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Numerical simulations of the Navier-Stokes equations with hyperviscosity (—1)**!A* (h=8) show that
periodic-box turbulence exhibits self-similar decay. The inertial-range energy spectrum has the scaling law
E(£)?P/k3, where &(t) is the energy dissipation rate at time ¢. The total energy of the system decreases at
1/t>. The concept of constant Reynolds number decay is introduced, enabling us to perform long time averages
and reliably measure higher-order correlation functions. Comparisons are made with the case of forced turbu-

lence reported earlier.
PACS number(s): 47.27.—1i, 61.20.Ja

Large-Reynolds-number turbulence is closely described
by the inviscid Euler equations at large scales; at very small
scales, dissipation provides an energy sink (ultraviolet cut-
off). In this case, it is natural to suppose that the physics of
turbulence should be insensitive to the specific form of dis-
sipation. In our previous work [1] we have already demon-
strated that for the same numerical resolution, we can effec-
tively increase the extent of the inertial range of three-
dimensional turbulence by an order of magnitude by using
alternative forms of dissipation. We considered replacing the
normal Laplacian dissipation by a higher power of the La-
placian, i.e., a hyperviscosity. It was shown that three-
dimensional inertial-range dynamics seems to be relatively
independent of the form of the hyperviscosity and that mod-
est resolution simulations with high-order hyperviscosity
lead to sufficiently extensive inertial ranges that measure-
ment of a broad variety of otherwise intractable quantities
can be made. In [1] we observed deviations of the isotropic
energy spectrum from the 5/3 Kolmogorov law [2]. It was
suggested that this deviation is likely to be related to the
large-scale behavior of the system, in particular to the
mechanism of energy pumping.

In this Rapid Communication we consider the unforced
case, i.e., decaying turbulence. It will be shown that for
decaying turbulence in a periodic box, the 5/3 Kolmogorov
law is recovered and we observe self-similar decay
with the isotropic energy spectrum defined as E(k)
= 47k*(v (K)v;(—Kk)) changing as

g(t)2/3 ( k )

E(k,t)=CK—km—G m (1)

Here &(t) is the energy dissipation rate and k,(t) is the
dissipation cutoff wave number at time ¢. The Kolmogorov
constant C g measured from our simulations is Cg=~1.2; the
function G (k/k,) is nearly unity at small £ and parametrizes
the influence of dissipation for k near k;. We define k; as
the wave number at which the maximum of the vorticity
spectrum k2E(k) is attained.
The hyperviscosity-modified Navier-Stokes equations are
A +v;djv;=—dp+(—1)""y,AMy,, (2
where the pressure p is calculated from the incompressibility
condition d;v;=0. As in [1] we use hyperviscosity with
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h=28. The hyperviscosity coefficient v, with 2= 28 is chosen
so that the hyperviscosity is significant only for
k=k,~N/3 (where N3 is the numerical resolution). The en-
ergy balance equation then takes the form

8,E(k,t)=T(k,t) —2v,k*"E(k,t). (3)

Here T'(k,t) is the energy transfer function and the energy
flux is defined as

Teo= [ Tkna )

It is clear that if (1) holds

g(t) 1/(6h—2)
kd(t)‘x(v—f) ; (5)

for h=8, k,(t) is practically independent of ¢. Neglecting the
time derivative of k; the only energy transfer function com-
patible with (1) and (3) has the form

T(k t):(E ﬁpuv k”’)E(k t) (6)
s 3 g h st).

The form (6) is self-similar only in the inertial range and is,
strictly speaking, incompatible with von Karman’s self-
similarity hypothesis [3], although it is compatible with a
weaker form of von Karman’s hypothesis valid only at high
Reynolds numbers [3]. It is clear that this form of self-
similarity necessarily leads to equations for the total energy
of the system K(¢) of the form

3 &(1)?

IKN==80), 450=3 oy

(M

from which we infer that K(¢)~1/t* (t— ). This result is
in conflict with most theoretical predictions and experimental
data. Previous results suggested that K(#)~1/¢* in decaying
turbulence with a=1,10/7,6/5 [3,4] (see [5] for a recent re-
view). There are at least two reasons for this discrepancy.
First, von Karman’s self-similarity hypothesis, strictly speak-
ing, is only valid asymptotically. The second, and more im-
portant reason, is that in practically all laboratory experi-
ments the integral scale of turbulence defined as
L,= [k YE(k)dk/[E(k)dk grows in time, thereby decreas-
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E(k,t)k5/3/8(t)2/3
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FIG. 1. (a) Scaled energy spectra E(k,t)k>?/&(¢)** and (b)
scaled energy fluxes Jz(k,t)/£(t) as functions of log;ok at different
moments of time. The resolution is 128>,

ing the decay rate of K. In our periodic box, L; may grow
slightly at early times. But when L; reaches the size of the
box, it remains constant thereafter. It is indeed difficult to
have an experimental setup in a laboratory experiment that is
equivalent to a periodic box so that the K~1/t> law has
never been observed. In numerical simulations with a La-
placian viscosity the Reynolds number is usually too low for
inertial-range asymptotic laws to be reliably measured.

We solve (2) using a parallel pseudospectral code [6]. The
data for the forced turbulence case [1] are used as the initial
conditions for the decay. First we performed one long run
with resolution 128> in a periodic box of size L =27 in each
direction. The total run time is 2 X 10° large eddy turnover
times 7o~ 1/U,ms(0) (Where v, (£)=[2K(¢)/3]"?). The
scaled isotropic energy spectra E(k,t) and corresponding en-
ergy fluxes are shown in Figs. 1(a) and 1(b) at the different
moments of time as functions of log;o(k). It is apparent from
Fig. 1 that energy spectra and energy fluxes scale with time
according to Egs. (1) and (6). There are obviously some fluc-
tuations of the energy flux and the energy spectrum. Al-
though the Kolmogorov 5/3 law for the energy spectrum is
observed, the energy flux is no longer constant. According to
(4),(6) in the inertial range, the energy flux has a correction
of the form J (k)= &(1—A/(kL;)¥?), where A~1. Asymp-
totically this correction becomes small for large k£ but the
crossover to the asymptotic behavior is very slow. Another
interesting feature is the flattening of the energy spectrum
near k,. This “bottleneck” part of the energy spectrum has
already been discussed in [1]. In Fig. 2(a) we plot the total
energy of the system as a function of time. It turns out that
after a few large eddy turnover times, the total energy
K(t)~1/t* in accordance with the self-similar behavior of
energy spectra and (7). Moreover, if we plot the ratio of
K(t)/& #3(t) as the function of log;oK(¢)[Fig. 2(b)] we see
that this ratio is constant across approximately ten decades of
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FIG. 2. (a) Total energy scaled by K(¢)¢?/K(0) as a function of
logio(tvms); (b) the ratio 2K(t)/3&%3(t) as a function of
—log;o[K(#)/K(0)]; (c) the dissipation scale log,o[ k4(¢)/k4(0)] as
a function of log,o[ #(¢)/&(0)]. The resolution is 128°.

variation of K(t), supporting the self-similarity of energy
spectra in the form (1). As may be seen from Fig. 2(c) while
#(t) changes 15 orders of magnitude the dissipation scale
k4(t) decreases less then two times in agreement with (5).
The fact that the dissipation scale changes in time very
slowly allows us to introduce the concept of constant Rey-
nolds number decay.

The Reynolds number for the Navier-Stokes equations
with hyperviscosity may be defined as some power of k,L;
[1]. Let us tune the hyperviscosity coefficient v,(¢) in order
to keep k, fixed [see (5)]. The only relevant parameter with
the dimension of time is the dissipation rate &(z). We
checked that if we rescale any correlation function by the
appropriate power of &(¢) the data collapse to one curve.
This enables us to conduct long time averages for nearly
infinite in time, “stationary,” constant Reynolds number de-
cay. We performed two series of stationary decay runs with
resolutions 128> and 256°. The total time of integration ex-
pressed in units of a local large eddy turnover time
1/v ms(t) is approximately 200 and 15, respectively. We mea-
sured the same correlation functions as described in [1] and
checked that rescaling by an appropriate power of £(¢) leads
to the collapse of the correlation functions measured at dif-
ferent moments of time. For example, we plot in Figs. 3(a)
and 3(b) the rescaled energy spectra and energy fluxes mea-
sured at different moments of time for 128> resolution. It has
been checked that the observed scatter is due to statistical
fluctuations. To obtain statistically reliable data, we per-
formed time averages with rescaling. In what follows, such
statistical averaging is always assumed.

The use of hyperviscosity and the concept of a constant
Reynolds number decay enables us to address an important
question regarding higher-order correlation functions for the
case of decaying turbulence. As in [1] we define the isotropic
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FIG. 3. Decay at constant Reynolds number. The resolution is
256°. The curves at different moments of time are superimposed on
each other. (a) Scaled energy spectra E (k,t)k>?/ &(£)%>; (b) scaled
energy fluxes Jx(k,t)/& (t); (c) normalized strain-dissipation rate
correlation function Z[&,&,1(k)/{E]1 &, &1(k)E [ &, ,5,1(k)}?
as functions of logok/k, .

correlation function of any two operators in spectral space as
% [A,Bl(k)=27k*(A(—K)B(K)+A(K)B(—Kk)). We find
that for correlation functions that come predominantly from
small-scale fluctuations the results are very close to the ones
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FIG. 4. Scaled by k°3/&?? (a) isotropic energy spectrum
E(k,t); (b) transverse energy spectrum E;; (k,t); and (c) longitudi-
nal energy spectrum E yy(k,t) as functions of log;ok for the case of
decay with constant Reynolds number. The resolution is 256°.
Points are the isotropic energy spectrum calculated from the trans-
verse and longitudinal energy spectra and the transverse energy
spectrum calculated from the longitudinal energy spectrum accord-
ing to (8).
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FIG. 5. Comparison between the case of constant Reynolds
number decay and white-in-time forced turbulence. (a) Scaled en-
ergy spectra E(k)k>3/& 3; (b) scaled energy fluxes Jz(k)/&; (c)
effective viscosity veg(k) [see (9)] scaled by k*3/& 13 plotted as
functions of log;¢k/k, . Resolutions 256° (A), 128> (B) for decay-
ing turbulence. Resolution 256° (C), 128* (D) for white-in-time
turbulence.

obtained in [1]. This includes the energy dissipation rate
[&=v,(A"?u;)?] correlation function % [&,&|(k)~k™?,
strain-vorticity and nonlinear term correlation functions. For
example, a run with resolution 256 leads to the result
y=~0.75 and to the intermittency exponent u=1— y=~0.25,
consistent with [7]. On the contrary, isotropic spectra of the
turbulent energy K =v;v;/2, which come predominately from
large-scale fluctuations, have somewhat flatter spectra
~1/k3? than observed in [1]. As in [1] we can make a state-
ment that our definition of dissipation rate & is statistically
equivalent to that with renormalized normal viscosity. In-
deed, we note that the physical dissipation is the product of
viscosity and &,=jw’+S? [where o;=&’*9,v; and
S;i= (9w j+ov;) are vorticity and strain, respectively].
Remarkably, the measured correlator & [&,&,]/
(ZL&,&F[5,,&,]) * nearly equals 1 in the range of
small k where asymptotic scaling may be claimed [see Fig.
3(c)].

The results plotted in Figs. 4(a) and 4(b) show that our
system is locally isotropic. Besides isotropic energy spectra
we measure independently the longitudinal E yy and trans-
verse E;; energy spectra. For an isotropic system [3]

ELL(k)=§ENN(k) 1_Tgk_ ,

1 d[Exy(k)+2E (k)]
E(k)==3 dlog k : ®)

In Fig. 4 we plot directly measured longitudinal, transverse,
and isotropic spectra for the 256> run. We also plot, in the
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same figures, the transverse spectrum recalculated from the
longitudinal spectrum and the isotropic spectrum recalcu-
lated from the longitudinal and transverse spectra according
to (8). It is clear from this data that the flow is close to
isotropic.

In Figs. 5(a) and 5(b) we compare energy spectra and
energy fluxes obtained in constant Reynolds number decay
with data obtained previously for the case of white-in-time
forcing. We still see some small deviations of energy spec-
trum from the 5/3 law for the decaying run with the resolu-
tion 2563, but these deviations are much smaller than those
in the forced case. The run with 256> resolution has a larger
Reynolds number than the one with 128> resolution. The
correction to the constant energy flux in this case is smaller.
The energy spectra in these two cases do not completely
coincide when plotted as a function of k/k,. This may
imply that at larger Reynolds number we may see larger
deviations from the 5/3 law and that the present results are
not asymptotic.

The most important conclusion from this comparison is
that the energy spectrum scaling law may depend on large-
scale structure of the flow and this large-scale structure is
different in cases of forced and decaying turbulence. Indeed,
in the case of decaying turbulence, the total energy is a
smooth function of time, while for forced turbulence it is a
strongly intermittent function of time. There are moments in
time when the total energy changes sharply on the time scale
of one large eddy turnover time, although some of the cor-
relation functions seem to be independent of the mechanism
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of forcing. In our previous work [1] we suggested the defi-
nition of an “effective viscosity” in terms of the vortex
stretching term I';=S;;w; as vegh?w;=T";. As in [1] we find
that

. Fle Tk &P
Veff(k)— m ~025 Wj— s (9)

which is remarkably independent of k; [see Fig. 5(c)]. This
scaling law is very robust and seems also to be insensitive to
the large-scale forcing.

Our results suggest that inertial-range dynamics may be
independent of the particular mechanism of small-scale dis-
sipation but are likely to be strongly dependent on the forc-
ing mechanism. The clear deviation of the inertial-range en-
ergy spectrum from the Kolmogorov law observed in [1] is
likely to be related to the large-scale behavior of the system.
On the contrary, for freely decaying turbulence we seem to
regain the 5/3 Kolmogorov law, but the energy flux becomes
constant only asymptotically. We emphasize that caution is
required in comparing our results with most laboratory ex-
periments. Although most laboratory experiments involve
decaying turbulence, even in this case the result might be
sensitive to the global geometry of the system. We conclude
that further understanding of the sensitivity of turbulent en-
ergy cascades to forcing mechanisms is needed.

We are grateful to V. Yakhot, M. Vergassola, and Z.-S.
She for valuable discussions. This work was supported by
ARPA and the ONR.

[1] V. Borue and S. Orszag, Princeton University Fluid Dynamics
Research Center Report No. PU-FDRC-94-3, 1994 (unpub-
lished).

[2] A. N. Kolmogorov, C.R. Acad. Sci. USSR 30, 301 (1941).

[3] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics
(MIT Press, Cambridge, MA, 1975), Vol. 2.

[4] S. A. Orszag, in Fluid Dynamics, Les Houches Summer
School, edited by R. Balian and J.-L. Peube (Gordon and

Breach, New York, 1977), pp. 237-374.
[5] C. G. Speziale and P. S. Bernard, J. Fluid Mech. 241, 645

(1992).

[6] E. Jackson, Z.-S. She, and S. Orszag, J. Sci. Comput. 6, 27
(1991).

[7]1 K. R. Sreenivasan and P. Kailasnath, Phys. Fluids A 5, 512
(1993).



