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Modulational instabilities in dispersion-fiattened fibers
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The nonlinear Schrodinger equation does not describe fast modulations adequately because it is based

on a Taylor expansion in the frequency domain. In this paper, we study the e6'ects of the entire modal

dispersion curve and the frequency dependence of the nonlinear coe%cients on the formation of modula-

tional instabilities by using harmonic analysis. New regions of instability for dispersion-flattened 6bers
are found and characterized by this approach. The relation of these instabilities to the conventional
modulational and four-wave-mixing instabilities is discussed.

PACS number(s): 42.81.Dp, 52.35.Mw, 42.65.Ky

I. INTRQDUCTIQN

Modulational instability (MI) is a general feature of
wave propagation in a dispersive nonlinear medium. It
refers to a process in which a weak perturbation of a con-
tinuous wave (cw) grows exponentially in the form of am-
plitude modulation (in the linear regime). This process
occurs as a result of the interplay between self-phase
modulation and group-velocity dispersion. It is usually
modeled by a nonlinear Schrodinger equation (NSE),
which is the sim. plest model that takes into account both
mechanisms. The NSE is used in such diverse fields as
Quid dynamics, nonlinear optics, and plasma physics
[1—3]. In the one-dimensional case, such as that which
occurs in an optical fiber, MI is responsible for the break-
up of a long pulse into solitons [4]. Optical solitons have
potential application in optical communications. MI has
also been used in parametric amplification [2], optical
switching [5], and short-pulse generation [6].

MI is usually studied within the framework of a NSE,
the validity of which requires a weak instantaneous non-
linearity and a slowly varying wave amplitude. In the
frequency domain, it amounts to assuming that the spec-
tral width of the field is narrow enough that the modal
dispersion relation P(co) can be approximated by a
second-order Taylor expansion around the carrier fre-
quency coo. For slightly wider bandwidths, some correc-
tions to the NSE have been made by adding higher-order
dispersion terms in the Taylor expansion [7—9].

In some of the cases discussed below, however, MI can
actually occur with a wide bandwidth (corresponding to a
fast temporal modulation). In other words, the effects of
second- and third-order dispersion, etc., could all be com-
parable in these cases; the Taylor expansion breaks down,
and the nonlocal properties of the modal dispersion rela-
tion must be considered. For fast modulations, nonlinear
relaxation and the Raman efFect may also become impor-
tant [g —11]. Because of the noninstantaneous nonlineari-
ty, the dependence of the nonlinear coeKcient on modu-

lational frequency should be included.
Broader-bandwidth MI is important due to its intrinsic

relation to shorter pulses. In this paper, we use harmonic
analysis instead of the NSE to study MI. This approach
still requires weak nonlinearity but does not require a
narrow bandwidth. A simple expression for the gain
curve of MI is given that depends on the entire modal
dispersion curve and the frequency-dependent nonlinear
coeKcients. It is then applied to a dispersion-Aattened
fiber [12], for which the second-order dispersion
coefticient changes sign twice as the frequency is varied,
to study the efFects of the modal dispersion relation and
to illustrate the basic physics.

II. HARMONIC ANALYSIS

where the subscript s is for steady state, and the weak
nonlinearity condition

y ~ Wo ~'((P(~o) (2)

is required. Equations (1) and (2) indicate that the y' '

nonlinearity changes the wave number (and the phase,
which is the product of the wave number and the dis-
tance) by a small amount. For an optical fiber,

To be precise, the harmonic analysis described below is
actually a multiscale approximation [13] to solve the
linearized equation around a nonlinear steady-state pump
wave in a single mode fiber. The small parameter in the
linearized equation is the amplitude of the nonlinear
pump wave normalized to QP(coo)/y [see Eq. (2)]. In
the following summary, however, the physical picture is
emphasized at the expense of mathematical details.

It is well known that the nonlinear steady-state or cw
pump wave for the single transverse mode of the fiber is
approximately a sinusoidal wave with the dispersion rela-
tion [2,11]

k (aio)=P(too)+y(coo, —coo, coo)~ c4o~
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y(coo, —coo, coo)=6mco(g' '(coo, —
coo, coo)/[cn(coo)A, s] in

electrostatic units to within a factor of the order of unity
that depends on the transverse mode structure, where
y' '(coo, —coo, coo) is the third-order nonlinear susceptibili-
ty of the fiber, c is the speed of light, n(coo) is the modal
refractive index, and A,s is its efFective mode area [2].

A linearized equation around the cw solution can then
be formed for a perturbation field. The evolution of the
perturbation field in the presence of the cw pump de-
scribed by Eq. (1) can be studied in the Fourier domain
by considering the propagation of its frequency com-
ponents 5A (co',z ) for the single transverse mode, where z
and co' represent space and frequency coordinates, respec-
tively. Since the amplitude of the cw field is the small pa-
rameter, the trivial case of the zeroth-order approxima-
tion, which corresponds to a vanished pump, gives a
linear propagation of the perturbation field, i.e.,

I

d„5A(co', z) +p (co')5A(co', z)=0. The zeroth-order
solution is thus 5A (co', z }=5A(co', 0)exp[ip(co')z], corre
sponding to forward propagation. Note that the reality
condition requires 5A ( —co', z ) =5 A '(co', z ).

In the presence of the cw pump wave, the linearized
equation for 5 A (co',z ) can be obtained froin the Maxwell
equation for the single transverse mode,

d„5A (co', z )+P (co')5 A (co',z ) =(4m. /c )co' 5P„,(co'), (3)

where the term 5P„&, still linear in the perturbative field,
is the nonlinear part of the electric polarization field pro-
jected to the transverse mode by an overlap integration
[2].

Recall that 5P„&——0 in the zeroth-order approximation.
For a better approximation beyond zeroth order, we have

+ QO

5P&~(co ) =3( 1 /A ) J g (M yi&i~&3)E o( co&iz)Eo(cop&z )5A (Mz&z )5(co coi cop c03)dcoidco2dco3

where we have assumed the overlap integral of the trans-
verse mode is the same for the frequencies of interest [2].

Eo(co z) = Aoexp[ik, (coo)z]5(co—coo)

+ A o exp[ ik, (coo)z—]5(co+coo)

is the Fourier transform of the cw field
E (ot, z)= Aoexp[ik, (coo)z scoot]+c c—Eq.ua. tion (4) de-
scribes the nonlinear electric polarization (but it is linear
in a perturbative field) induced by the pump and the per-
turbative field in the g' ' medium. The degeneracy factor
3 appears because we treat the perturbation as a field
difFerent from the pump wave [11]. We have neglected
higher-order contributions (greater than

I
A o I ) of the

pump field to 5P„).
To solve Eq. (3) beyond the zeroth-order approxima-

tion, we follow the multiscale procedure by inserting the
zeroth-order solution in the right-hand side of Eq. (3) [us-
ing Eq. (4}]and collecting all the possible phase-matched
terms. This analysis can be facilitated by switching to
the temporal domain picture. For a forward propagation
component at co', the field is 5A ( o',c0)e p[xiP(co')z ic0't ]-
+c.c. Through the nonlinear electric polarization, this
fields generates the terms proportional to

5A (co', z) I Ao I
exP[iP(co')z ice't ]+c.c. —,

5A *(co',z) AoexpIi [2k, (coo) P(co')]z—

Similar analysis for this component indicates two phase-
matched terms generated at (2coo—co') and co'.

According to the multiscale procedure, the above con-
sideration allows one to solve Eq. (3) approximately by
the coupled mode equation of the frequency components
at co' and 2coo —co', called anti-Stokes and Stokes side-
bands, respectively. By retaining all the possible phase-
matched driving terms, Eqs. (3) and (4) become

[d z +P2(co') ]5A (co',z ) /[2P(co') ]

=
2p ( coo, coo, co }I

A o I
5 A (co,z )

+y [caoqcooq (2coo co ) ]A o

X exp[i 2k, (coo) ]5A '(2coo —co', z ),
[d„+P (2coo —co') ]5A (2coo —co', z )/[2P(2coo —co') ]

=2y( coo, —coo, 2oio —co' }I
A o I

5 A (2coo co z )

+y(coo, coo,
—co') A oexp[i2k, (coo) ]5A '(co', z ), (6)

where we have defined

y(co»co&, c03) =6~(coi+coz+c03)

Xg (cubi cop c03)/[cn(co, +coz+co3)A,s]

—i(2coo —co')t ] +c.c. Equations (5) and (6) will give a correction to the linear
disPersion relation P(co') [or P(2coo —a&') for frequency
2coo —c0'] by the amount O(yI AoI ). Simplification can
be made for the forward propagation by using

(d„+P )/(2P) =( td, +P)(id, —+P')/(2P)

=id, +p,
where p indicates p(co') or p(2coo —co') since a careful

The first term is obviously phase matched. The second
term could also be phase matched to a forward propaga-
ting component at (2coo —co' ) if

I 2k, (coo) —p(co')
—P(2coo —co')I is very small. Thus we should study the
component

5 A (2coo —co', z ) =5 A (2coo co', 0)exp[i—P(2coo co')z-
i (2coo co' )t ]—+c.c. —
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D ( id—„ai)B = —yf Ao 8+,
where

D+ ( id—„co)= —id—, +P(ohio) —P(coo+co) —y„+ I Ao I

D ( id„—ai) = id—,—p(coo)+p(coo —co)+y„' I AoI

(9)

(10)

and

r.i =2y—[~o ~o (~o+~)] r(~o ~o ~o)

—:2r[~0 o'0 (~o o')] r(o'0 ohio i'oo)

rf+ =r[oio~ioo~ (~o

'Yf- =y[~o ~o (oio+oi)] .

(12)

(13)

(14)

(1S)

The subscripts x and f refer to cross-phase modulation
(XPM) and four-wave mixing (FWM) to indicate their re-
lation to these processes, respectively. Note that the Ra-
man effect and the effect of nonlinear relaxation are in-
cluded through the dependence of the nonlinear
coeKcients on the modulational frequency.

Equations (8) and (9) can be easily solved. The general
solution consists of two independent eigenmodes,

analysis shows this would not afFect the accuracy in the
present order of approximation. If we define the modula-
tional frequency co —=co' —coo, and set 5 A (co', z )
—=8+ (a),z )exp(ik, z ) and 5 A (2oio —co', z )
=8 (co,z)exp(ik, z), then Eqs. (S) and (6) become

D+( id„—co)B+ =yf+ AoB

k~(co)=[P(coo+co)—P(coo —co)+(y„+—y )IAoI

4yf+yf —I Ao I']/2

where

s(~)—=a, —y„ IA, I' —y„' IA, I',
is the total wave-number mismatch and

h, (co)=2P(—coo) P(co—o+co) P(co—o a))—

(19)

(20}

(21)

k+ = —P(~o)+P(~o+~)+y. + I Ao I',
r+-—0 or 8 =0 (22)

is the linear wave-number mismatch (the subscript l is for
linear). Naturally, a negative imaginary part of k+ (co) in-
dicates the growth of the corresponding eigenmode.

Physically, the coupled Eqs. (8) and (9} describe the
linearized stage of the induced decay of the carrier wave
at the frequency mo into its daughter waves at the side-
band frequencies coo+co. The right-hand side of each
equation presents the harmonic driving from the non-
linear beating or F%'M of the carrier and the other
daughter wave, and the left-hand side describes propaga-
tion with total wave-number mismatch (including linear
and nonlinear mismatch). The nonlinear wave-number
mismatch comes from XPM, and is generally complex
due to the Raman effect or nonlinear relaxation. Alterna-
tively, Eqs. (8) and (9) describe the scattering of the pump
into one of the sidebands by the nonlinear grating pro-
duced by the pump and the other sideband. These equa-
tions decouple automatically when IyIAoI /A, I

((l. In
this limit, without loss of accuracy, the two independent
eigenmode of Eqs. (8) and (9) become

8+ ~ ik+ (a))z=ci
( )

e +cg
I

r (co)
e (16) =p(~o) —

p(ohio
—co)—y„*

where c, and c2 are constants, and

r+ =D+(k+, ~)/yf+ Azo ———yf A,"/D (k+,~),

r =y f+ Ao/D+(k, ay)= D(k, cg)/y f A—
o

(18)

indicate the relative amplitudes of Stokes and anti-Stokes
sidebands for each eigenmode, respectively. kz(co) are
the dispersion relations for the two eigenmodes,

(23)
r =0 or S+-0.

Physically, these solutions correspond to the independent
evolution of each sideband subject to the Raman loss (for
the anti-Stokes) or gain (for the Stokes) and with the re-
fractive index changed by the pump due to XPM.

Generally, each frequency component cannot propa-
gate independently, but couples to the other sideband. In
fact, expressing e

&
and e2 in terms of the input condition

leads to the general solution in the form of a transfer ma-
trix,

8+(co,z)
8' (co,z) 1 —r+r

ik+z ik z
e + —r+r e

ik+z ik zr+e + —e

r (e —e +
) 8+(co,O)

k 'k 8 ( ())
(24)

This equation linearly relates the Fourier spectrum at any
distance z to the input spectrum.

In the case of instability and at large distances, the
contribution from the damped eigenmode can be neglect-.

ed. Then Im[k+(cg)] gives the information about the
spectrum amplification with distance, while I r+ (co) I

in«-
cates the relative amplitude of Stokes and anti-Stokes
sidebands, if the + sign is used to represent the growing
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mode.
To isolate the effect of the shape of the modal disper-

sion curve p(co'), we first neglect the frequency depen-
dence of the nonlinear coefticients by using their value at
zero modulational frequency ~=0. It is easy to show that

yf+ y ( coc coc coQ ), which is a real parameter
denoted by y. This means that the Raman effect and oth-
er dependence of nonlinear coefticients on frequency are
neglected. Then Eq. (19) becomes

[Im(k )],„=y I Ac I
is obtained, corresponding to a com-

plete linear compensation of the nonlinear wave-number
mismatch; if it does not (as can happen in the dispersion-
fiattened fiber), the maximum growth rate happens at 5&,
(the subscript e is for extremum), which is the extremum
of b, i(co) closest to the horizontal line at 2y I Ac I, with a
value

[Iin(k )],„=V(2y I
Aol' —~i, )' —(2y I

Acl')'/2

k~ = [P(coc+co) P(c—oc co)—

+V'(~ —2yl A I')' —(2y I
Aol')']/2, (25)

where the term b,
&

—2y I Ac I
under the square root is just

the total wave-number mismatch 5, which is real in this
case. Instability happens whenever its amplitude is
smaller than that of the FWM coupling strength
2y I Ac I

. (This condition means that the linear mismatch
compensates for the nonlinear mismatch. ) It can be
proved that lr+(co)l =1 for co in the unstable range, so
the amplitudes of the Stokes and anti-Stokes waves are
equal for the growing mode. In the following, we only
consider the y &0 case. Since the y (0 case is similar,
our discussion can be easily extended.

The instability happens when

0& bi(co) &4y I Aol (26)

In a digram of b, i(co) (see, for example, Fig. 1), the insta-
bility range is between the horizontal axis and the hor-
izontal line at 4y I Ac I

. If in this range b, i(co) reaches the
value 2y I Ac I, then the maximum growth rate

&yl Aol'

This corresponds to a maximal, but incomplete, compen-
sation.

In many situations, the second-order dispersion func-
tion, defined as p2(co')—:(d /dco') p(co'), is given instead of
the modal dispersion P(co'). Thus we wish to express
b&(co) in terms of the second-order dispersion function.
Since (d /dco) b, i(co)= —P2(coo+co) —P&(coo —co) and
(d/dco)bi(0)=b&(0)=0 from Eq. (21), one can show
that

b, i(co) = J [P2(coc+v)+P2(coc —v) ](v—co)d v . (28)

For very small modulation frequency, a parabolic ap-
proximation for the modal dispersion curve p(co') can be
used around the pump frequency. This is equivalent to
considering p2(co') a constant within the frequency range
of investigation: pz(coo+co) =p2(cop). It follows from Eq.
(28), b, i(co)= —Pz(coo)co, which is displayed in Fig. 1 for
the case of p2(coo) &0. This figure also indicates that the
instability range is at 2+yl Aol /Ip~(coo) and the max-
imum growth is y I Ac I

. These results agree with those
obtained from the standard NSE model [2].

However, as the power increases [but Eq. (2) must be
satisfied] or the second-order dispersion coefBcient at the
pump frequency decreases, the instability range becomes
wider, and finally the approximation that p(co') is para-
bolic, or p2(co') is constant, breaks down. In addition,
this treatment will miss any MI gain occurring at rela-
tively large ~. So, to explore the broad-bandwidth
behavior of the MI gain, the exact linear dispersion rela-
tion should be used [14]. A good example is the
dispersion-flattened fiber discussed in the following sec-
tion.

III. DISPERSIQN-FLA'I l'ENED FIBER

2+A J IIPPagl

FIG. l. Instability analysis using h, lco) = —Pi(coo)co . The
upper dashed horizontal line is 4yl Aol and the lower is

2y I Ao I
. The frequency range of instability corresponds to the

section of the h&(co) curve between the horizontal axis and
upper dashed horizontal line. The intersections of the curve
with the lower dashed horizontal line indicate the frequency of
maximum growth rate yl Ao I

. As power increases, both hor-
izontal lines go up.

P2(co')=Pz, [1—(co' —co~) /co, ], (29)

where p~, is the minimal value of p2(co') occurring at the
frequency co', and 2', is the frequency spacing between
the two points of zero dispersion (the subscripts e and z
are for extremuin and zero, respectively). In an ordinary

A. Pz, & 0 case

A dispersion-fiattened fiber [12] has the characteristic
second-order dispersion function shown in Fig. 2. Notice
that pz(co) cannot be considered constant in the frequen-
cy range of interest because it changes sign twice. As a
simple model, we fit the curve with a parabola. With this
assumption,
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Usually the zeros of linear mismatch at nonzero co's im-
ply the presence of FWM instabilities for some parameter
values. The maximum of 5& happens at cubi, (the subscript
l is for linear and e is for extremum), where

L
I

FIG. 2. Illustration of Pz{co') for dispersion-fiattened fiber.

Pz, and co~ are the extreme P2 value and the corresponding fre-
quency relative to the pump frequency, respectively. 2', is the
di8'erence between the two zero-dispersion frequencies.

cu~~
—3cu~ ( 1 co& /co~ ) —coj /2,

with the maximum value of

6„=—3', (1—co /cu, ) P2, /2 . (33)

For the relatively low pump power 4y~A&~ (6&„
there are two intersection points with the horizontal line
of 4y~ Ao at cu (the subscript rn is for MI) and co/,
where

dispersion-fiattened fiber Pz, is negative.
Using Eqs. (28) and (29), we get

r

cu =co~, (1—Ql —4y~Ao~ /b, &, ),
co& =co&,(1+Pl 4y I AOI /~i, I) ~

(34)

(35)

CO
b, i(cu) = —P2, (1 co~ /co—, )cu 1—

6co, ( 1 —
co~ /co, )

where co =co~ —coo is the minimum dispersion frequency
relative to the pump frequency. An instability analyses
based on b, , (c0)is displayed in Fig. 3. Its two zero points
are at co=0 and co& (the subscript f is for FWM), where

c02 —6cu2( 1 c02 /c02 ) (31)

h, (co)

I

CO)~ 0))
tc

FICx. 3. Instability analysis using A&(co) in the case of a
dispersion-Aattened fiber. The upper and lower dashed horizon-
tal lines are 4y(AO~ and 2y)Ao~, respectively. The two fre-

quency ranges of instability correspond to the two sections of
the h~(co) curve between the horizontal axis and upper dashed
horizontal line, i.e., (O, co ) and (m&, co&). The two intersections
of the curve with the lower dashed horizontal line at co, and
co&, indicate the frequencies of maximum growth rate y~ Ao~ .
As power increases, both horizontal lines go up and the two in-
stability regions merge. With further power increase, the inter-
sections of the curve with the lower dashed horizontal line also
disappear.

This indicates two regions of instability with the boun-
daries (O, co ) and (cu', cu&). The maximum growth rates
in both ranges are y Ae~ at co, and cu&„respectively,
where

co, =co(, (1 —Ql —2y~ Ao~ /b, i, ), (36)

~/, =~i,(1++1—2yI Aol'/~i, ) (37)

If the pump power continues to decrease, a comparison
of Fig. 3 with Fig. 1 indicates that the first region reduces
to the conventional MI discussed in Sec. II. In fact, one
can prove that the instability range approaches the con-

ventional form of co -2+y
~ Ao ~ /~P2(coo) ~, where

P2(cue) is actually the second-order dispersion coefficient
at the pump frequency from Eq. (29) (see Fig. 2). The
growth rate is approximated also by the conventional ex-
pression. This is expected, since the linear phase-
mismatch 6& is approximated by the conventional form
of —P2(coo)co within this instability range [this can be
deduced from the Taylor expansion b, ~(cu) =6& (0)cu /2,
where b.&'(0)= —2P2(coo) from the definition of 5& and

Pp]
The second region can be shown to reduce to the con-

ventional FWM instability. In the weak pump power,

co/ ci)/ cui~y ~ Ao ~
/+25(

and

b, i(cu) —( —4&26(, /cui, )(cu —cu/)

in the range (co&, co&). Recall that for a conventional
FWM of a pump wave at mo and the two daughter waves
at about coo+ cof, the linear wave-number mismatch and
instability bandwidth is b, u '(co —

co& ) and 4y ~
A o ~

/
~
b, u

'
~, respectively, where b, us

' =—P'(coo —
co& )

P (coo+ co& ) is the difference of the inverse group veloci-
ties between the two daughter waves (the prime means
derivative). We have obtained exactly these forms con-
sidering b, u =b, '(co& ) = —4V'2k&, /co&, . The growth
rate also takes the conventional form. We know that in
the presence of conventional MI, a long optical pulse will
break up to form solitons, but in our case, a competing
process of the conventional FWM will channel the energy
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6&(Q) = —sgn(P2, )(1—Q /6)Q

From Eq. (25),

(3S)

2

into the sidebands at approximately cof. These sidebands
will beat to form high-repetition-rate short pulses; how-
ever, this is a reversible process at the nonlinear stage
[15] because after the pump depletion, the sideband's en-
ergy will be transferred back to the pump.

If we increase the pump power, the two regions begin
to merge as co and cof come closer until they coincide at
co&, for the power corresponding to 4y~ Ao~ =61, (cof
does not change with power). After that, the instability
range will be locked at (O, cof ), independent of power in-
crease. The two peaks of the gain curve with a value of
y ~

A o ~
are still seperated, since co, and cof, are different,

but if the power continues to increase, they also coincide
at co&, when 2y~Ao~ =5&,. After that, the h&(co) curve
has no intersection with the horizontal line at 2y~ Ap~

thus, the maximum growth rate is smaller than y~A&~
and is given by Eq. (27). At even higher powers it is ap-
proximately 1/ y ~ Ao ~ b~, . The peak is locked at co&„ in-
dependent of power increase.

With the analytical expressions of ~, m ~f Mf, Mf
the above analysis is graphically displayed in Fig. 4, indi-
cating the instability region and the ridge of peak growth
in a contour plot of the growth rate versus frequency and
power. To reduce the number of free parameters, nor-
malized units have been introduced. We normalized co as
Q=col(co, +1—a) /co, ), P2, as Pz,„=Pz,co, (1—a)~/
co, ), y) Ao( as P =y) Ao( /(P2, „(, and the growth rate
as G =Im(k)/~pz, „~. Thus, in the normalized units, all
the formulas can be rewritten with the formal substitu-
tion of co =0, P2, =sgn(Pz, )=—1, co, =l, y~ Ao~ =P,
and co=Q. For example, Eq. (30) becomes

2

U
1.5

CO

CS

CO

0.5

/
/

////

0
0.5

Power P

1.5

FIG. 5. Peak growth rate G,„versus power P. The point
where the deviation from the straight line occurs corresponds to
the bifurcation point on the dashed line in Fig. 4. G,„ in-
creases with P more slowly after this point because there is not
enough linear wave-number mismatch to compensate the non-
linear part.

G=lm+[b&(Q) —2P] —(2P) /2 . (39)

Equations (31)—(37) become

Qf =6, Q(, =3, b.l, = —sgn(p2, )3/2,

Q =3[1—Ql+sgn(P2, )SP/3],

Qf =3[1+Ql+sgn(Pz, )SP/3],
Q2, =3[1—+1+sgn(Pz, )4P/3],

Qf2, =3[1++1+sgn(pz, )4P/3],

respectively. Notice that Q and P are now the only free
parameters to change. The peak growth rate versus
power is displayed in Fig. 5 by using G,„=P and
Gm,„=+—( —,

' —2P) +(2P) /2 [from Eq. (27)] for the

1.5
0.8

CL

co 0.6

0.5

0
0.5 1.5 2.5 0

/ rr lJ/ r
/
r

~P

Modulational frequency &
0 0.5 1.5 2.5

Modulational frequency Q

FIG. 4. Instability region in 0-P space for a dispersion-
flattened Aber. The thick lines and the vertical axis enclose the
instability region. Within the region, the dashed lines are the
position of the peak-growth frequency for varying power. The
background curves are the contour plots of the growth rate
from Eq. {39).

FIG. 6. Growth rate G versus frequency Q for different
powers. The long dashed line, short dashed line, and solid line
correspond to P=0.7, 0.4, and 0.1, respectively. For low
power, it is a superposition of conventional MI (left portion of
the solid line) and conventional FWM instability (right portion
of the solid line).
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ranges of I' ~ —,
' and I' & —,', respectively. Notice that the

peak growth rate increases more slowly for higher power
because of the incomplete compensation of linear and
nonlinear phase mismatches. Figure 6 displays the gain
curves at difFerent powers from Eqs. (38) and (39).

B. P2, )Ocase

While it is true that most dispersion-Aattened fibers
have R &0 it '

Rz, , i is interesting to consider the case in which
P2, is a positive number, since our analysis can be used to
analyze dispersion curves with any shape. This situation
corresponds to a pump propagating in the normal disper-
sion region bounded by anomalous dispersion regions in
frequency space. Following the procedure developed
above, we display the instability analysis based on 6&(ro)
in Fig. 7.

Its two zero points are at ~=0 and m giv b E
j~. Again, the zero of linear mismatch at nonzero ~ in-

dicates the possible presence of F%'M instability. This is

with the horizontal line of 4y ~ Ao ~, always exists and is
also given by Eqs. (33) and (35) for P2, )0.

Unlike in the previous case, the instability correspond-
ing to the ordinary MI does not exist due to the normal

ispersion at the pump frequency. The existing instabili-
ty reduces to the conventional FWM instability at small
input power. As the power increases, the peak growth
rate is always y ~ Ao ~

because of complete linear and non-
linear wave-number compensation. The instability re-
gion, between coI and coj given by Eqs. (31) and (35),
keeps increasing with increasing power. The instabil
region based on these equations and growth rate versus
frequency by Eq. (25) are shown in Figs. 8 and 9.

CL

CL

0
2 2.2 2.4 2.6 2.8 3 3.2 3.4

Modulational frequency Q

FIG. 8. Same as Fig. 4, except for the sign of P2, . The thick
ines enclose the instability region. Within the region, the

dashed line is the position of the peak-growth frequency for
varying power. The peak growth rate is always I'. The back-
ground curves are the contour plots of the growth t f
(39).

w ra e rom Eq.

Although we have found instability with the pump in
the normal dispersion region, it can be proved that at
east one of the unstable sidebands is located in the anom-

alous dispersion region on the Pz(co') curve.
In summary, the instability behavior at the weak power

imit is determined by the analytical properties of h&(co)
near the frequencies for which it equals zero. If its first

a requency, w icerivative is a nonzero value at such a f
eads to a finite group-velocity difference between the

linearly phase-matched sidebands, then we have conven-
tiona FWM instability close to that frequency. If the
first derivative is also zero, which means equal group ve-
ocity of the linear phase-matched sidebands, then we

have stability or conventional MI (close to that frequen-
cy) depending on whether its second derivative is nega-
tive or positive.

We now briefly consider a fiber with many alternating
dispersion regions (in frequency space). Based upon the

.4VIA, I

I % &&~A &&~A «~ a~ 0.8

FIG. 7. Instability analysis using h&(co) for P2, )0. The
upper and lower dashed horizontal lines are 4y~ A ! d

p!, respectively. The frequency range of instability corre-
sponds to the section of KI(co) curve between horizontal axis
and upper dashed horizontal line i.e. (

'
) Th~ cof cd e intersec-

tion of the curve with the lower dashed horizontal line at co&, in-
icates the frequency of maximum growth rate y! Ao! . As

power increases, both horizontal lines go up.

w 0.6 .

o 04
CO

~ 0.2 .

0.
2 2.2 2.4

/
/
I \
I

A . !
2.6 2.8

Modulational frequency Q

FIG. 9.. 9. Same as Fig. 6, except for the sign of P2, . For low
power, it is a conventional FWM instability.
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above analysis, it is easy to predict instabilities for such a
fiber: usually, more instability regions corresponding to
FWM will be added to the above pictures because of the
oscillating behavior of b, &(co). These regions can merge at
high pump power. Thus the scheme can produce contin-
uum generation with a wide bandwidth.

C. Frequency-dependent nonlinearity

0.4 .(3'
-" 0.3

co 0.2.

~~ 0.1.

III
I

I 1
I I

I I
I I

I
I

In the above analysis we neglected the dependence of y
on the modulational frequency and took it as a real quan-
tity. At large co, the Raman effects come into play and
this assumption is invalid. In order to describe the
dependence of the nonlinear coefficients on the modula-
tional frequency, a standard model is to assume the non-
linearity comes from an instantaneous electronic response
that does not depend on the modulational frequency, plus
a retarded nonlinearity that can be described by the sim-
ple I.orentzian model for the Raman effect. Thus we can
write

0
0.5 1.5 2.5 3

Modulational frequency Q

FIG. 10. Growth rate 6 versus frequency Q for a 6xed power
P =0.4. The Raman parameters are y&0=0.4y, yI=0. 6y,
and v& =0.38co&. The normalized Raman frequency is
co))/(co, V 1 —co~/co, )=0.78. The dashed line corresponds to
the instantaneous nonlinearity.

X ( co~ )co~ zco)3=X r+Xrt (cp)~co2~cp3)
(3) — (3) (3) (40) k ~ = —,

' [p(cop+ co) —p(coo —co)

According to the Lorentzian model [11],the Raman part
takes the fan. iliar forms

+Q(A) —2y„+/Ap[ ) —(2y„+/Ap/ ) ], (47)

Xrt [coo~ coo (coo+co)]

=—'[Xrto)/( I co /co—rt + )'2vrt cu/cort )+X~p],2

X~'[~o ~o —(~o+~)]

XiR3p)/(I m /~2R+)2VR~/~R)

Xrt [coo~ coo~coo] Xrto ~
(3)

(41)

(42)

(43)

where co+ and v~ are the Raman peak frequency and dis-
sipation rate, respectively. yI and yzo are parameters(3) (3)

for the magnitude of instantaneous and retarded non-
(3)linearity, respectively. Note that X (cop, —coo, cop)

(3) (3)+I ++RO'
From Eq. (7), we have

where y„+ is given by Eq. (46}. It is easy to show that
for a very small modulational frequency, y„+-—y, thus
the result for instantaneous nonlinearity is recovered.

As a numerical example, let us suppose that the two
points of zero dispersion of the dispersion-flattened fibers
are 150 nm apart and the pump frequency is 50 nm off
from the extreme-dispersion frequency. This corresponds
to p), /(2~)-22. 5 THz and cp /(2m)-15 THz. The
FWM frequency will be ct)f /(2m)-41 THz, according to
Eq. (31). Assuming that the extremum of the second-

2 —1order dispersion Pz, ——1 ps /km, and y —10 W km
then the power for the merging of conventional MI and
FWM is

~

A p ~

=b &, /(4y ) -231 W. This power is greatly
reduced if the dispersion-Battened range is narrower or
the magnitude of the second-order dispersion is smaller.

y [cop, —coo, (cop+co) ]

—6)rcopX [cop& cop& (cop+co) ]/[cn (cop) A of ] (44)

r [~o,~o (~o+~—) ]

=6mcopX' )[coo, cop, (coo+co)]/—[cn( c)oAp, fr], (45)

(3)where we have kept the co dependence only in y since
(cop+co)/n(cop+co) =coo/n(coo) in the range of the modu-
lational frequency under consideration.

When combined with Eqs. (44) and (45), Eqs. (40)—(43)
allow us to find y + and yf+ from their definitions in
Eqs. (12)—(15},

7'f+ ——yr+yrtp/(I m /mrt +—)2 rt / rt ),
(3)ywhere yrto = 6m cd)Xrt p/[cn (coo) A,n ] and 3'r 6')rcpoXr

[cn(co ) A,~]. Note that the nonlinear coefficient for zero
modulational frequency is 7'(coo pro coo) ='Yr+ 1'rto
which is a real number and will be denoted by y. By us-
ing Eq. (19), the dispersion relation, including the Raman
effect, is thus

I 4

o 0.8-

a) 0.6-

~ 0.4.
E

0.2-

Modulational frequency Q

FICx. 11. The amplitudes ratio ~r+ ~

' of the anti-Stokes and
the Stokes wave for the growing mode. The parameters are the
same as those of Fig. 7. The dashed line indicates that in the ab-
sence of the Raman e6'ect, the ratio is unity in the instability re-
gion.
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The Raman frequency is about uz -2m X13 THz. And
as representative values, vz -2m. X5 THz, yr -0.6y, and
@~0-0.4y. Figure 10 shows the Raman effect on the
gain curve obtained from Eq. (47) for the above parame-
ters. By the normalization scheme used before, the fre-
quency Q, the growth rate 6, and the power I' have been
normalized to 2n. X 16.7 THz (the normalized Raman fre-
quency is thus 0.78), 6.16 m ', and 616 W, respectively.

Another aspect of the Raman effect can be revealed by
a computation of ~r+(co)~ ' from Eq. (17), resulting in a
value smaller than unity (Fig. 11). This means that in the
presence of the Raman effect, the amplitude of the Stokes
wave is larger than that of the anti-Stokes for the unsta-
ble mode, which is expected since the Raman gain tends
to amplify the Stokes sideband while decreasing the anti-
Stokes sideband.

IV. CONCLUSION

such as Raman gain are formally included. We then ap-
plied the result to the case of various dispersion-Aattened
fibers to study the effects of the shape of the modal
dispersion curve on MI. We found that when the fiber is
flattened in the anomalous dispersion region, the instabil-
ity is the superposition of a conventional MI and FWM
at low pump power. These instability regions in frequen-
cy space merge at a large power. Instability also occurs
even when the pump is in the normal dispersion, if the re-
gion is Aattened. At low pump power it reduces to the
conventional FWM instability. The frequency positions,
the bandwidth, the maximum growth rate of the instabili-
ty for various pump powers, etc., were characterized
analytically. The Raman effect on these parametric insta-
bilities was also studied. It changes the growth rate of
the instability and makes the Stokes sideband stronger
than the anti-Stokes sideband for the instability.

In conclusion, we studied MI by linearization around a
nonlinear steady-state solution of the (nonlinear) Maxwell
equation system. This steady-state solution corresponds
to a cw pump. Specifically, the resulting linear partial
differential equation is solved by harmonic analysis. In
essence, the solution to this linear partial differential
equation is a multiscale approximation according to the
pump amplitude. Thus, unlike the traditional NSE-type
methods, which involve Taylor expansions in frequency
space, our result can be uniformly applied in any frequen-
cy range. Nonlinear dispersion and nonparametric effects

ACKNO%'LEDGMKNTS

G. P. A. was supported by the Army Research Office
under the University Research Initiative Program.
C. J. M. and M. Y. were supported by the National Sci-
ence Foundation under Contract No. PHY-9057093, the
U. S. Department of Energy (DOE) Office of Inertial
Confinement Fusion under Cooperative Agreement No.
DE-FC03-92SF19460, the University of Rochester, and
the New York State Energy Research and Development
Authority.

[1]H. C. Yuen and B. M. Lake, in Advances in Applied
Mechanics, edited by C. S. Yih (Academic, New York,
1982), Vol. 22, p. 180.

[2] G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic,
Boston, 1995).

[3] A. Hasegawa, in Plasma Instabilities and Nonlinear sects
(Spring-Verlag, Berlin, 1975).

[4] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys.
Rev. Lett. 45, 1095 (1980).

[5] M. N. Islam, S. P. Dijaili, and J. P. Gordon, Opt. Lett. 13,
518 (1988).

[6] E. J. Greer, D. M. Patrick, P. G. J. Wigley, and J. R. Tay-
lor, Opt. Lett. 15, 851 (1990).

[7] S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S.
Gouveia-Neto, Phys. Rev. A 43, 6161 (1991).

[8] I. M. Uzunov, Opt. Quantum Electron. 22, 529 (1990).
[9] E. A. Golovchenko and A. N. Pilipetskii, J. Opt. Soc. Am.

8 11,92 (1994).
[10]M. Nakazawa, K. Suzuki, and H. A. Haus, Phys. Rev. A

38, 5193 (1988).
[11]R. W. Boyd, Nonlinear Optics (Academic, Boston, 1992).
[12]V. A. Bhagavatula, M. S. Spotz, W. F. Love, and D. B.

Keck, Electron. Lett. 19, 317 (1983).
[13]A. H. Nayfeh, Introduction to Perturbation Techniques

{Wiley, New York, 1981).
[14] M. Yu, C. J. McKinstrie, and G. P. Agrawal, Phys. Rev. E

48, 2178 (1993).
[15]C. J. McKinstrie, X. D. Cao, and J. S. Li, J. Opt. Soc. Am.

8 10, 1856 (1993),and references therein.


