play an important role in the
effective surface energy.

k(z) is present. This implies that (19) is a good approx-
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