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We discuss the probabilistic properties of a class of differential delay equations (DDE’s) by first reduc-
ing the equations to coupled map lattices, and then considering the spectral properties of the associated
transfer operators. The analysis is carried out for the deterministic case and a stochastic case perturbed
by additive or multiplicative white noise. This scheme provides an explicit description of the evolution
of phase space densities in DDE’s, and yields an evolution equation that approximates the analog for de-
lay equations of the generalized Liouville and Fokker-Planck equations. It is shown that in many cases
of interest, for both stochastic and deterministic delay equations, the phase space densities reach a limit
cycle in the asymptotic regime. This statistical cycling is observed numerically in continuous time sys-
tems with delay and discussed in light of our analytical description of the transfer operators.
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I. INTRODUCTION

In this paper, we study the statistical properties of first
order differential delay equations (DDE). These equa-
tions routinely appear as realistic models in mathematical
biology [1-3], in nonlinear optics [4,5], and in the
description of agricultural commodity markets [6,7] to
mention a few applications. In the deterministic case,
these models are of the form

dx(t) _
dt

and if noise enters the problem, they can be written as

dx (t)=[—ax (t)+F(x(t —1))]dt +G(x ())&(2)dt ,

—ax(t)+F(x(t—1)),

where a >0, £(t)dt denotes a stochastic process whose
characteristics will be discussed in Sec. II B below, and
the initial condition for the system in both cases is a func-
tion @ defined on [—1,0) (the delay is taken to be one
without loss of generality).

The phase space of these systems is infinite dimension-
al. The ensemble density, which gives the probability of
occupation of phase space is, therefore, a functional. The
evolution equation for this functional, known as the Hopf
equation [8—-11], cannot be integrated due to the lack of a
theory of integration with respect to arbitrary functional
measures.

In this paper, we propose a reduction of the original
DDE to a finite-dimensional system that is arbitrarily ac-
curate. This approximation is framed in both the sto-
chastic and the deterministic case as a coupled map lat-
tice (CML). The work presented here strongly indicates
that in many circumstances of interest (from a modeling
perspective) the Hopf equation can be approximated by
the Perron-Frobenius equation in RY (or its stochastic
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equivalent). The resulting description of delayed dynam-
ics is akin to the description of ordinary differential equa-
tions (ODE’s) given by the generalized Liouville equation
or of the Langevin equation by the Fokker-Planck equa-
tion. Once the reduction is completed, the analytical
techniques available to describe the probabilistic proper-
ties of CML’s can then be used to explain the presence of
continuous-time statistical cycling numerically observed
in the DDE’s.

In Sec. II, the reduction of first order DDE’s to CML’s
is described in both the presence and the absence of noise.
Section III introduces basic concepts necessary to de-
scribe the evolution of ensemble densities in CML’s: The
Perron-Frobenius and transfer operators are defined.
The link between various convergence properties of se-
quences of functions and the thermodynamic description
of dynamical systems is described, and we briefly review
the concept of variation in RY, which is central to our
description of deterministic CML’s. An important
theorem due to Ionescu Tulcea and Marinescu is dis-
cussed. In Sec. IV B, the analysis of deterministic sys-
tems is presented. Numerical investigations of a particu-
lar model confirm analytical predictions. In Sec. V, we
extend this presentation to stochastic models and explore
the remarkable phenomenon of statistical cycling induced
by noise.

II. FROM DDE’S TO CML’S

The link between hereditary dynamical systems
(framed as functional or delay differential equations) and
spatially extended models [hyperbolic partial differential
equations (PDE’s) to be precise] has been discussed exten-
sively (cf. [12—15]). In a rather formal context, Fargue
[16,17] argues that it is possible to interpret hereditary
systems as being nonlocal or extended. This allows the
introduction of a field that is intrinsic to the system, and
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the variable that satisfies the hereditary model is then a
functional of this field. In other words, the memory in
the system is interpreted as a nonlocality.

At a more applied level, Sharkovskii, Maistrenko, and
Ramanenko [18] have shown that systems of hyperbolic
PDE’s could, given appropriate boundary condition, be
reduced via use of the method of characteristics to
differential delay equations of the first order. Lukin and
Shestopalov [19] have applied this reduction procedure to
investigate the dynamics of electromagnetic fields
confined to cavities possessing nonlinear reflection prop-
erties that are routinely used in the construction of
radio-optical devices.

A. The deterministic case

The deterministic DDE’s considered in this section are
of the form

dx (1) _
dt
with an initial function ¢@(s) defined for s€[—1,0).

There is a continuous-time semidynamical system associ-
ated with (1), given by

—ax(t)+F(x(t—1)) (1)

do(t) . .
dx¢(t)= ar if t€[—1,0)

A —ax (0 Flx,(1—1) if 120

so that the DDE (1) defines a continuous time operator
&, acting on bounded functions defined everywhere on
[—1,0). For example, if ¢ denotes such an initial func-
tion,

Sp={xy(s): s€[t—1,1)}, 0=t=1 (2)

(if ¢ > 1, the initial function is no longer @).

The first step in the reduction of (1) to a coupled map
lattice is to use the Euler approximation to dx /dt and
write

. Xg(B)—x(t—A)
s A

= —ax (N +F(x,(t—1)),

A>0. (3)

Removing the limit, (3) can be approximated by

1
(14+aA)

where 0 < A << 1.

Before describing the second step of the reduction, re-
call from (2) that Eq. (1) transforms an initial function ¢
defined on [ —1,0) into another function: the solution x 9
defined on [—1+1¢,t), where 0<t=<1 is continuous.
Hence, if ¢ <1, there is an overlap between @ and x @ It
is possible to vary the extent of this overlap by restricting
the values that can be assumed by the time ¢ in the
definition (2). For example, if t =mA, with 0<A<<1
and m =1,2,..., the continuous-time definition (2) can
be replaced by

Snp={x,(s): s€[mA—1,mA)}, 0=mA<1. (5

xg(t)= [x,(t —A)+AF(x,(z—1))], (4

If A=1/N, where N >>1,then m =1, ...,N.

The second step in the reduction consists of approxi-
mating the initial function ¢ by a set of N points (as illus-
trated in Fig. 1), and following the evolution of these
points approximating the corresponding solution. Hence,
if m =1 in (5), the initial function ¢ is replaced by a vec-
tor ¢=(¢;,...,@y), and the solution {xq,(s): se[A
—1,A)} by a vector x;=(x}],...,x¥) (the subscript ¢
has been dropped to simplify the notation). Now define a
discrete time transformation ®,:RM—R¥ (the subscript
indicates that m =1) such that

n times

®po - o ®,=PUxy)=x,, n=1,2,...,

where Xo=¢@ .

To obtain an explicit expression for ®;, let A=1/N, and
suppose that @; =@(—1+jA), so that in general, x] ap-
proximates the value of solution x(z) at time

=—1+(n +j)A. Then, Eq. (4) can be approximated by
an N-dimensional difference equation

B (6)
*F1=xj,
1
V=[x +AF(x})] .
X1 (l+aA){x0+ (XO)]
In vector notation, the system (6) can be written as
X,+1=Apex, forn=0,1,..., (7)
where the matrix A, is given by
0 1 0 0
0 0o 1 R 0
A1= . . . (8)
_AF 1
(1+aA) (1+aA)

Equations (7) and (8) define a transformation @, which
approximates the DDE (1). In the limit N — o, the solu-
tion of the difference equation (7) converges to the solu-
tion of the DDE (1), because x is by definition always
differentiable. x, approximates the continuous time solu-
tion on the time interval [nA—1,nA), and x,, , ; approxi-
mates the solution on the time interval
[(n+1)A—1,(n +1)A). As illustrated schematically in
Fig. 1, in general one can approximate the original DDE
by a transformation ®,, such that x, , ; approximates the
solution on [(n +m)A—1,(n +m)A) [with m an integer
such that 1 <m <N, as in (5)].

If m>1 in (5), the set of difference equations (6) be-
comes
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xi=xitm, A
x(t)
P e:Xp=¢
R | ' 0iX; (m=1) '
' aiX;  (m=N) !
x{=xt™", . e . ! :
=1, ¢ A X
4 A [
1 1 #
1 -1 0 1
N—m+1_— N 1
X =———[xy +AF(x,) 9) .
! 1+ o) *0 o)l time

FIG. 1. Schematic illustration of the approximation of the

=1 differential delay equation (1) by a coupled map lattice: The ini-
tial function is replaced by a set of N points, and these N points

form a vector that evolves in time under the action of an N-

xzi = 1 [x :1 “1 4 AF(x m +1+(N—i) )1, dimensional discrete time transformation (the coupled map lat-

(1+aA) tice). The parameter 1 <m < N denotes the number of elements
of x,, which are not elements of x,, ; ;. See text for details.
izes (7) is
x{v= “——_—FIT)[JCIIV——I +AF(x{)"+1 )] .
a xn-§—1=Bmxn+l+Amcxn ’ (10)
Therefore, in vector notation, the equation that general- where the N X N matrices A,, and B,, are given by
|
0 0
0 0
1
= PP —_— “ e o
B, 0 0 (1tad) (11)
0 0 L 0 0
(1+aA)
1
0 0 - 0
(1+aA)

where there are N —(m — 1) empty rows and N —m zeros in the center row before 1/(1—aA) and

0 0 1 0

0 0 1 0

0 PR, 0 1

A,=| ap . , (12)
(1+aA) 0 o (1+ad)
AF
0 (1+ad) ° 0
AF
0 O Utan ° 0
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where there are m zeros in the first row before 1. In the
case where x, and x, ., have no overlap, which corre-
sponds to choosing m =N, these matrices become:

O oo O
1
(1+ad) 0
BN_ c. >
1
0 (1+ad)
AF 1
(1+ad) 0 0 (1+ad)
AF
0 (1+al) 0
AN=
AF
0 0 (1+aA)
(13)

given the form of the matrix B,,, it is possible to write
xn-*-ln_—(I_]3m);“‘moanq’m(xn) . (14)

We will assume from now on that F is piecewise linear,
because when this is the case, (10) can be simplified by re-
placing the composition in the right hand side by a sim-
ple multiplication,

x, 1 =(I-B,) 1A, x,=®,,(x,) . (15)

We have, therefore, reduced the differential delay equa-
tion (1) with a piecewise linear F to a piecewise linear
CML &,, which can be analyzed from a probabilistic
point of view.

This probabilistic analysis is done via an investigation
of the spectral properties of the Perron Frobenius opera-
tor associated with ®,,. Before considering the Perron-
Frobenius operator, we extend the reduction of deter-
ministic DDE’s to CML’s to the case where the DDE’s
are subjected to stochastic perturbations.

B. The stochastic case

In this section, we explore the approximation of vari-
ous stochastic DDE’s by stochastic CML’s. The stochas-
tic DDE’s we are concerned with are of the form

dx(t)=[—ax(t)+F(x(t—1))]dt
+G(x(1))&(t)dt , (16)

where the stochastic process £(t)dt will be either a &-
correlated stationary white noise process, or an
Ornstein-Uhlenbeck process [20]. For both types of
noise, the stochastic process x (z) is called a solution of
the differential equation (16) when it satisfies, with proba-
bility 1, the integral equation

x(=x(t,)+ [ [—ax(s)+F(x(s —1)]ds
+ [ G(x()dgs) (17)

where 0 <?, <t and the second integral is a stochastic in-
tegral interpreted in either the It6 or the Stratonovich

sense [20].
Define a partition of (z,,t) by ¢,=s,<s;
<+ <§;< - <sp=t. In the Stratonovich calculus,

the stochastic integral in (17) is defined as the limit

x(s;_1)—x(s;)
2

k
J. 6x()dgs)= lim 36

®i=1

X[é‘(si)_‘g(si_l)] . (18)

Similarly, the It8 stochastic integral is defined to be
k
ft G(x(s))dE&(s)= lim Y G(x(s;_))
Ly k— o n=1

X[&(s;)—&(s; )] . (19)

Both definitions are clearly not equivalent. Unlike the
usual Riemann or Lebesgue integrals which yield the
same results when the integrand is such that both are
defined, the It6 and Stratonovich integrals of the same
function can differ. The choice of either definition must
be motivated by careful analysis of the physical situation
under consideration [21-23]. The exact formulation of a
CML that results from a discrete time approximation de-
pends on whether the stochastic integral in (17) is inter-
preted in the It6 or Stratonovich sense. However, as the
reduction schemes for both cases are similar, we will il-
lustrate it with the It6 interpretation of (17), which yields
a more concise expression for the resulting CML.

The first step in the reduction procedure involves re-
placing the integrals in (17) by the appropriate sums,

k
x(t)=x(z, )+k1im > Al —ax(s;)+F(x(s;—1))]

—®i=1
k
+k1im > O(x(s;— D[EGsH)—EGs; )],  (20)
—®i=1

where by definition of the Riemann integral A=(s;
—s;-1)>0. The precise value of A depends on the
difference ¢t —¢, and will be given below.

The sums in (20) are over a partition of the interval
(t,,t). Hence by choosing k=1, t, =sq=~t—A, and
s, =t, we obtain

k
S Al—ax(s;)+F(x(s;—1))]
i=1

—>Al—ax(t)+F(x(t—1))],

k
> Q(x(s; — )[E(s;)—E(s; )]

i=1
—Q(x (t,))[E()—E&(e,)] .
Therefore, (20) becomes
x(t)=x(t, )+A[—ax(t)+F(x(t—1))]
+O(x (e N[EB)—&(,)] . (21)

As in the deterministic case, the second step of the reduc-
tion consists in approximating the function {x(s):
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s€[nA—1,nA)} by an N-dimensional vector x,, as illus-
trated in Fig. 1. If the time 7 is discretized as in Sec. IT A,
the approximating solution (21) becomes the N-
dimensional difference equation

X, +1=B, X, 1+ A,x,
+[QVox,, +QPox, 1 ]-[£, 11— E,], (22)

where the matrices A,, and B,, are given in (12) and (11),
respectively, and the matrices QL2 are given by

0 0

Q=10 --- 0 QO ol, (23)
0o --- Q 00
0 0 Q 0

where there are N —(m —1) empty rows and N —m
zeros in the center row before Q and

o --- 0O 1 0
o --- 0 1 0
0 0 1
(2) —
Qm— Q 0 0
0 o) 0 0
0 0 Q0 0 0

(24)

where there are m zeros in the first row before 1. The en-
tries of the N-dimensional vector £, are random variables
that are independent of one another. Hence, we define
the density g(€,) to be

N
g&,)=11Ig,), n=0,1,2,.... (25)
i=1

It is possible to study the probabilistic properties of the
CML’s defined in (15) and (22) by investigating the spec-
tral characteristics of the operator that governs the evo-
lution of probability densities in these systems. When the
CML is deterministic as in (15), this operator is known as
the Perron Frobenius operator. When the CML is sto-
chastic, it will be referred to as the transfer operator.

III. THE EVOLUTION OF PROBABILITY DENSITIES
IN CML’S

In this section, we recall some basic definitions associ-
ated with the evolution of probability densities under the
action of discrete-time transformations in RY.

A. The deterministic case

A discrete-time nonsingular transformation ®:
X—X(XCRY) induces an operator denoted P, which
acts on probability densities, and which is defined impli-

citly by the relation
fA?¢f(x)dx= f¢_l(A)f(x)dx for all ACX , (26)

and all probability densities f. Pg is called the Perron
Frobenius operator induced by ®, and a study of its
properties will be the cornerstone of our probabilistic
description of deterministic CML’s. If the transforma-
tion @ is piecewise monotone, it is possible to give a more
explicit definition of Pyg.

Let ®|; be the monotone restriction of ® to the set
m CX,i=1,...,M (with of course UM 7;=X). Let 7;
denote the image of the set 7;: #; =®;(7;). The Perron
Frobenius operator induced by ® can be written

M f(®;(x))
Frt1(X)=EPofp(x)=3 "

~=IJ¢(<1>|‘-‘(X>)X*I'(X)’ e

where . (x)=1 if xE7;, and 0 otherwise, and &,(y) is

the absolute value of the Jacobian of the transformation
evaluated at y. It is well understood [24-26] that the
asymptotic properties of the sequence {f,} of the iterates
of an initial density f;, under the action of P4 determine
the thermodynamic behavior of the dynamical system ®.
These asymptotic properties are themselves dependent
on the spectral characteristics of the operator Pg. Before
we describe these characteristics in more detail, we dis-
cuss the properties of the operator analogous to the
Perron-Frobenius operator when the CML under con-
sideration is stochastic rather than deterministic.

B. The stochastic case

In this case, the evolution of probability densities de-
pends both on the deterministic part of the transforma-
tion, and on the type of noise present in the system. We
distinguish two types of noise, which model different per-
turbation mechanisms: additive noise and multiplicative
(or parametric) noise. The expressions for the transfer
operators induced by nonsingular CML’s perturbed by
these types of noise are derived in [27].

1. Additive noise

In this case, the evolution of an element of the lattice
transformation is given by a relation of the form

xr(li-)f-l :(I)“)(xn )+§(ni)5(b§ilgd(xn ) ’ (28)

where the density g of the vector random variable £ is the
product (25). The evolution equation for phase space
probability densities in this case is written [28]

fani®)= [ f,(ygx—@(y))dy, n=0,1,.... (9

Equation (29) implicitly defines the transfer operator
Py ,, for CML’s perturbed as in (28) since Py Jn(x)
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=fn+1(X).

We will return to a discussion of the convergence prop-
erties of the sequence {f,} in Sec. IIIC, and discuss the
connection between these properties and the nonequilibri-
um thermodynamics of the associated CML’s. We now
give the analog of ‘Pq,add when the noise is multiplicative.

N
f"+1=fxl<m T fxlurf"(y)n

i=1

g

x(l) 1
q,(i)(y) (p(i)(y)

It was shown in [27] that both 2, 4, and ‘Pq,mul are

Markov operators defined by stochastic kernels. This
property was then used to describe the asymptotic
behavior of the sequence of densities {f,} (i.e., the con-
vergence to a fixed point or to a limit cycle). But the evo-
lution of {f,} reflects the spectral characteristics of the
transfer operators defined in (29) and (31). It is, there-
fore, useful to briefly review these characteristics, and to
discuss their connection with the nonequilibrium thermo-
dynamics of CML’s.

C. The convergence of the sequence { f, }

At time n, the thermodynamic state of a nonsingular
dynamical system ®: X+—X (whether it be deterministic
or stochastic) is completely described by the probability
density f, [24,25,26,29]. To see this, note that the proba-
bility p (x;,) of finding x,, EX between x;, and x), +5x,, is
x, +8x,

p(x;)zfx,

Hence, all the statistical quantifiers of the dynamics of ®
are computed with respect to f,. If the sequence {f,}
converges to a probability density f, in the limit # — oo,
the statistical quantifiers will be computed, for asymptoti-
cally large times, with respect to this equilibrium density
f«- On the other hand, if {f,} converges to a limit cy-
cle, the quantifiers will remain time dependent for asymp-
totically large times, and the corresponding dynamical
system will possess a thermodynamic equilibrium unlike
those usually described in statistical mechanics. In this
case, the notion of equilibrium must be extended to in-
clude sets of states visited sequentially in time. It is pos-
sible to formalize this heuristic discussion by considering
specific convergence properties of {f,} and their link to
the thermodynamics of ®.

We mention four cases [30]. ® is ergodic if and only if
the sequence is weak Cesaro convergent to the invariant
density f,,

n—
lim 1
n—o N J

faly)dy .

1
[ fegxdx= [ _f,(x)g(x)dx
o X X

for all g€L *(X),

and all initial probability densities f,. A stronger (but fa-
miliar) property, mixing, is equivalent to the weak conver-
gence of the sequence to f,,

dy,

2. Multiplicative noise
In this case, the evolution of a lattice site is given by
2 = 0(x, )X EN=0y(x,) , (30)

and the transfer operator 2, | is given by [27]

n=0,1,.... (31)

lim [ f,(x)g(x)dx= [ g(x)f,(x)dx
for all g€ L *(X)

and all initial probability densities f,. An even stronger
type of chaotic behavior, known as exactness (or asymp-
totic stability) is reflected by the strong convergence of the
sequence { f,} to the invariant density f,,

lim [Paf, —f.,1=0

for all initial densities fo (||]|, 1 denotes the usual L'

norm). We note without proof that exactness is interest-
ing from a physical point of view because it is the only
one of the properties discussed above that is a necessary
and sufficient condition for the evolution of the thermo-
dynamic entropy of the system @ to a global maximum
irrespective of the initial condition f,. For details con-
sult [26]. Exactness is also a special case of a more gen-
eral convergence property of the iterates of f; which is
known as asymptotic periodicity, and which has been dis-
cussed in detail in [31,32].

Definition 1: Asymptotic periodicity. A Markov opera-
tor P is asymptotically periodic if there exist finitely
many distinct probability density functions v,,...,v,
with disjoint supports, a unique permutation y of the set
{1,...,r} and positive linear continuous functionals
ry,...,I',,onL 1(X) such that, for almost all initial den-
sities f,

lim !‘P" fo— ST folv; =0 (32)
n— oo i=1 Ll

and
Po;=v,, i=1,...,r.

Clearly, if P satisfies these conditions with r = 1, it is ex-
act (or asymptotically stable). If r>1 and the permuta-
tion ¥ is cyclical, asymptotic periodicity implies ergodici-
ty [26]. A rigorous discussion of asymptotically periodic
Markov operators is given in [31]. A more intuitive pre-
sentation is given in [30]. O

The representation (32) implies that the ensemble den-
sities asymptotically reach a stable limit cycle, and, there-
fore, that the equilibrium thermodynamic properties
describing an ensemble of CML’s will cycle periodically
in time [29]. In order to give conditions on the parame-
ters of (10) that guarantee the cyclical spectral decompo-
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sition (32), it is useful to recall some basic definitions con-
cerning the notion of variation in RY and some properties
of linear operators.

D. Functions of bounded variation

The transfer operators discussed in this paper act on
functions that are elements of normed linear spaces. The
metric properties of these spaces depend on the choice of
the norm. For reasons that will become clear in the next
section, two natural norms arise in the descriptions of
CML’s: The familiar L! norm, and the so-called bounded
variation norm. To introduce the latter, it is necessary to
recall the definition of the variation of a high-dimensional
function. The short discussion given here is based on the
presentations of [33-35].

First, we define the gradient in the distributional sense
V4. Let f be a real-valued function defined on an open
set XCRY, and C(X) denote the space of differentiable
functions from X to X having compact support. Then
the operator V, is the vector-valued measure defined by

of of

Val = | By

With this definition, it is possible to define the variation of

£
V(AI=Vaflly

=sup lfxfdivhd,u’L‘: heCX),|h| <1 ] )

X. If fis @Y(X), it is straightforward to show [35] that
this definition reduces to

V()= [ 1Vasldpf (33)
where
_ 3 |Of
|Vdf|l_i§1 axi

A more detailed presentation is given in Chap. 5 of
[35], and in [34]. Giusti introduces functions of bounded
variation in Chap. 1 of [33] in a somewhat more intuitive
manner.

With the definition (33), it is possible to introduce the
bounded variation norm:

-lay =Vl 1 - (34)
The space of functions of bounded variation defined on X
is a Banach space (cf. [33]) denoted BV (X). In addition,
the definition of variation given here implies that the
space BV(X) is relatively compact in L!. Therefore, the
probability densities describing the ensemble properties
of our CML’s are elements of a compact function space,
and since such spaces are finite, the densities can be
represented in terms of “basis states.” To formalize this
discussion, we recall the following result from the theory
of linear operators due to Ionescu Tulcea and Marinescu.

E. The result of Ionescu Tulcea and Marinescu

This result was originally published in [36], and is of
fundamental importance for our analytic description of
the probabilistic properties of deterministic CML’s.

Theorem 1: (adapted from Ionescu Tulcea and Mar-
inescu [36]). Consider two Banach spaces

A, D €O -y

with the properties:
(a) If {f,,} is a bounded sequence of elements of A such
that

tim [1f, ~flly=0 ,

where fE€Y, then f is also an element of A, and
RSINTAN

(b) Let P: (A, ||-||s)—(A,]|*|]|4), be a bounded operator
that can be extended to a bounded operator in (Y, ||-||y).

(c) Suppose that there is an integer n such that

(1) If X is a ||+|| ,-bounded subset, then "X is compact
in Y.

(2) sup, || 77|y < o.

(3) There exists w €(0,1) and Q =0 such that

1Z2°flla=ellfllatQlflly, forall fEA. 35)

If conditions (a)—(c) are satisfied, then the operator 7 is
asymptotically periodic, and admits the spectral decom-
position (32).

In order to apply this theorem to the study of CML’s,
we follow Gora and Boyarski [37] in choosing

(A, |- |))=(BV(X), ||| p») included in (Y,]||ly)
= (LX), [])-

Verifying (a). By Theorem 1.9 of [33], if
(£} EBV(X),||follgy <K for n=1,2... and f,—f in

L'then f €BV(X) and ||f, |z <K.

Verifying (b) and (c)(2). The operators under con-
sideration here are Markov [30,27], and their operator
norm is 1, hence (b) and (c)(2) are both verified.

Verifying (c)(1). This property follows from the com-
pactness Theorem 1.19 of [33].

Hence, the theorem of Ionescu Tulcea and Marinescu
guarantees that the transfer operators associated with
CML’s admits the spectral decomposition (32) if the con-
dition (c3) is satisfied. By definition, the elements of
(BV(X),||*||gy) are of finite L' norm, so from (34), the in-
equality in (c)(3) becomes

V(PF)ZoV(f)+0, O>0), (36)

where & =Q-+w. Inequality (34) guarantees that for all
fEBV(X), the iterates Pf will always remain in BV (X):
In some sense, the operator has a ‘“smoothing” effect on
the densities. In concrete examples, conditions on the pa-
rameters of the CML’s under consideration will be ob-
tained such that (36) holds, and, therefore, such that the
corresponding transfer operator is asymptotically period-
ic.
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IV. APPLICATIONS TO DETERMINISTIC DDE’S

In this section, we derive conditions on the control pa-
rameters of deterministic CML’s which guarantee that
the associated Perron Frobenius operator is asymptotical-
ly periodic [i.e., satisfies (32)].

A. Oscillatory solutions and expansion requirements

We say that a DDE possesses nontrivial statistical
behavior when its solution is oscillatory and bounded
(whether they are periodic, quasiperiodic or chaotic).
Hence, for a given equation, we restrict our attention to
the regions of parameter space in which the trajectories
are oscillatory. To illustrate this point, we use a model
with a piecewise linear transformation F similar to a
DDE previously considered by Ershov [38]:

ax ifx<1/2

F(x)= if x>1/2

a(1—x) a€(1,2]. (37)
The rationale for choosing this nonlinearity is that the re-
sulting DDE displays a wide array of behaviors which is
generic in more general (smooth) systems, while remain-
ing amenable to analytic investigations. In addition,
since F maps [0:1] into itself, we know (cf. Sec. 2.1 of
[38]) that the solutions of the DDE will be bounded if the
initial function takes value in [0,1] and if a /a < 2.

The first fixed point of Eq. (1) with (37) is x !’ =0. Itis
locally stable when a <a, and unstable when a > a.
When a > a, the equation possesses another fixed point

2)—_ @
x @ =
* a+4a’

which is linearly stable when

2a>a>a and Val—a?<cos™!

When Va2—a?=cos '(a/a), the fixed point becomes
unstable via a Hopf bifurcation, and the solutions of the
DDE no longer converge to x'2. As mentioned above,
the solutions must remain bounded when the initial func-
tion belongs to the interval [0,1], and since they do not
converge to the fixed point, they must oscillate. We re-
strict our discussion of the dynamics of (1) to regions of
parameter space in which the solutions are oscillatory,
because stationary solutions are trivial from a statistical
perspective. Hence our description of the probabilistic
properties of (1) with (37) will focus on a region of param-
eter space in which

2aza>a and Val—a?>cos™!

(38)

Examples of oscillatory solutions of Eq. (1) with F
given by (37) are shown in Fig. 2. The parameters used to
produce that figure are the same as the ones used to pro-
duce the “ensemble density” results presented in Fig. 4
below. As expected, the remarkable agreement between
the solutions obtained by both methods breaks down
when N becomes too small (i.e., of order 10?), and for
large times when the solution is chaotic. Having derived

0.65

Runge Kutta

x(1) CML

FIG. 2. Two numerical solutions of the DDE (1) with the
nonlinearity given by (38), when @ =13, a=10, and a constant
initial function ¢(s)=0.2 for s&€[—1,0). Top: The solution
was produced by a standard adaptation of the fourth order
Runge-Kutta method, with 40 points per delay. Bottom: The
solution was produced by the CML approximation (16), with
m =N =1000. As expected, although both solutions are in ex-
cellent agreement with one another, the Runge-Kutta method is
numerically more efficient than the Euler approximation which
underlies our derivation of the CML. The motivation for the
CML approach is that it yields a system that is amenable to ana-
lytic investigations (cf. Sec. IV B).

the CML approximation to the DDE, we now use this ex-
pression to rigorously discuss the thermodynamic (or
probabilistic) behavior of the equation.

B. The result

Suppose the parameters a and a of the DDE (1), with
nonlinearity F given by (37), satisfy (38). Suppose further
that

limj—v—=0 ,
a

where N denotes the number of elements in the approxi-
mating CML [i.e., m =N in (15)]. Then if the initial
function @ for the equation belongs to the interval [0,1],
the corresponding CML (15) induces a Perron Frobenius
operator that is asymptotically periodic and, therefore,
admits the spectral decomposition (32). We now prove
this statement.

Using the definition (27) and basic properties of the
variation

§ f(@;'(x)
i=1 J¢(<I>|71(x))XTT'
f(<l>|71(x))

Lo R ()
Fol 7 (x)) T

V(Pof)=Y x)

M
<3V

i=1

M
=1 3 V(@ (x))Y, (%)) (39)
i=1
since Fo(®; 1(x)) is independent of both x and i/ when ®
describes a lattice of coupled tent maps [39]. Each term
in the sum on the right hand side of (39) can now be eval-
uated explicitly. From the definition (33),
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qr(f(<1>|;‘(x))x?,,(x)>=fxlvd[f(q>gl<x))x?,i(x)]ll

< [, WVar (@ ) hdpf + [ 1@ IV, ()1 1dpk

=V (@ (0 e, + fxif(q>|7‘(x))vd[xﬁi(x>]lld,ﬁL‘ : (40)

Since &4 is independent of x, a simple change of variables
yields

V(AR ], o SFeX DO XV(F(x))]

XET; XEm; 2

(41)

where |D®!|, is the norm of the derivative matrix of
the transformation ® ! (i.e., the sum of the absolute
value of its entries). The integral in the right-hand side of
Eq. (40) can be simplified using example 1.4 of [33],
which states that for any u€BV(X), and ACX with
piecewise C? boundaries of finite (N —1)-dimensional
measure,

]RN—I

fxlu(x)Vd[;\_/A(x)]l1dy§N=faA|u(x)f,dpL

1

sin@(7,;)
—1

< FeX|DDPT,

sin6(7;)

S @ NV, (01l <

[
Choosing u(x)=f(<l>|?1(x)), and A=7,, one obtains
S 7@ )V, L, (01l duf

=[_If@p cnhdpf . @2)

Furthermore, for any ¥ €BV(X), and any A as specified
above, we have from Lemma 3 of [37]

RV 1
S Juhant™ < oo

where ¥, >0 is bounded and sin6(A) depends on the
smallest angle subtended by intersecting edges of the set
A. Letting u(x)=f(<l>|71(x)) and A=7; as before, and
recalling identity (41), the integral in (40) satisfies

V(u(x)|,eatHy, 43)

VU@ N, ep +H,

XET,;

‘V(f(x))|x€,,l_ +%,; . (44)

Letting sinf(7) =min;sin6(7; ), and using (40), (41), and (44), (39) becomes

M
V(Pof) Sy 1 XIDPT!, 3 | SV (x))xeq +

V() s, +H,

=1 sinB(7;)
<|D®7!, [1+— 1 V(f)+Mmax,H,; . (45)
sin@(7)
I
Therefore, comparing (45) with (36), the theorem of a 1 <1 @7
Ionescu Tulcea and Marinescu guarantees the asymptotic Na sin6(7) :

periodicity of the Perron-Frobenius operator when

1+ L

D@, -
sin@(7F)

<1.

Using m =N in Eq. (15) and the matrices in (13), it is
straightforward to calculate the norm |D®~!|, when the
parameters a and a satisfy (38), and when in addition, we
take the limit,

a,a— o,

%-» © . (46)
In this case, the norm of D® ! is easily shown to be
a/Na, and so the CML associated with the DDE induces
an asymptotically periodic Perron-Frobenius operator
when

In order for this inequality to yield precise conditions on
the control parameters of the CML, it is necessary to
evaluate the quantity sinf(#) in terms of these parame-
ters. This calculation is straightforward but lengthy, and
has been published for general situations of which the
present problem is a special case [40]. If the boundaries
of the sets 7; intersect at an angle that is bounded below
by p>0 (for alli =1, ..., M), then when X, and thus the
ar;, are subsets of RV, we have [40]

172

1—cosp

N[1+(N —2)cosp]

sinf(7) = (48)

Note that if the boundaries of the image sets intersect at
right angles so that p=90°, we have sind(#)=1/V'N. In
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general, the image partition is not rectangular, and the
angle p must be determined from the definition of the
CML under consideration, but in the limit (46), the image
is rectangular since the local maps are effectively decou-
pled. Hence, our criterion for asymptotic periodicity be-
comes

a(l1+V'N)
——Na <1.

The inequality is always satisfied for N large enough and
a>a. Theorem 1, therefore, implies that Pq)N is always

(49)

asymptotically periodic, when ®, approximates the
DDE (1) with F given by (37) under the conditions (38)
and (46) (though the period could be 1). This result is ex-
pected in the limit (46) because in that limit, the coupling
between the elements of the CML effectively vanishes,
and the resulting lattice transformation could have been
obtained by a singular perturbation limit procedure (cf.
[46]). In that case, the CML (15) behaves like a collection
of uncoupled tent maps with slope €[1,2] (see the discus-
sion in subsection V on noise-induced statistical cycling),
and it is well known that such a system should be asymp-
totically periodic (although for a > V"2 the period is 1).
Numerically, the presence of asymptotic periodicity of
the Perron-Frobenius operator should be reflected by the
temporally periodic behavior of various statistical
descriptors of the motion. As an example, consider the
“ensemble sample density” p(x,¢). This function is ob-
tained by integrating (1) with a large number of different
initial functions {@;, ..., @z} (E large) and then, at time
t, binning the set of points {x %(t)}’ where x (Pi(t) denotes

the solution of the DDE corresponding to the initial
function ¢;. Schematically, Fig. 3 displays this construc-
tion. To establish a parallel with more frequently dis-
cussed models, if the equation satisfied by x (¢) was an or-
dinary differential equation (rather than a DDE), the evo-
lution of p (x,¢) would be described by the Liouville equa-
tion.

The statistical cycling predicted by (49) can be ob-
served numerically by following the function p(x,?) for
successive times. Figure 4 displays such a numerical
simulation for the DDE (1) with F defined in (37). We
have chosen to numerically illustrate the presence of sta-
tistical cycling in a region in which the stringent require-
ments (46) are not satisfied (in Fig. 4, note that N >>a).

Initial functions

Corresponding solutions

Time t

FIG. 3. Schematic illustration of the construction of the
“sample ensemble density” p(x,t). A set of initial conditions
{@1,...,pr} generates a set of solutions {x, }f=, and at time

1

t, the distribution of values {xwi(t) VE_ | is given by p (x,1).

The reason for this choice of parameters is to illustrate
that the cycling of densities is probably present in regions
of parameter space larger than those in which both (38)
and (46) are satisfied, although at present we are unable
to prove this statement. The feature displayed in Fig. 4 is
the dependence of the asymptotic density cycle on the in-
itial density which describes the set of initial functions
used to carry out a set of simulations. This property is
not observed in continuous-time systems without delays,
and it can be understood in light of the dependence of the
functionals T'; . of Eq. (32) on the initial density f.
This dependence on initial conditions is in a sense much
stronger than that usually discussed in relation to chaotic
dynamical systems: Here the evolution of an ensemble of
DDE’s depends on the exact distribution of the initial en-
semble.

Since the presence of stochastic fluctuations in experi-
mental situations is ubiquitous, it is of interest to discuss
the presence of statistical cycling and asymptotic periodi-
city in models that are stochastically perturbed.

p(xt)

Time t=400

FIG. 4. Statistical cycling in an ensemble of DDE’s of the
form (1) with nonlinearity F given by (38). The parameters in
the equation are a =13, a=10, and the CML used for the solu-
tion contained N =10° sites. Both (a) and (b) were produced
with 22 500 initial functions. (a) Each of the initial functions
was a random process supported uniformly on [0.65,0.75]. (b)
The initial functions were random processes supported either on
[0.65,0.75] (for 17 000 cases) or on [0.35,0.45] (for the remaining
5500 initial functions). The cycling is not transient, and is ob-
served for all times. The dependence of the density cycle on the
initial density reflects the dependence of the I'; of (33) on f,.
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V. APPLICATION TO STOCHASTIC MODELS

In this section, we investigate the properties of the
transfer operators (29) and (31) induced by the stochastic
CML’s (28) and (30). Our discussion is based on the re-
sults presented in [27]. In the deterministic case, deriving
Eq. (49) required detailed knowledge of the function F.
In the stochastic case, our results are, to a large extent,
independent of the details of the model, and can be sum-
marized as follows:

If the solution x (¢) of the stochastic DDE (16) belongs
to [0,1] for all ¢ >0, then the CML approximating (16) in-
duces an asymptotically periodic transfer operator.

This statement stems from the application to Eq. (29)
and (31) of results presented in [27]. We can state the fol-
lowing theorem, adapted from [27].

Theorem 2. Let K:XXX~>R be a stochastic kernel (re-
call X=[0,1]X -+ X[0,1]), P, and P, be two Markov
operators defined by

Pufx)= [ K(xy)f(y)dy,
1 1
Pof )= [ o [ KxyF(ydy .

Assume that there is a nonnegative A> 1 such that for
every bounded BC X there is a §=8(B) > 0 for which

fAK(x,y)dxsx for u(A)<8, yEB, ACB. (50)

Assume further there exists a Lyapunov function V:
X~—R such that

<
fo(x)?l,Zf(x)dx_afo<x)f(x)dx+B ,
a€[0,1), B>0 (51)

for every density f. Then 7, and P, are asymptotically
periodic, and, therefore, admit the representation (32).
[Recall that a nonnegative function ¥: X+—R is known as
a Lyapunov function if it satisfies lim | _, , V' (x)= 0.]

To apply this theorem to ?q)add and ?q)mul, let

Koaa(x,y)=g(x—®)
for the additive noise case, and
N

Kmul(x’y)= H
i=1

x @

(p(i)(y)

1
(D(“(y)

g

for the multiplicative noise case. Hence, from (29) and
(31)

Po ./ (X)= foadd(x,y)f(Y)dy

Po 0=

1
XN U xmeul(ny)f(y)dy .

Since g is a normalized probability density on
X,K gag,mu(%,¥)>0, and [ K44 mu(%,y)=1, so that
both K44 mu(X,y) are stochastic kernels. In addition, it
was shown in [27] that they both satisfy the inequalities
(50) and (51). Hence, Theorem 2 [27] yields the desired
results on the asymptotic periodicity of CML’s approxi-
mating DDE’s perturbed by additive and multiplicative
noise.

This result depends on two assumptions: The noise
density g must be normalized on the hypercube X, and
the solution x (¢) defined in (17) must remain in the inter-
val [0,1] for all # >0. One of the intriguing consequences
of the ubiquitous presence of asymptotic periodicity in
stochastic CML’s is explored in the next section.

Noise-induced statistical cycling

The effects of noise on dynamical systems have been
the subject of intense investigations (an extensive over-
view of this literature is given in [41,42]). It is well un-
derstood that the presence of noise in nonlinear models
can result in profound qualitative changes of the systems
under study. The mechanisms that bring about these
changes depend to a large extent on the specificities of the
model under consideration. For example, Kapral and
Celarier [43] have discussed the influence of additive
noise on bistable systems, and showed in this case how
the noise-induced transitions reflect a crossing of the
basin boundaries. Here we describe a different class of
noise-induced transitions in a DDE of the form (1) with a
nonlinearity F given by

F(x)=(ax +b)modl, 0<a<l1, 0<b<l1. (52)

As we will show, these transitions are best understood as
resulting from a noise-induced bifurcation in the deter-
ministic part of the model. The motivation for this
choice of F is twofold. First, the behavior of the corre-
sponding one-dimensional map x,.;=F(x,) has been
well documented [44]. Second, the presence of stochastic
perturbations in Eq. (1) with F given by (52) can result in
qualitative changes in the statistical behavior of the solu-
tions [30,45]. Before describing the behavior of the
DDE, it is helpful to recall several properties of the map
x, +1=F(x,), which are due to Keener [44].

As expected, the map x, . =F(x,) with F defined in
(52) can possess stable limit cycle solutions, when
0<a<1,0<b<1. Less expected is the presence in the
same region of parameter space (i.e., when 0<a <1,
0<b <1), of aperiodic trajectories that are attracted to a
Cantor set in [0,1]. In either case, the solutions cannot be
described by probability densities. Since the trajectories
visit only a Cantor set in the asymptotic regime, the
probability of occupation of phase space is not a
differentiable function. In fact, the probabilistic proper-
ties of the map (52) are described by the evolution of non-
continuous measures, rather than the more usual proba-
bility densities. For fixed 0 <a <1, a change in the pa-
rameter 0<b <1 can, therefore, result in a bifurcation
from a periodic solution to a chaotic one. A similar
behavior is observed when the system is perturbed by
noise, such that

F(x)=(ax +b +£&)modl, O<a<l1, 0<b<l1, (53)

where £ is a 6-correlated discrete time random process
distributed uniformly on subintervals of [0,1]. If & has
the “right amplitude,” the map undergoes noise-induced
bifurcations. These cannot be described deterministically
however, since the map is then stochastic, but must be
described in terms of the evolution of probability densi-
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ties. Such noise-induced bifurcations have been discussed
in the one-dimensional map [45], and in diffusively cou-
pled lattices of the map (53) [27]. We now give numerical
evidence that similar behavior is expected in the stochas-
tic differential equation (1) with F given by (53).

Figure 5 displays the temporal evolution of the ensem-
ble sample density p (x,?) in the absence and the presence
of noise, and clearly illustrates the presence of noise-
induced statistical cycling in this equation. The behavior
displayed in Fig. 5 can be understood by noting the simi-
larities between one dimensional maps x, . ;=F(x,) and
equations of the form (1). Ivanov and Sharkovskii [46]
have studied the dynamics of the DDE (1) by noting that
in the limit @— 0, and F /a—F in (1), and with discrete
time, one obtains the one-dimensional map x, .;=F(x,).
Although in general the bifurcation structure of the one-
dimensional map need not survive this singular perturba-
tion [47], Ivanov and Sharkovskii showed that when the
function F: R—R leaves a subset of R invariant, (in our
case, this subset is [0,1]), then the solutions of the DDE
visit the locations on [0,1] which are visited by the
iterates of the map (consult [46] for precise statements).
On the basis of their analysis, one, therefore, expects that
the bifurcation structure of the one-dimensional map will,

p(x1)

Time t=400

FIG. 5. Noise induced statistical cycling in (1) with F given
by (57). As in Fig. 4, each simulation was performed with
22 500 random initial functions. In all four panels, the parame-
ters of the equation were a =0.5, b =0.567, and a=10. For
panels (a)—(c) the initial density was as in Fig. 4(a). (a) No noise
in the system: p(x,?) is not a density, but a generalized function
(see text for details). (b) Noise present as in (57), supported uni-
formly on [0,0.1]. The system is asymptotically stable, and r =1
in (33). (c) Noise uniformly supported on [0,0.2], and r =2 in
(33). (d) Same noise as in (c), with an initial density as in Fig.
4(b). Here I'; and T, of Eq. (33) are not the same as in panel (c)
because the initial density f, has changed.

—~

a)

‘P e

I L

1

HWUWMWMWW

Time

FIG. 6. Four solutions of the DDE (1) with the stochastic
and deterministic forcing terms (57) and (56). Parameters for
the top three panels are a =0.5, b =0.567, and a=10. In all
panels the initial function is a random process supported uni-
formly on [0.3,0.9]. (a) The function F is given by (56). (b) The
function F is now given by (57), and the noise term £ is support-
ed uniformly on [0,0.1]. (c) Again, F is given by (57), but the
noise term is supported uniformly on [0,0.2]. (d) Here F is given
by (56), a=10 as in panels (a)—(c), but b =0.667. This fourth
solution shows by comparison to panel (c) that the parametric
noise in (57) has an effect on the system which is akin to an in-
crease of the parameter b from b =0.567 to b =0.667.

in some regions of parameter space, yield information on
the bifurcation structure of the corresponding DDE.

Numerically, the bifurcations from chaotic to periodic
attractors in the discrete map are also found in the deter-
ministic DDE, and as illustrated in Fig. 6, they can be in-
duced by the perturbation of the function F as in (53).

Hence, the noise-induced statistical cycling displayed
in Fig. 5 probably reflects the presence in the DDE of a
noise-induced bifurcation from a chaotic attractor to a
periodic one. The presence of noise superimposed on the
periodic solution could then explain the cyclical statisti-
cal behavior of Figs. 5(c) and 5(d). It is interesting to
note that this phenomenon is consistent with the spectral
decomposition (32) which was obtained using rather gen-
eral considerations.

The behavior displayed in Fig. 5, though somewhat
counterintuitive at first glance, is, therefore, not unex-
pected for systems possessing limit cycles and chaotic at-
tractors that are close in some sense in the space of con-
trol parameters.

VI. DISCUSSION

The analytical results presented in this paper hold for
CML’s which approximate the dynamics of DDE’s to an
arbitrary degree of accuracy, but the techniques we used
cannot obviously be extended to the infinite dimensional
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case (some extensions of the notion of variation in infinite
dimensions have been considered [34], but the theory is
not complete enough to allow the in-depth treatment pos-
sible with finite-dimensional maps). Hence, the present
work opens the way for a more rigorous study of the
present approximations, in the limit where the difference
between the DDE and the CML vanishes. From a practi-
cal perspective however, the fact that there is no finite
limit on the accuracy of our description of DDE’s
renders the presence of asymptotic periodicity in these
systems inevitable. This is interesting because the spec-
tral decomposition (32) has not been rigorously defined in
continuous-time settings, and the present work clearly in-
dicates that it should be possible to define it for certain
semigroups of Markov operators which describe the evo-
lution of ensembles of trajectories.

Finally, the strong connection demonstrated here be-
tween models framed as delay differential equations and
models framed as coupled map lattices opens the way for
the cross applications of techniques that have traditional-
ly been used for the exclusive investigation of one or the
other of these classes of models.
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