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Propagation in random media: Calculation of the effective dispersive permittivity
by use of the replica method
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In this paper we use the replica method together with a variational method in order to study the prop-
agation of a wave traveling in a disordered composite. We compute the effective permittivity tensor,
which takes into account the effects of spatial dispersion. Our calculation is not perturbative in the fre-
quency, and we obtain a self-consistent formula for the longitudinal and transverse parts of the permit-
tivity tensor applicable to the whole range of frequency. Our result appears as a self-consistent version
of the usual weak-disorder expansion and thus recovers all weak-disorder results. We have checked that
the solution to the self-consistent equations is correct in the limits of high and low spatial frequency.

PACS number(s): 41.20.Jb, 77.22.Ch

I. INTRODUCTION

We study in this paper the propagation of an elec-
tromagnetic wave in a random composite. When the
wavelength is of the order of (or smaller than) the typical
size of the inhomogeneities, one cannot describe a hetero-
geneous material as quasihomogeneous. In order to use
an effective medium concept, one has to introduce the no-
tion of spatial dispersion, even if the microscopic permit-
tivity is not dispersive. This can be done by describing the
electromagnetic properties of the medium by an effective
permittivity tensor that depends on both the frequency w
and position 7. If the medium is described by a local ran-
dom permittivity denoted by &(r,w), the definition of the
effective response tensor €; is (see, for example, [1])

d
(e(r,0)E(r)= [ar ) ef(r—r,o)E;(r)) , (1)
e

where E; is the ith component of the electric field (d is
the space dimension) and where the brackets { ) denote
the average over the disorder. It should be emphasized
that the effective dielectric tensor will be a nonlocal func-
tion with a correlation radius determined by the charac-
teristic correlation length of the calculations of (r,w). If
this characteristic length is negligible compared to the
other lengths in the problem (e.g., the wavelength A), one
obtains essentially the quasistatic limit. The main point
is thus to introduce a size of the inhomogeneities. In or-
der to do this we will suppose that the local permittivities
are not independent from site to site but that they are
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correlated. We will deal with Gaussian distributed vari-
ables, so that it is just necessary to introduce the connect-
ed two-point correlation function (8e(r)de(r’))
=(8e?)C(r —r'). The function C(7) has an extension of
order / that is roughly the radius of the grain. In the fol-
lowing, we will specialize in the case where C(r) is a
function of the modulus of r only, so that the average
medium is isotropic. It can be noted that in our previous
paper [2(a)] we studied the quasistatic case, which thus
corresponds here to C(r) < 8(r).

In contrast with most approaches to this problem,
which are perturbative in the quantity //A (or the in-
verse) and thus lose the interesting regime where A=/,
our calculation is variational. Moreover, these ap-
proaches necessitate the introduction of a reference per-
mittivity that should disappear at the end of the calcula-
tion (as shown by Luck [3] in the quasistatic limit). This
is usually not the case, and one has to determine this
function ad hoc (for instance, by using a self-consistent
argument). In our method, the self-consistency arises
naturally, and the problem of this reference medium does
not exist anymore.

We will use here an approach based on the use of the
replica method [4]. This method is an alternative to the
fermionic method, which was used in [5] in order to
study propagation in random media. The replica method
relies on an analytic continuation that cannot be proved,
but it should be noted that in the fermionic representa-
tion there is also an ambiguity related to the sign of a
determinant. Suppressing the absolute value of this
determinant can lead to incorrect results (see, for exam-
ple, [6]).

The use of the replica method allows us to perform dis-
order averages, but, as usual, introduces a coupling be-
tween different replicas. This coupling appears through a
complicated effective Hamiltonian that is approximated
by a variational method [7-10] relying on the Gibbs-
Bogoliubov inequality. In addition, this variational ap-
proach is nonperturbative and allows us to compute the
effective permittivity tensor for the whole range of fre-
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quency. Let us note that this method was successfully
applied to the random resistor network problem in the
quasistatic case [2(a)] and to the Hall effect in composite
media [2(b)].

In Sec. II, we define the model and introduce the basic
equations. In Sec. III, we introduce the replica method
together with a variational method in order to obtain the
self-consistent equations. In the discussion (Sec. IV) we
will study the solution of these equations in the following
limiting cases: the long and short wavelength limits (for
which exact solutions are known) and also the weak-
disorder solutions.

II. THE MODEL AND THE BASIC EQUATIONS

We first separate the local permittivity e(r,®) into a
homogeneous part g, (which can be frequency dependent)
and a fluctuating part 8¢(r,w):

e(r,w)=¢gyw)+8e(r,0) . (2)

We choose here gy(w)=(¢e) so that {8¢)=0.

The fluctuating part at each point r (of a d-dimensional
medium) is supposed to be a random variable distributed
according to a Gaussian law:

p(8e(r,w)) <exp —fdrdr’Ss(r)

X[{8e2)C(r—r')] 18e(r) |, 3)

where the function C(7) depends only on the modulus of
r and roughly determines the size of the grain. The
choice of Gaussian disorder is mainly dictated by techni-
cal considerations, but we believe that it will display the
most important features of the dispersion in disordered
media.

The electric field satisfies the propagation equation that
is derived from Maxwell’s equations:

curl curlE —k3e(r,0)E =0 , 4)
where ky=w/c.
curl curlE — ke E =k28e(r,0)E , 5
or in integral form,
d
E(r=Eu(n+ [dr' 3 G,(r—r8e(r',0)E;(r'), (6)
j=1

where E,(r) is the external applied field and G is the
Green’s function of the Helmholtz equation (5) for the
homogeneous medium described by ey(w). Its Fourier

1

[ TLD(F, 6,067 (1), (rexp

—1 ’y—
M,‘j (r,r')=

— [drdry ¢,"(r)M,-j(r,r')¢j(r')]
i
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transform reads

2

1 ko
i(k)=———P;(k)+————0,:(k), 7
G;;(k) to(@) (k) kz—eo(co)k(z)Q”( ) (7)

where P is the projector along the direction of k:
_ kik;

and Q the orthogonal projector (1=P + Q). Let us make
two remarks. First, at zero frequency the transverse part
goes to zero and one retrieves the quasistatic limit:

Gy(k) > — P, (k) . ©)
©0=0 80

Second, all the Fourier transforms of the tensors that will
appear (in particular, the effective permittivity) will have
a unique decomposition over this basis (P, Q). For a sta-
tistically isotropic and homogeneous medium, one indeed
has [11]

efj(k)=¢ef (k)P;(k)+ef(k)Q; (k) , (10)

where €} (g}) is the longitudinal (transverse) permittivity
that depends only on the modulus of the vector k. In the
long wavelength limit (k/ <<1) these permittivities are
equal and one finds

e =e*8;; . (11)
Equation (6) can be recast in the form
d
E(n=[dr 3 M;'(r,rEy(r'), (12)
i=1
where
M;i(r,r')=8,;8(r —r')—G,(r —r")8e(r',0) . (13)

Averaging (6) and (12) and using Eq. (1), it can be easily
shown that

((1—G&e)™");;(k)=(1—Gde*);; (k) . (14)

Thus the problem is reduced to calculating the disorder
average of the inverse (M ') of the random operator M.

III. THE REPLICA METHOD
AND THE VARIATIONAL TREATMENT

The problem is now reduced to calculating the disorder
average of the inverse of a random operator. One can use
the standard Gaussian formula and write M ~! using
complex fields:

[ 1L,D(6F,6,)exp

— [ar dr'z¢7(r)M,.,.(r,r')¢j<r'>]
i

(15)
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In order to compute the average of this quantity, we write the denominator as the limit when n goes to zero of
n—1
] . (16)

We thus introduce 7 replicas of the fields ¢F,¢;, which will be denoted by ¢}%,¢¢ (a =1,...,n). We thus first consider
n as an integer and then take the limit n going to zero. A similar approach was proposed by John and Stephen [12] for
the problem of wave localization in random media. We can now write M ~! as

o 0319
M )= [T, D@1 ¢f)—exp

S D87 ,6))exp

— [drdr 3 ¢t (M, (r,r e, (r")
ij

— [ardr'S ¢14r[8,8(r —r')—Gy(r —r")8e(r',0)1¢%r") | , (17)

ij,a

[

where the limit n—0 is 1mp1101t1y taken and where where

¢_(¢’ .. ¢x)and¢1 (¢1’ t""’¢:‘n) — 2 —
lIn tl';e ffollowmg, we give an outline of the calculation, 4,(k)= (8e >qu C(@K(k —q)G(k—q)]; . (20)

which is very similar to the one performed in [2(a)]. We Usin . . *
. A . E . g Eqgs. (14) and (18), we identify A as 8*. Moreover,
give full details of the calcu{atxon in the Appendix. using Egs. (7) and (19), one can show that
The average of Eq. (17) is now easy to compute, and
since 8¢ is a Gaussian variable, one obtains an effective _ 1 k32
quartic Hamiltonian .5 The quantity (M ~!) is the KG(k)=— ek w)P(kH' K2—e* (k. o)k 2 Q(k). @D
propagator associated with this effective Hamiltonian. e e 0
We replace this quartic Hamiltonian by the best Gauss- We therefore see that KG is in fact the dipolar tensor
ian Hamiltonian in the sense of the variational principle. computed in the dispersive effective medium determined
If this Hamiltonian has a kernel denoted by K ~!(k), we by e*(k,0):
i diately identif’
immediately identify KG()=G*(K) . 22)
(M7 ;(k)=K;(k) . (18) The final self-consistent equation can thus be rewritten
In terms of K, the variational equation reads as
d Sej;(k)=(8¢?) [ dg C(q)G}(k —q) , (23)
1=1 whose explicit expression is
J
ef (k, w)—80+(582)f(2 )dC(k g) |B+a—p- PEN l } ,
(24)
d 2
* = 2 _.d_LC k — + — 1— (k-q)
eX(k,w)=¢gy+ (8¢ )f 2 (k—q) |B+— [(@=h) kg2 ,
[
where [which we also obtained by means of the same method
1 [2(a)]. First, it seems useful to make the connection be-
a(q)=—T— , tween expression (23) for e*(k,w) and the usual weak-
ef (g, 0) disorder result [15]. Let us recall that, from Eq. (6), to
(25) .
k2 lowest order in 8¢, we have
B(q)_ —st (q a))k2 ) (E(r))on(r) ’
Equation (23) [and (24)] is the main result of our paper.  {8e(r)E;(r)) (26)
These equations determine in a self-consistent way the d
functions €} (k,w) and € (k,w). In the discussion we will ~(8e2) fdr’ S Gy(r—r')C(r—r")Ey(r'),
mostly use Eq. (23). i=1
and from (1) we obtain
IV. DISCUSSION
8eli(r)=~(8e*)C(r)Gy(r) . @7

Equation (23) is the generalization in the finite frequen-
cy (and wavelength) case of Hori’s equations [13,14] Our result (23) thus appears as a natural self-consistent
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generalization of Eq. (27), where we replace G by G*.
We would like to stress that self-consistency appears nat-
urally in our treatment. Of course, Eq. (23) is equivalent
to (27) to first order and, therefore, reproduces the usual
weak-disorder case, especially the dispersion relations for
longitudinal and transverse modes [15]. It should also be
noted that, since our treatment is variational (and not
perturbative), we believe formula (23) to be as accurate
for a strong permittivity contrast as in the quasistatic
case [2(a)].

Let us now consider the two extreme limits (kI <<1
and kI >>1), for which exact results are known. We will
first study the long wavelength limit, i.e., k/ =0. In this
case Eq. (23) reads in real space

8, (8e?)

28)
de} (

853%[)(582)(;,-;(’ =0)=—

(where v is the volume of the grain proportional to I3).
This implies that

ef=¢ _ {8l

_ _ (8e?)
1=¢€ =

de} £ def

We thus observe that €f =€}, as expected in this limit.
We also note that these equations are the same as Hori’s
one (for a Gaussian disorder) in the long wavelength lim-
it. These equations were studied in [13,14].

In the case of very high (spatial) frequency, where k! is
tending towards infinity, we obtain

8¢ (k)=~(8e*)G (k) , (30
leading us to
(8e?) — kg
ef=¢gg— e §=¢g+0 %2 31)

The expression for €} is the effective permittivity for a
one-dimensional medium within this approximation, as
can be seen for Eq. (29) with d =1, and ¢} is the average
value (corresponding to the case where d is infinite).

For this limit (k/ infinite) the exact result is known and
can be demonstrated as follows. For |r —r’| less than the
disorder correlation length, the permittivity is constant
and equal to 8¢(r). The second term of the right-hand
side of Eq. (6) can thus be rewritten as (omitting all
inessential indices)

fdr’G(r —r")8e(r")E(r")
zﬁe(r)f

lr—r| <1

+ dr'G(r—r')8e(r')E(r') . (32)

lr=r|>1

dar'G(r—r")E(r')

The limit k/ — o0 may also be physically realized with k
fixed and [ going to infinity. The second integral of Eq.
(32) tends towards zero in this limit (since it is a converg-
ing integral). The electric field at point r is thus given by

E(r)=Eo(r)+8e(r) [ dr'G(r —r)E(r") (33)

which can be rewritten as

Ey(r), (34)

E(rn=|—p4t
m= e(r) Q

where P and Q are the usual projector (here in real space).
From the expression of {&(r)E(r)) and (E(r)) deduced
from (34), we obtain the effective permittivity:

s}"=<%>_1, er=(e) . (35)

This is consistent with (31) since g, is the exact result for
one-dimensional systems.

V. CONCLUSION

In this paper we have used the replica method together
with a variational method in order to study the propaga-
tion of a wave traveling in a disordered composite. To do
this, we compute the effective permittivity tensor, which
takes into account the effects of spatial dispersion. Our
calculation is not perturbative in the frequency, and we
obtain self-consistent formulas for the longitudinal and
transverse parts of the permittivity tensor applicable to
the whole range of frequency.

We have studied the case of correlated Gaussian disor-
der and obtained a self-consistent equation for the per-
mittivity tensor. This equation is a natural self-consistent
generalization of the weak-disorder expansion and should
therefore hold even for the strong disorder case. We also
checked that our solution is correct in the limits of high
and low spatial frequency where exact results are known.

The complete study of our equations (in particular the
interesting case when the wavelength is of order the size
of inhomogeneities) will be presented in a forthcoming
paper. We are also currently investigating the possibility
of applying this method to the case of binary correlated
disorder, which is substantially more complicated techni-
cally.

APPENDIX: VARIATIONAL PRINCIPLE

We have to average the operator M ~! over the disorder . We thus have to compute the quantity

F= (exp

ij,a

[drdr '3 821G,y (r —r)8e(r',0)5(r") ]) .

(A1)
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This average can easily be performed, and we can write the average of M ~! as

(M=) y(r—r)= [, D($}% ) (A2)

>

¢f¢1 e—ﬂcﬁ
n
where the effective Hamiltonian is
FHg= [dr 3 194 12—1 [dridr,C(ri—r))— 3 [drdr'G,(r—r )G, (r'—r))$r¢(r )otor )¢oAr,) .
ha iji'j'ab
(A3)

As usual in the replica method, the average over the disorder introduces a coupling between different replicas. In or-
der to study this Hamiltonian, we will use a variational method.

In order to simplify the presentation, we shall assume a replica symmetric ansatz. We shall not address the problem
of replica symmetry breaking since we believe that, as in the quasistatic case, there is no replica symmetry breaking [1].
This probably corresponds to the self-averaging property of the effective permittivity. We therefore assume a Gaussian
ansatz with kernel K ~! diagonal in replica space, but we shall make no further assumption concerning other indices:

Zo=fH,-,,:D(¢,-‘“,¢?)exp —fdr ar' 3y ¢,’"’(r)K,~,-"(r—r')¢}(r’) . (A4)
i,j,a
The contractions are thus given by
(B1rB2(r'))o=8K,;(r—r') , ($FUrIgsi(r'))o=(ergt(r))o=0, (AS5)

where { ), denotes an average using Z,,.
Using this ansatz in place of #.4 in (A2), we immediately get

(M1 (k) ={¢,8;)olk)=K (k) . ’ (A6)
The quantity K minimizes the variational free energy (given by the Gibbs-Bogoliubov inequality)
g[K]=ConSt+(.7{eﬂ'>o+7o , (A7)

where Fy=—InZ,.
The variational free energy (per unit volume and per replica) can be written [using Wick’s theorem together with for-
mulas (A5)] as

d%
(2derK(k)—%(8£2)fdkldeC(k,)Tr{K(kz)G(kl+k2)K(k,+k2)G(k2)], (A8)

- (‘;;’;dTran(k)+f

where K (k) and G (k) are the Fourier transform of K () and G (7). The minimization of the free energy [with respect
to K (k)] yields Eqgs. (19) and (20) of the text.
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