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Stationary soliton bound states existing in resonance with linear waves
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The phenomenon of stable propagation of spatially localized solitary waves, has been investigated
for various dynamical systems. If a solitonlike pulse is in resonance with linear waves, then this pulse
emits radiation and therefore it cannot exist as a stationary wave. Nevertheless, it is shown here
that two (or more) radiating (and thus nonexisting as stationary waves) single solitonlike pulses can
still form a stationary bound state due to mutual trapping of their own radiation. Trapped radiation
forms a standing wave, which in turn produces local minima in an effective interaction potential of
the neighboring solitons. However, in contrast to conventional solitons, soliton bound states that are
formed due to trapped radiation exist only for discrete values of soliton parameters, i.e. , such bound
states do not form continuous families of localized solutions, and they are inherently unstable. Two
physically important systems for which stationary bound states of radiating solitons can be found
are considered.

PACS number(s): 03.40.Kf, 42.50.Rh, 02.30.Jr

I. INTRODUCTION

Various integrable dynamical equations, for exam-
ple, the nonlinear Schrodinger (NLS) equation, the
Korteweg —de Vries (KdV) equation, and the sine-Gordon
(SG) equation, are known nowadays [1,2]. In physics
these equations are in the center of interest because of
their numerous applications [3]. One of the main fea-
tures of these (and many other) integrable dynamical
equations is the existence of solitons, stable spatially lo-
calized waves with the unique particlelike properties. In
general, all solitons can be divid. ed into two major classes:
single solitons (which are stationary in a certain moving
reference frame) and breathers (solitons localized in space
and periodic in time which can be treated as a nonlinear
superposition of single solitons).

In physical applications integrable dynamical equa-
tions usually correspond to certain approximations and
therefore, in many cases, these equations should be gen-
eralized by some small additional terms to make the de-
scription of real physical systems more adequate'. Thus
the question of significant importance is what will hap-
pen with solitons of integrable equations if some pertur-
bations are taken into account. (In this paper we are
interested in Hamiltonian perturbations whereas the ef-
fects produced by non-Hamiltonian or dissipative pertur-
bations seem to be well understood [4]. Also we will use
the word "soliton" instead of "solitary wave" for local-
ized solutions of nonintegrable equations as well. ) Gen-
erally speaking, the answer to this question is known.
Breather-type solitons are destroyed by almost any type
of perturbations (e.g. , see [5] for the SG breathers and
[6,7] for the NLS breathers). However, single solitons
have better chances to survive under action of Hamilto-
nian perturbations. In general, a single soliton is stable
against perturbations that do not lead to resonant inter-
actions of this soliton with small-amplitude linear waves

.OU O2U+, + p.«+ [Ui'U = 0,
O7

~here p « = isB U/8( for the former case or p ds =
s'8 U/0( for the latter case and ~s~ (( 1. If s = 0, then
Eq. (1.) reduces to the conventional' NLS equation that
has the well-known family of one-soliton solutions:

U( &)= i(n7. —v 7-/4+v//2)
cosh[~o. (( —vr)]

(2)

These solitons exist for any o. ) 0. For simplicity we
demonstrate the idea of resonant interactions between
a soliton and linear waves for the case of the stationary
soliton (taking e = 0); however, a solution with any value
of v can be easily considered as well.

As a erst step in our search for the resonance we
should make a change of variables in Eq. (1) in the
form U(r, () = W(r, ()e' and obtain the equation for
W(r, (),

.OR' O R' —nW+ ~W~'W+ p «(W) = 0. (3)

It is easy to see that

20!'"'= - h(WO

is a stationary soliton solution of Eq. (3) at p « = 0.
The phase velocity of any spectral component of the soli-

[8]. In other words, the phase velocities of all spectral
components of a soliton should not coincide with the
phase velocity of any linear wave that can propagate in
the system. The typical example illustrating this point is
the generalized. NLS equation with an additional third-
[8—11,13] or fourth-order derivative term [12—16]:
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U(g, ~) —= u(g) e' sinh(j,'/ ~10)
cosh (g/~10)

3/2
cosh ((/2)

6~2 sinh ( 6
V =

2cosh ( cosh
(8)

For r = —1, s = —1, and o. = 1, Eqs. (6) have another
analytic solution, found in [27] [see Fig. 2(c)],

0.8
0.6= (~)
0.4—

0.2—

0
-0.2:
-0.4:

which was found in [14].
The system (6) also admits exact solutions that de-

scribe two-wave parametric solitons in dispersive y( ~

nonlinear media. For r = 1, s = —1, and o. = 2 it
has the exact solution found in [26] [see Fig. 2(b)],

3/2
v = 1—

cosh ((/2)

We will show below that these three exact solutions
(7)—(9) are the particular (simplest) representatives of
a broad class of localized solutions, the so-called two-
soliton radiationless bound states (BS s) of single radiat-
ing solitons, a fact that has been missed in the literature.
Each of these BS's is formed with the help of a standing
wave of trapped radiation that self-consistently produces
local extrema in an effective interaction potential of two
radiative solitons, which support this standing wave be-
tween them.

The remainder of the paper is organized as follows. In
Sec. II we provide the outline of the analytic solution
of the BS problem for the case of Eq. (5) and present
corresponding numerical results. We also consider the
stability of the discovered class of two-soliton BS's. In
Sec. III we present results concerning BS's of radiating
solitons of the system (6). Finally, Sec. IV concludes the
paper.
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II. BOUND STATES OF RADIATINC SOLITONS

The physical picture for the formation of the soliton
BS's due to trapping of radiation will be explained while
analyzing Eq. (5), but it is also possible to carry out a
similar analysis for the case of Eqs. (6). We start our
analysis with a quick overview of the results related to
the conventional NLS equation

0
~ OU 82U
i + +]U~ U=O.

O'T
(10)

Ic
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The NLS equation (10) can be exactly solved by means of
the inverse scattering transform technique [28]. Equation
(10) has a continuous family of stationary one-soliton so-
lutions
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+2n

cosh[~n(( —j,o)]

where (o is an initial soliton center position and @o is an
initial phase. Adding the fourth-order derivative term to
the NLS equation, we obtain Eq. (5). The conventional
solitons (11)are no longer stationary solutions of Eq. (5).
Moreover, any localized one-hump pulse launched as an
initial condition to Eq. (5) will radiate, i.e. , stationary
single solitons do not exist for Eq. (5) in principle. A
formal analysis of the radiation problem for Eq. (5) can
be found in [12,13]. This analysis shows that the solution
(11) taken as an initial condition for Eq. (5) emits ra-
diation on the wave number corresponding to the phase
velocity resonance,

FIG. 2. Three "remarkable" exact solutions: (a) the solu-
tion (7) [14], (b) the solution (8) [26], and (c) the solution (9)
[27].

1+ gl + 4n0—
2

(12)
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The amplitude of the radiative waves can also be esti-
mated [12,13]

kpw

+rag ~ & (13)

In contrast to the case of the generalized NI S equation
with an additional third-order derivative term [8—11,13],
in the case of Eq. (5) the radiation is emitted symmet-
rically from both sides of the pulse. For ~a (( 1 the
intensity of radiation is exponentially small (beyond all
orders), so that the soliton solution (11) is a good ap-
proxirnate solution of Eq. (5).

Now, as the first step to construct BS's of two iden-
tical radiative solitons, we need to locate them relative
to each other in such a way that the interference pattern
of their radiation vanishes exactly in both asymptotic re-
gions ( ~ Woo (see also [19]). Figure 1 illustrates this
idea schematically. Without loss of generality we can
assume that we have one soliton (11) with (o ——0 and
@o ——0, which we denote as Uo((, r), and the other soli-
ton Uo ((+Ag, r) e'~'~ with the maximum at jo ——Ag ) 0
and the initial phase @o

——Ag ) 0. Both solitons emit
radiation symmetrically and for each soliton taken sep-
arately there is a phase shift Po(a) between the soliton
and the emitted radiation [in general, Po(cr) is nonzero].
Following the approach of [20], it is possible to show that
the radiation in the region g ~ —oo can be cancel if
the radiation from the second soliton [Uo(g+ At,', r)e' @]

is coming to the first soliton [Uo(g, r)] with the relative
phase shift —Po(o.). Thus, in order to cancel the radia-
tion we need to satisfy the condition

the standing wave f (it is related to the number of zeros
in the central part of f) In general, it is quite cornpli-
cated to find Po and especially f analytically for ~a (( 1
(i.e. , in the approximation of weak radiation). Moreover,
even the asymptotic result is hard to obtain, e.g. , four
known approaches for the calculation of the intensity of
the asymptotic radiation for the case of the NLS equation
with the third-order dispersion give four slightly difFerent
analytic results [8,10,11,13]. Since in this paper we are
interested in the physical picture rather than in rigorous
mathematical details, we will proceed with our analysis
assuming that we already know f and Po somehow.

Now to find stationary two-soliton BS's we can employ
the efFective particle approach of Ref. [29] (for the recent
examples of using this approach see [16,20]). The effec-
tive particle approach shows that the interaction between
two solitons in a'Hamiltonian system is determined by the
nonlinear part of the corresponding system Hamiltonian,
which in the case of Eq. (5) is

1
IIint = —

2
[U/ d(

0.6

0.4—

0.2-

0

Ao&g + 4@+ 2$o(cr) = 27m, (14) -0.2—

where n = 1, 2, 3, . . . . However, the condition (14) does
not guarantee the radiation compensation in the asymp-
totic region ( -+ oo. To cancel the radiation there we
should satisfy the other condition that can be obtained
in the similar way:
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koan( —Dg+ 2$p(n) = 2vrm, (15)
0.25

where m = 0, 1, 2, 3, . . .. It immediately follows from (14)
and (15) that radiation can be canceled in both asymp-
totic regions only if two identical solitons are either in
phase (4@ = 0) or completely out of phase (Ag = ~).
The form of the resulting two-soliton structure UTS with
the radiation canceled in both asymptotic regions (note
that, in general, this two-soliton structure can still be
nonstationary) is given by
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(16)
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where Ag = 0 or vr and f represents the standing wave
formed by the trapped radiation (see Fig. 3 for exam-
ples). It is important to note that the standing wave

f (in contrast to the radiation emitted by a single soli-
ton) has a zero phase shift with respect to the solitons
Up(g, r) and Uo (g+b, (, r). We can also consider the value
of the discrete parameter n of Eq. (14) as the order of

I"IG. 3. Examples of two-soliton BS's formed by the stand-
ing wave of trapped radiation. Two-soliton BS's are shown by
thick curves. Partial single solitons are shown by thin dashed
curves and standing waves formed due to trapping of radia-
tion are shown by thin solid curves. (a) The two-soliton BS
at n = 1. (b) The two-soliton BS at n = 9.
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Using the approximation of well-separated solitons,
one obtains [20,29]

K, (E(,E@) = —2 f ~U,
~

Re[U, (Ug + f*)]d(

+(1++ 2), (is)

where the expression describing the interaction of the
Erst single soliton with the tail of the second one and
the standing wave of trapped radiation is written down
explicitly. Because of the symmetry, a similar expression
(1 ++ 2) has to be added to describe the interaction of
the second soliton with the tail of the 6rst one and the
other edge of the standing wave. The efFective interac-
tion potential II;„t[defined by (18)] depends on the rela-
tive distance 4( between the centers of the two solitons
and their relative phase difference Ag. Two-soliton BS's
exist if this efFective interaction potential (18) has local
extrema. These extrema are determined by the equations

BII;„, 0II;„t
Bb,@

' M,( (i9)

It is possible to show that the first of Eqs. (19) gives
the result Ag = 0 or 7r, which has already been obtained
from the conditions of trapped radiation (14) and (15).
Thus we have only one variable A( to be determined,
but two equations: the condition of the trapped radiation
(14) [or (15)] and the second equation of the system (19).
For fixed values of the soliton parameter n, n (or m), and
Ag (= 0 or vr) this system is overdetermined with respect
to 4(. However, if we solve this system assuming that
two continuous variables 6( and cr are unknown, we have
a good chance to find a discrete set of the solutions b,(„
and o. at least for some values of n and AQ.

As we have shown above, the dj.fBculties in the ana-
lytic calculation of Ag and o. are significant. However,
there is a well-known and straightforward way to 6nd the
corresponding stationary solutions numerically, using the
fact that possible two-soliton stationary solutions formed
due to trapped radiation have Bat phase fronts. Look-
ing for the stationary solutions of Eq. (5) in the form
U((, r) = u(g)e' (where u is a real function) we get
the equation of real parameters

2.5—

(3 i.s- .-- o 0
b 0 0

0.5—

I

0.04 0.12

0.3

02= ~=
0.2—

order n of the corresponding standing wave f is equal to
one), there are also other two-soliton BS's of higher or-
der. (The two-soliton BS's of third and ninth orders are
explicitly shown in the bottom part of Fig. 4. The stand-
ing wave, formed by the trapped radiation, can be clearly
seen between two soliton peaks. ) Each of these solutions
corresponds to some particular value of n of Eq. (14)
and, in agreement with the above analysis, exists only
for one unique value of the parameter o. . We checked
the validity of the relation (14) for these two-soliton BS's
and found very good agreement between numerical and
analytic results.

The question of stability of two-soliton and multisoli-
ton BS's formed due to trapping of radiation is closely
related to the question of their origin. The analysis of this
section shows that these BS's are formed as a result of
very delicate self-consistent balance, which can be easily
broken. This itself does not prove that BS's formed due
to trapping of radiation should be unstable. However,
the fact that these BS's do not form continuous families
in o. strongly supports the idea of inherent instability of
all BS's of radiating solitons. Indeed, any perturbation
of a BS formed due to trapping of radiation will lead to

0'u 04u
el/2 g(4 (20)

which is an integral of motion of Eq. (5).
One can see that, in addition to the already known

exact analytic solution (7) (shown in Fig. 4 as a filled
circle), which is a two-soliton BS of first order (i.e. , the

localized solutions of which correspond to stationary soli-
ton solutions of Eq. (5) and can be found by means of
the standard shooting technique (see, e.g. , [15]). The re-
sults of this numerical analysis are shown in the form of
the energy-dispersion diagram of Fig. 4, where Q is the
energy of two-soliton BS's determined by

-0.1—

-0.2—

-0.3
-100 -50 0 50 100

-0.2—

Q 4
-50 -25 Q 25 50

FIG. 4. Energy-dispersion diagram for the discrete set of
stationary localized solutions of Eq. (5) iu the form of
two-soliton BS's (circles). For small values of o. these so-
lutions look as two NLS solitons (11) with a standing wave
of trapped radiation between them. The 6lled circle corre-
sponds to the exact solution (7) shown in Fig. 2(a). The
dashed curve corresponds to the NLS equation limit. There
is a discrete set of infinitely many two-soliton BS s for a. ~ 0,
but some of the corresponding opened circles are located very
close to each other and cannot be distinguished in the scale
of this 6gure.
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FIG. 7. Energy-dispersion diagram for the discrete set of
stationary localized solutions of the system (6) w'ith r = —1,
s = —1 in the form of dark two-soliton BS's (circles). The
filled circle corresponds to the exact solution (9) shown in
Fig. 2(c).

BS's of the system (6). Again all these BS's are found to
be unstable.

IV. CONCLUSIONS

%'e have presented constructive examples that for some
dynamical systems stationary two-soliton (and multisoli-
ton) solutions can exist being in resonance with small
amplitude linear waves. The necessary condition for the
existence of such BS s of radiating solitons is a symmet-
ric pattern of radiation emitted &om the soliton core of
each single pulse. It is very important that, in contrast
to conventional solitons, soliton bound states formed due
to trapping of radiation do not form continuous fami-
lies of localized solutions. As a consequence, all BS's of
radiating solitons have no chance to be stable.

We propose and prove (analytically and numerically)
that the exact solutions (7)—(9) are, in. fact, two-soliton
BS's formed due to trapping of radiation. We also found
three corresponding classes of other two-soliton solutions
formed due to trapping of radiation. Representatives of
these classes can be classified by the order n of the stand-
ing wave of trapped radiation formed by interacting sin-
gle solitons. The stability problem for all three classes of
the found solitons has also been considered.

This paper provides insight into the physical essence
of broad classes of soliton solutions. In the works where
the exact solutions (7)—(9) were obtained, nothing was
mentioned about the origin and the physical nature of
these solutions. Moreover, some misunderstanding and
mistakes that occurred in the literature concerning this
topic would have been avoided had the physical picture
discussed in the present study been known. For exam-
ple, in the paper 27 it was claimed that the solution
(9) is "stable "In .[25 some solutions analogous to two-
soliton and multisoliton BS's of our paper were declared
to be "rather stable. " Finally, in [19] it was mentioned
that the two-hump solutions, formed by radiative soli-
tons, can be "quasistable" in the sense that their insta-
bility growth rate is small. Formally the last statement
is correct since a two-soliton BS of sufFiciently high order
does not have fast growing instability modes. However,
in this case the bound energy (18) for such a BS is also
exponentially small since there is practically no radiation
emitted. Thus, in principle, we do not have a quasistable
two-soliton BS, but two quasistable single solitons, which
nearly do not interact with each other.

Finally, we would like to note that the approach and
results obtained in the present paper can be readily ap-
plied to other models of a diferent physical context where
radiative solitons exist. As a matter of fact, this can be
expected in many other physical models where station-
ary solitonlike solutions are described by nonintegrable
dynamical systems with a rather complicated behavior
of the separatrix phase trajectories near critical points.
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