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Fractional master equations and fractal time random walks
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Fractional master equations containing fractional time derivatives of order 0(co~1 are introduced on the
basis of a recent classification of time generators in ergodic theory. It is shown that fractional master equations
are contained as a special case within the traditional theory of continuous time random walks. The correspond-
ing waiting time density P(t) is obtained exactly as P(t) =(t" /C)E ( —t"/C), where E„(x) is the

generalized Mittag-LefAer function. This waiting time distribution is singular both in the long time as well as
in the short time limit.
PACS number(s): 05.40.+j, 05.60.+w, 02.50.—r

I. INTRODUCTION AND STATEMENT OF THE
PROBLEM

A recent classification theory [1—3] has derived fractional
equations of motion from abstract ergodic theory. Fractional
equations of motion contain fractional rather than integer
order time derivatives as generators of the time evolution.
Fractional equations of motion arise at anequilibriurn phase
transitions [1,2] or whenever a dynamical system is restricted
to subsets of measure zero of its state space [3].

Master equations in which the time derivative is replaced
with a derivative of fractional order form the subject of the
present paper. Such fractional master equations arise as spe-
cial cases of the more general fractional Liouville equations
introduced in [1—3], and they contain the fractional diffusion
equation as a special case. A fractional master equation for a
translationally invariant d-dimensional system may be writ-
ten formally, but in suggestive notation, as

where p(r, t) denotes the probability density of finding the
diffusing entity at the position r e R at time t if it was at
the origin r=o at time t=o. The positions r e 1R" may be
discrete or continuous. The fractional transition rates w(r)
measure the propensity for a displacement r in units of
[1/(time)]", and obey the relation X,w(r) = 0. The fractional
order co plays the role of a dynamical critical exponent.
Equation (1.1) can be made precise by applying the frac-
tional Riemann-Liouville integral as

Diffusion in a d-dimensional Euclidean space is contained
in the fractional master equations (1.1) or (1.2) as the special
case in which co = 1 and w(r) is the discretized Laplacian on
a d-dimensional regular lattice. The integral form (1.2) sug-
gests a relation with the well known theory of continuous
time random walks [4—10]. It is the purpose and objective of
the present paper to show that there exists a precise and
rigorous relation between the fractional master equation and
the theory of continuous time random walks. It will be
shown that the fractional master equation describes a fractal
time process [11,10]. Fractal time processes (see [10] for a
review) are defined here as continuous time random walks
whose waiting time density has an infinite first moment [12—
16].

Given the existence of an exact relation between frac-
tional master equations and fractal time random walks, it
might seem that (1.1) or (1.2) also describe diffusion on frac-
tals. Dimensional analysis suggests anomalous subdiffusive

behavior of the form (r (t)) ~ t"/", where d is the fractal
dimension, and d is the spectral or fracton dimension [17—
19], and indeed some authors have suggested that to= d/d. It
must be clear, however, that while the relation between frac-
tional master equations and fractal time random walks estab-
lished in this paper is exact, the relation with diffusion on
fractals is not. It appears doubtful that the latter relation can
exist beyond superficial scaling similarities because exactly
solvable cases show that the spectral properties as well as the
eigenfunctions for fractal time walks and walks on fractals
are radically different [20—23].

II. RELATION BETWEEN FRACTIONAL
AND FRACTAL WALKS

(1.2)

where the initial condition p(r, 0) = 8~ has been incorpo-
rated.

Let us start by recalling briefly the general theory of con-
tinuous time random walks [5,7,8] The basic equation of
motion is the continuous time random walk (CTRW) integral
equation [16]
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4 (t) = 1 — //(t') dt'
Jo

(2 2)

The objective of this paper which was defined in the intro-
duction is to show that the fractional master equation (1.2) is
a special case of the CTRW equation (2.1), and to find the
appropriate waiting time density.

The translation invariant form of the transition probabili-
ties in (2.1) allows a solution through Fourier-Laplace trans-
formation. Let

describing a random walk in continuous time without corre-
lation between its spatial and temporal behavior. Here, as in

(1.2), p(r, t) denotes the probability density of finding the
diffusing entity at the position r e R" at time t if it started
from the origin r= 0 at time t = 0. ) (r) is the probability for
a displacement r in each single step, and P(t) is the waiting
time distribution giving the probability density for the time
interval t between two consecutive steps. The transition
probabilities obey X,k(r) = 1. The function 4(t) is the sur-
vival probability at the initial position which is related to the
waiting time distribution through

1
0( )=1 (2.8)

and

X(q) = 1+Cw(q) (2 9)

with the same constant C appearing in both equations. Not
unexpectedly the correspondence defines the waiting time
distribution uniquely up to a constant while the structure
function is related to the Fourier transform of the transition
rates.

To invert the Laplace transformation in (2.8) and exhibit
the form of the waiting time density P(t) in the time domain
it is convenient to introduce the Mellin transformation

f oo

f(s) =,M(f(x))(s) = x' 'f(x)dx
Jo

(2.10)

for a function f(x). The Mellin transformed waiting time
density is obtained as

P(s) =~(P(t) )(s)

(' ao

P(u) =M(P(t)}(u) = e "'P(t)dt

denote the Laplace transform of P(t) and

(2.3)

/1 sl ( 1 sl
I ———I 1 ——+—

1 / 1 l j, QJ co) ( co co)
Cl/co

(
C1/cu) I'(1 —s)

(2.11)

X(q) =WAX(r)}(q) = g e'~'k(r) (2 4)
where I'(x) denotes the gamma function. To obtain (2.11)
from (2.8) the relation between Laplace and Mellin trans-
forms

the Fourier transform of k(r), which is also called the struc-
ture function of the random walk [5]. Then the Fourier-
Laplace transform p(q, u) of the solution to (2.1) is given as

[5,7,8,16]

~(M(f(t))(u)}(s)= I (s)~(f(t))(1—s), (2.12)

the special result

1 1 —P(u) 4(u)
u 1 —P(u)X(q) 1 —P(u)X(q) ' (2.5)

and the general relation

(2.13)

where 4'(u) is the Laplace transform of the survival prob-
ability.

Similarly the fractional master equation (1.2) can be
solved in Fourier-Laplace space with the result

1
MrS(f(ax ))(s)= —a ' ~(f(x))(s/b), (2.14)

valid for a, b~o, have been employed. Using the definition
of the general H function given in the appendix one obtains
the result"'q" =

u"-w(q) p(t) = P(t; o),C)
2.6

1 —P(u) k(q) —1
u"P(u) w(q)

(2.7)

where w(q) is the Fourier transform of the kernel w(r) in
(1.2). Eliminating p(q, u) between (2.5) and (2.6) gives the
result

1

C 1/0) 12 C 1/co

which may be rewritten as

1 1
1 ——,—

CO CO

1 1
1 ——

CO CO

(2.15)

where C is a constant. The last equality obtains because the
left hand side of the first equality is q independent while the
right hand side is independent of u.

From (2.7) it is seen that the fractional master equation
characterized by the kernel w(r) and the order co corre-
sponds to a special case of space time decoupled continuous
time random walks characterized by P (r) and P(t) This.
correspondence is given precisely as

(2.16)

with the help of general relations for H functions [24]. The
dependence on the parameters co and C has been indicated
explicitly. From the series expansion of H functions given in
the appendix one finds
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t ' 1 (
P(t; u), C) = g ——, (2.17)

showing that f(t) behaves as

0(t) ~t (2.18)
ln y(t)

-10-

for small t~0. Because 0& co~ 1 the waiting time density is
singular at the origin except for co=1. The series representa-
tion (2.17) shows that the waiting time density is a natural
generalization of an exponential waiting time density to
which it reduces for co=1, i.e., P(t;1,C) =(1/C)exp(t/C).
The series in (2.17) is recognized as the generalized Mittag-
Leffier function E„„(x),I 25] and P(t) may thus be written
alternatively as

P(t;(u, C) =
C

E
C (2.19)

Of course the result (2.17) can also be obtained more di-
rectly, but we have presented here a method using Mellin
transforms because it remains applicable in cases where a
direct inversion fails I23]. The asymptotic expansion of the
Mittag-Leffier function for large argument

I 25] yields

p(t) oct (2.20)

for large t~~ and 0(co~1.This result shows that the wait-
ing time distribution has an algebraic tail of the kind usually
considered in the theory of random walks

I
12—16].

III. DISCUSSION

In Fig. 1 we display the function P(t; cu, C) for C = 1 and
co=0.01,0.1,0.5,0.9,0.99 in a log-log plot. The asymptotic
behavior (2.18) and (2.20) is clearly visible from the figure.
The fractional order co of the time derivative in (1.1) is re-
stricted to 0& co~ 1 as a result of the general theory [3].This
and the behavior of P(t) in Fig. 1 attributes special signifi-
cance to the two limits co—+1 and co~0.

In the limit co~1 the fractional master equation (1.2)

-15-

-20

ln5

FIG. 1. Log-log plot of the waiting time density P(t;cu, l) for
co =0.01,0.1,0.5,0.9,0.99,1.0, The curves for co=1.0 and co =0.01
have been labeled in the figure; the other curves interpolate between
them. For co= 1 the waiting time density is exponential P(t)
= exp( —t) and for cu —+0 it approaches P(t) ~1/t.

reduces to the ordinary master equation, and the waiting time
density becomes exponential P(t; 1,1)= exp( —t). In the limit
co~0, on the other hand, Eq. (1.1) reduces to an eigenvalue
or fixed point equation for the operator on the right hand side
by virtue of 8 f/Bt =f While . this is interesting in itself, an
even more interesting aspect is that the corresponding wait-
ing time density P(t) approaches the form t/r(t; co~0,1)
~ 1/t for which the normalization becomes logarithmically
divergent. This signals an onset of localization in this singu-
lar limit. It is hoped that our results will stimulate further
research into the fractal time concept.
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APPENDIX: DEFINITION OF H FUNCTIONS

The general H function is defined as the inverse Mellin
transform

I 24]

( (aI,A&) (ap, Ap) 1

(b& B&)' ' '(bg Bg) 2vri~~: g

j=m+1

n

I (b +B s)Q I (1—a —A s)
J=1

P

r(1 —b, —B,') l r(, +A,')
j=n+1

z ds, (A1)

where the contour 8' runs from c —i~ to c+i~ separating the poles of I (bj+Bis) (j= l, . . . ,m) from those of
r(1 —a —A s) (j=1, . . . ,n). Empty products are interpreted as unity. The integers m, n, P, Q satisfy O~m~Q and
0~n~P. The coefficientsg and Bj are positive real numbers and the complex parameters aj, b, are such that no poles in the
integrand coincide. If

j=m+1j=n+1

n P m 0
Q= g AJ gA/+ g.—B~ QB~~O— (A2)
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then the integral converges absolutely and defines the H function in the sector IargzI(Am/2. The H function is also well
deAned when either

Q P

8= g B, g—A;~0 with 0(IzI(~ (A3)

or

P Q

0&IzI~R=, [ A. '] [ B j. (A4)

For 8'~0 the H function has the series representation

( (
I bj (b—;+k) — I 1 —a&+ (b;+ k)—

( (ai,Ai) (ap,Ap) i
HPQ z

(bi Bi) (bgBfi) ( g ( B )
p ( A.

P[ I' 1 b, +(b—, +k) 'g[—I'!!a, (b, +k)—

( 1)kz(b;+k)(B;

k!8; (A5)

provided that Bk(b, +l) 0 B,(bk+s) forj 0 k, 1~j,k~m and l, s=01, . . . . The H function is a generalization of Meijers
6 function and many of the known special functions are special cases of it.
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