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Possible universality in the size distribution of fish schools
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Motivated by the finding that there seems to be some universality in the size distributions of tropical tuna

fish schools over several years and in various conditions, we conjecture that a simple model, inspired by a

physical model of particle aggregation [H. Takayasu, Phys. Rev. Lett. 63, 2563 (1989)j, can be applicable to

many instances of schooling in fish, or even of animal grouping in general. This model, which makes no

assumption about the specific details of how fish aggregate to form a school but rather assumes that they are
able to do so, predicts not only the power-law behavior observed in nature, but also its particular exponent as
well as deviations from pure power-law towards exponential decay.

PACS number(s): 87.10.+e, 05.40.+j, 05.70.Ln

I. INTRODUCTION

Some biological phenomena, especially those involving a
lot of interacting entities, possess many similarities with
physical processes and can be modeled with tools originating
from physics [1].In particular, aggregation or grouping phe-
nomena in biology have numerous counterparts in physics,
which have been and still are under intense investigation [2].
Finding bridges between aggregation phenomena in physics
and biology may lead to a mutual enrichment of both fields
[3]:besides the better understanding of empirical biological
observations, common models may help extend the classes
of natural phenomena sharing the same characteristic prop-
erties, such as "critical" exponents.

Groups of animals in general and schools of fish in par-
ticular have attracted a lot of interest for a long time [4] (see
also Ref. [5] for a more mathematical review), but have been
studied mostly from the viewpoint of the behavioral algo-
rithms which govern their formation and dynamics [6].Ref-
erence [7] is an exception. In the present paper, we propose a
simple "statistical" (as opposed to behavioral) model of
school formation, based on a physical model of particle ag-
gregation introduced by Takayasu et aL [8]. Our approach
was motivated by a striking feature of the size distributions
N(s) of tropical tuna fish schools (in which three species—
yellowfin tuna Thunnus albacares, skipjack tuna Katsuwonus
pelamis, and bigeye tuna Thunnus obesus are mixed):—in

effect, many such distributions follow a power law N(s)
~S P up to a cutoff size s, . The data have been obtained
from commercial fisheries [9]:s is the quantity of fish (in
tons) caught in a circular net whose perimeter is about 2 km.
If s, seems to depend on specific factors, the exponent P
looks universal: from our field data, P= '; in most cases (P
ranges from 1.39 to 1.67 with a peak at 1.5). A log-log plot
of N(s) over 7 years is represented in Fig. 1. The data have
been binned so as to avoid large fluctuations in the graph: the
original data exhibit a power-law behavior with fluctuations
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over about or more than two decades. Other data (not repre-
sented here) originating from measurements performed in
different conditions (such as in the vicinity of a fish-

aggregating object—e.g. , a wreck) confirm this observation.
In order to account for this apparent stability of P, a

model should be simple and robust enough that it could ap-

ply to a wide spectrum of conditions and individual aggre-
gation behaviors: this is precisely the case of Takayasu
et al. 's model [8]. Note that this model has been applied to
river network formation, to vortex aggregation in turbulence
[10],or to cloud formation [11].Alternative but related mod-
els of coagulation-fragmentation, based on a Smoluchowski
rate equation including a breakup kernel, are also available
with comparable results [12]. We chose Takayasu et al. 's

model because the properties we are interested in can be
easily and elegantly extracted. As we shall see, simple modi-
fications of the model may destroy the critical nature of the
process, but the exponent remains, e.g. , N(s)~s / e
(consistent with a number of numerical experiments [12], or
more generally N(s)~s / f(s/s, ), where the particular
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FIG. 1. Log-log plot of N(s) vs s (in tons). Data from commercial
fisheries in the vicinity of Cape Lopez, over 7 years (1976—1982) [9J. The

3
dashed line corresponds to a pure power law with P= &.
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form of the scaling function f depends on the details of the

aggregation and breakup processes. From the field data, we
also find in one case (out of 14) an exponentially decreasing
size distribution (year 1981:see Fig. 2), therefore character-
ized by no well-defined exponent: the present model can also
explain these deviations from power-law behavior through
several possible modifications which tend to decrease s, .
The cutoff size s, within this model could simply be a side
effect of the general aggregation process combined with the
finiteness of the number of fish. In reality, however, the cut-
off size may stem from additional factors, such as some het-
erogeneity in the speed capacities of the fish composing the
school (the slower fish cannot follow the leaders), or the
capacity of a school to maintain its integrity over a certain
amount of time, or can be computed from optimality consid-
erations (tradeoff between school size and prey density [13]).
Implicit inclusion of such additional factors into the model is
easy: it suffices to assume that, e.g., a school of size s has a
probability P,z&;,(s)~1—e '~ to split, where the charac-
teristic size o. is an explicit parameter of the model integrat-
ing all of the above mentioned factors. The observed cutoff
size in the distribution will then result from the competition
between aggregation and breakup. How schools split (even
from a simple statistical viewpoint) is yet another challeng-
ing question that can be tested only numerically, for lack of
clear experimental data.

school exists under a certain "minimal" size: a 1-school
should then be considered as an atomic object, which may
contain a certain number of or correspond to a certain weight
of fish. When an m-school and an h-school happen to move
to the same site, they aggregate to form an (I+h)-school.
At each discrete time step, all schools move towards a ran-
domly selected site. They may move to any site with equal
probability. This corresponds to the mean-field theory of
Takayasu et al. 's model [8], which is justified here because
of the high potential speed of the fish: they can swim from 1
up to 100 km within one single day. We may therefore as-
sume that there is no spatial effect so that the mean-field
theory is most appropriate. It can be shown analytically that
in the presence of injection, this simple aggregation process,
in which "particles" move randomly and aggregate to form a
larger mass particle when they encounter, leads to a station-
ary power-law distribution with the desired index [8]. Intro-
ducing the characteristic function of the size distribution

Zi(p, t)= (ex—p[ips]) where ( ) denotes the average over
all possible realizations of the process, we have

Zi(p, t+ 1)= 4(p) e '«' ' where 4(p) is the character-
istic function of the injection random variable. To see this, let
us write the distribution D(s, t+ 1) of s-schools at time r, as
a function of D(s, t):

D(s, i+ 1)

II. MODEL AND RESULTS
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FIG. 2. Same as Fig. 1, but with a semilogarithmic scale and only for
1981.

The only biological assumption underlying the model is
the tendency of schools of fish to aggregate when they meet.
Such a tendency can be viewed as an extension of the con-
cept "biosocial attraction, " i.e., a mutual attraction of indi-
viduals (usually associated with polarization as a condition
for school formation) (see the review by Shaw [14]). This

assumption is clearly minimal.
We further assume for modeling purposes that there are N

sites (coarse-grained zones of space) between which n fish
move. A single fish is considered as a 1-school; m fish swim-
ming together form an m-school. One (tuna) fish may not be
the right atomic unit, since field observations suggest that no

(N'I (

r=1 s1+s2+ ' +srsjn'=s

r

p(s;„,) D(s;, t)
)

where s;„; is the size of a particular realization of the injec-
tion. This formula is equivalent to

hence the result. 4(p) can be expanded as

4(p) = 1+i(I)p —((I )/2) p + . Taking the limit
N~co, one obtains the steady-state characteristic function
Z (p) =1—+2(I)' ~p~' i ' +, so that the size distri-
bution satisfies D (s)~ s [15] for large enough s
(s~) (I)). It can be shown that this steady-state distribution is
also an attractor of the dynamical process described above,
and that any perturbation is absorbed [10,16]. Therefore,
starting from any initial condition, one should converge to-
wards the power-law distribution. Computer simulations
show that this prediction is robust and holds, up to a cutoff
size, when the model is modified so as to take various factors
into account: schools may split or disintegrate in many ways,
fish may die, etc.

Let us take the following example, where n is maintained
constant over time: we assume that a fraction p of each
school is separated from the school, and that the correspond-
ing pn fish are reinjected to the N sites. Consequently, the
expectation of the injection is pniN. To see how the previ-
ous model without loss is affected by the breakup process, let
us write, once again D(s, t+ 1): in the present case, we have
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/N) I'

D(s, t+1)= g „g p(s;„;)
j ( (1—p)(st+s2+ . +s„+s;„)=s

x I j D(s;, r)
;=i

since it takes a total weight of s/(1 —p) hopping onto the
same site to get a weight of s at that site after the removal of
a fraction p (we have assumed for simplicity that the re-
moval of particles occur after the injection, but another
choice leads to essentially similar results). We then obtain

Zt(p, t+1)=C'((1—p)p)e t p ' . Note that this last
equation does not ensure the conservation of the total weight
in the process for arbitrary Ct, but we chose here a specific
injection function, represented by the characteristic function
4, which precisely conserves the total mass. It follows from
this equation that Z, (p)=1 —i(s')p+ . . Therefore the
size distribution is short ranged with a finite mean
(s') = [(1 p)n]/N. (s '—

) is a mean taken over occupied and
empty sites, i.e., it includes the statistics of 0-schools. The
mean (s) we are interested in does not include empty sites,
and is related to (s') through (s) =(s')(N/N+), where N+
is the number of occupied sites. To evaluate N+ in the sta-
tionary state, let us write the evolution equation of N+, ne-
glecting encounters of order higher than 2:

[N+ (t) +pn] [N+ ( t) +pn —1]N+ (t+ 1)~N+ (t) +pn—

provided N is large enough. We therefore obtain (s)
ee[(1 p)/p ](n' /N—). We see that (s) increases with
decreasing p. In the present case, the total mass of fish being
conserved, there must be a finite mean, but what is more
important is that the size distribution retains some of its
power-law characteristics: in effect, the distribution is expo-
nentially decreasing only for large sizes, but follows
D(s) ~s ~ e '&'), exhibiting a power-law behavior for
medium sizes 0(&s(&(s). Of course, when (s) is small, the
power law is not observed, but only an exponential decay. To
illustrate this, we have performed simulations with different
values of p. For a relatively small value of p (e.g. ,
p=0.1), we observe a clear power law up to a cutoff size
(Fig. 3), while for larger p (e.g. , p= 0.5) the distribution is
exponentially decreasing (Fig. 4). In a related model (of
cloud formation), the authors of Ref. [12] observed only the
exponential decay because their simulations, though differ-
ent, were similar to those we performed with a high value of
P.

In the previous calculations, we have assumed that all
"splitting" fish were equally redistributed between all sites,
while this may not be the case: a group of fish separating
from their school can very well stay together and be rein-
jected into the system as a whole; the size distribution of
splitting groups can also be a parameter on its own. More-
over, as mentioned in the Introduction, the probability for a
school to split may be related to its size. As an illustration,
Fig. 5 represents the size distribution with p=0.01 and a
uniform splitting for any school with a size greater than a
maximum allowed size s,„=50 [i.e., Pspt't(s) =0 if s~ 50
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FIG. 3. Log-log plot of N(s) vs s. Simulation with 3@=300000 sites,
n =80 000 individuals, p=0.1. Simulation run=10 time steps. This curve
is obtained from 1 run; all runs yield similar curves.
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FIG. 4. Same as Fig. 3, but with a semilogarithmic scale and p=0.5.

and P,p„t(s) =1 if s)50]. But all simulations show that
these additional parameters do not qualitatively modify the
results: a power-law behavior with index P=-', is observed,
with a (somewhat more complicated) crossover to an expo-
nential decay around a given size which depends on the val-
ues of the parameters. In particular, the cutoff size results
from a competition between aggregation and disintegration
and therefore crucially depends on the associated time scales.
For instance, a tropical tuna fish school such as those studied
in this paper is capable of maintaining its integrity over sev-
eral days to several weeks (low disintegration rate, certainly
related to migratory capacity), while other fish, such as the
spottail shiner (Notropis hudsonius) [17], are only "occa-
sional" schoolers [18,5], whose schools can hardly be main-
tained beyond a minute. In the erst case, we observe a clear
power-law distribution up to the cutoff size, while in the
second case the distribution is clearly exponential. A purely
exponentially decreasing distribution may also occasionally
appear in the erst case, e.g., in a period of intense fishing:
this model then predicts an exponentially decreasing distri-
bution, such as the one observed in 1981.
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FIG. 5. Same as Fig. 3, with p=0.01 and with uniform splitting above
s =50, i.e., any school with s~50 divides into two schools of sizes s' and

s —s' where s' is uniformly distributed in the interval [1,s —1].

III. CONCLUSION

In conclusion we have presented evidence that a simple
model of particle aggregation [8] can account for the ob-
served power-law exponent in the size distribution of tropical
tuna fish schools. The power law, up to a cutoff size, is
robust enough to resist many modifications of the model nec-
essary to take various biological or environmental factors
into account. Purely exponential distributions appear as the
disintegration rate increases in whatever form. Therefore we
have shown that if the cutoff size certainly depends on fac-
tors external to the model, the exponent P appears to be
universal. To speak of (biological) universality, however, one
should test for the presence of this exponent in other species
of fish, or even in other types of animal groups, such as herds
of mammals or Hocks of birds. Our prediction is that in most
grouping phenomena in biology, the size distribution must
either be exponential (or, in the vocabulary of Ref. [5], geo-
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FIG. 6. Log-log plot of the size distribution of herds of African buffalos

(s must be multiplied by 100, i.e., s ranges from 10 to 1200).

metric) or follow a power law with an exponent close to
—-', up to a cutoff size if the mean-field theory can be con-
sidered biologically valid. ln fact, other exponents can be
obtained with more complicated combinations of aggrega-
tion and breakup kernels, even in the mean-field case [12].
Note that the possibility of power laws was already present
in Anderson's model [7], but has not been exploited. A lot of
available data seem to fall into the first category, i.e., geo-
metric distributions, although we are certainly not aware of
all possible data. Yet, our finding about tuna fish led us to
reconsider some existing data, e.g. , the size distribution of
herds of African buffalos (Syncerus caffer) [19]:we found
that this distribution is much better fitted by a power law
than by a geometric decay, as was suggested in [5] (see Fig.
6). This clearly supports our conjecture. But the power index
is closer to —1.2 than to —1.5, indicating that spatial effects
or other relevant factors (such as particular aggregation and
breakup functions) must come into play.
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