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Viscous fingering: A singularity in Laplacian growth models
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The rg model in the linear or radial geometry is investigated numerically. It turns out that the main charac-
teristics of the viscous fingering instability (y= 1) at vanishing capillary number such as the k =

2 limit are not
recovered. For xgW 1, the selected finger width decreases with the capillary parameter, indicating the forma-
tion of needlelike structures.

PACS number(s): 47.20.Hw, 68.10.—m

The Saffman-Taylor (ST) viscous fingering instability [1]
can be seen as an archetype of a pattern forming system. In a
typical experiment, one pushes a viscous Quid by a less vis-
cous one, between two parallel plates, either in the linear or
in the circular geometry. It has been the subject of a very
large number of studies [1]during the last decade which led
to two major results, characteristic of the low capillary or
high growth-rate domain. The first result concerns the linear
geometry and the so-called )i. = 2 limit [1—3]:at constant flux,
one observes a steady finger with a width relative to the cell
width 2a called X and a constant velocity U. As one de-
creases the capillary number given by o.=b T/126, Ua
(with b the distance between the plates, b, the viscosity con-
trast, and T the surface tension) by increasing the finger ve-
locity, one observes that the width X decreases from 1 to 2.
The second important result concerns the dynamics of the
radial growth. Experimentally, at short times t, one observes
a self-similar regime in t / [4] followed by a breakdown of
this regime at a finite time due to a tip-splitting instability.
This process, when repeated, is responsible for the fractal
pattern observed at very long times. A spatial anisotropy of
the surface tension (artificially introduced in a viscous flow
experiment in order to mimic a crystal-growth process) de-
stroys these two results [5], leading to stable sharp-pointed
structures in both geometries: linear or circular. It is ob-
served that, in the presence of anisotropy, the characteristic
length scale of the pattern, when compared to the size of the
cell, goes to zero with the capillary parameter a..

The viscous fingering problem can be included in a more
general class of Laplacian growth model: the y model. One
keeps the usual Gibbs-Thomson condition 4; t= oK on
the interface (rli is the dimensionless Laplacian field while
~ is the dimensionless curvature). However, it generalizes
the Stefan condition, which usually relates the finger velocity
U to the Laplacian fIuid 4. In dimensionless units, one gets

e„n=(n. VC ) ~

with n the normal unit vector and e, the unit vector along the
cell axis. Of course, this modified Stefan relation is no longer
a continuity equation for the velocity field as it is in viscous
fingering (which corresponds to r/=1). However, such a
boundary condition appears to apply to dielectric breakdown
[6], non-Newtonian viscous fingering such as in clays or
polymer solutions in the power law regime [6] and is also
very often used in numerical simulations of diffusion limited

aggregation (DLA) [7]. Moreover, the r/ model is the most
obvious and the simplest deviation from the usual model so
that one would expect only small deviations concerning the
physical results, especially if rg is close to 1. By numerical
means, we show here that the ran=1 model is completely
singular and that for small o., small-scale structures like
needles are formed, for y~ 1 and y) 1. In some sense, one
recovers results similar to those for a fourfold anisotropic
surface tension although the analogy immediately stops here.
A decrease of X below —,

' has also been observed when one
incorporates a thin film effect [8].

A classical first step in any analytical or numerical treat-
ment consists in trying to find the zero-surface-tension set of
solutions for the profile shape. For the particular value
r/= 1, one knows exact solutions in the linear [1]and in the
confined radial geometry [9] (wedge-shaped cell). In both
geometries, the relative width of the fingers cannot be pre-
dicted in the absence of a surface tension T. Once intro-
duced, even infinitesimally small, surface tension selects a
value for k that is close to —,

' for high speeds [2,3]. In radial
growth the situation is even more complicated since, with
capillarity, a solution exists only above a capillary number
threshold [9].Near this threshold, the )i. value is close to —,

' if
the sector angle 00 of the wedge is weak but P is an increas-
ing function of the sector angle 00 and is typically of the
order of 0.85 for 00=90 .

We present first our numerics which are the main results
of this paper. We adapt the hodograph method of McLean
and Saffman (MS) [2] which maps the flow domain onto an
upper half-space X defined by X=s+it In this .plane, the
walls of the cell occupy the real negative axis, the steady
interface is represented by the segment [0,1] and the cell axis
by [1,~]. Since this method and its extension to the radial
geometry have been discussed in detail before [9], we only
recall the main equations for the modified complex velocity
qe ' for the linear geometry and refer to [9] for the radial
geometry. For the linear channel, the equation then reads

d dr q q I'i ( —sinr)~

(2)

with Ir=47r o.X/Q (1o—X)2; Qo is the dimensionless flux,
~ is the angle between the cell axis and the tangent to the
interface. The boundary conditions for the complex velocity
qe " are r(0)=0, r(1)= —m/2, q(0)=1, and q(1)=0.
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FIG. 1. The selected width k for different y as f ' fy as a unction of
e c anne geometry. The viscous fingering y= lis indicated

for reference.

For =lj =1
ri ht-hand

p, = y=, one recovers the MS equations hs, since t e
'g — an side of Eq. (1) is simply —cosr in this case. For

i y e equivalentthe wedge geometry, one needs to modif the e
equation established in [9] by introducing the power for

as in q. ( ). Since both q and r are unknown,
a new relation is necessary which is provided by anal ticit

For vanishing o., and for rg)0.5, one obtains a continu-
ous set of solutions with all possible relative fi d h:nger wi t s:

he set of solutions disappears for y&0.5. The
case g=0.5 a ears to bpp e a marginal one since numerical
solutions can only be obtained for k)0.5. Asr . . s y is decreas-
ing, e nger tip appears more and more sharp-pointed d

. , the tip nearly shows a cusp, which would corre-
spond to an unphysical situation. With increasing y, the
zero-surface-tension profiles show a rather flat ti .All
ues reat

er a tip. y val-

of souti
g er than 0.5 seem equivalent since t'a con inuous set

o so utions with arbitrary relative width 0(X(1,
ound numerically. We do not present here the rofile

i e y surface tension, especially when X.)0.5.
With surface tension, the solutions which are well be-

haved at the tia e tip and at infinity form a discrete set at a fixed
e . ere, we ocus only ono.: the relative width P is selected. H f

t e rst eigenvalue k which corresponds to the experimen-
tally observable situation. In Fig 1 h h, we s ow t e calculated
eigenvalue spectrum for different rg values around 1. For y

y wi o.. t a small butgreater than 1, k increases smoothl 'th . A
nite o., X is close to 0.5 but always remains smaller than the

ST corresponding value. From F 1ig. , one can notice the
existence of two different regim Th fies. e rst regime occurs

is regime does not existwhen both X. and o. are close to 0 Th'
o.= . n t e second regime,or the ST case since X=-'for o =0+. I th

at greater capillary parameter, the X. spectrum is similar to
~",. These two regimes are separated b a cross-

g' e w ich appears more clearly for rg close to 1.For
y a cross-

ly~ 1 and o. finite, one observes a plateau for X as o. varies.

However as
It indicates that larger fingers than th STan e ones are selected.

ro
owever, as o. is decreased, X suddenly fall t 0 Aa s o . very

p nounced crossover occurs betwe then e two regimes. One

f4 'FI . 2. The angular width k of the lf- '
1 fise -simi ar nger in a sector

of 45 . Note the merging of levels for y=1.2.

is led to conclude that the vanishing surface tension behavior

obtain
is completely singular for y= 1, since the k = -' lie e =-, imit is only

gu ar e avior.1

o ained for this value. The radial growth fiow con rms this sin-

When realized at constant flux in a wedge-shaped cell, a
self-similar regime in time in t ~ + ~~ d, is ound if one ne-
glects o. in a first approximation. Th 't '

this d nami
en, i is possible to treat

t is dynamical growth problem by assuming an adiabatic
approximation: the finger has time eno h t d'oug o a ]ust itself to

~ ~ ~

an e ective time-dependent capillarary parameter decreasing
wit time. So as time ot . '

g es on, the experimental angular fin-

been show
ger width describes the X spectrum. Thum. is approximation has

een shown to be quantitatively valid as long as X does not
vary too much with o... ~t"erwise, it qualitatively gives the

~ 0

main features of the dynamics [10].
In Fi . 2 wg. , we show a typical spectrum for a wedge-shaped

cell with a sector angle of 45' Th'is is an intermediate value
since we know that the fiow becomes more and more un-

usual merging phenomenon of two levels which disa ears
for y=0.9 and =1.

ic isappears
xg= .~, indicating a stabilizing effect by the

selection of a narrow finger: X—+0. Th'
tition etween the stabilizing

~ g —
1~ effect and the destabi-

lization by the divergent flow S h b 1

curs for the T
uc sta i ization never oc-

e ST viscous fingering case since the P s ectrum is
characterized by an infinite set of merging phenomena which
occur at vanishing surface tensio Ofn. course, or gW1, this
stabilization is related to the sm 11 fs e sma sur ace tension effect

e ry. e arrive at thementioned above for the linear geometr . W
same conclusion for an anisotrop' fl d fic ow an or a crystal-

haves li
growth processes [5,10]. So, when cr~0 the

aves like a fourfold anisotropic Aow model. This seems
rather surprising since the Stefan condition, which acts on
the gradient at the interface is mod'fi d h 1o i e w i e an anisotropy
of surface tension modifies the Gibb -Thi s- ornson law that
gives the potential on the interface. One can wonder if the
ormation of needlelike structures t 1s a ow cr is not the main

result of a Laplacian growth process, while the viscous fin-
gering represents an exceptional case wh 1w ere arge structures
are formed. In the next paragraph 'll, we wi try to explain the
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vanishing capillary number range in the linear geometry,
starting with the second regime after the crossover.

Any attempt to find the zero-surface-tension Laplacian
field has been, to our knowledge, unsuccessful. Nevertheless,
a first order perturbation analysis can be performed follow-
ing the conformal mapping techniques; see Bensimon et al.
[1].We conformally map the flow domain onto the unit disk

I
cuI = 1 which means that any point in the fiuid is described

by z=x+iy =g(cu, t) Th. e image of the interface in the cu

plane is the circle and the mapping g is fixed by the modified
Stefan condition [Eq. (1)].In the steady-state approximation,
this yields

d dF
Y Y +F~ =C +Y

with

(1 —u, )/(4 —~)

(3 —W)/(4 —
W)P8

C„is the usual nonlinear eigenvalue which determines the
selection rule between the relative width of the finger X and
the capillary number. In the y model, only a small deviation
from the usual ST case can be anticipated if y or p, is close
to 1. In this limit, one gets the selection rule:

dgl ~ dW
Re~ —cu I

= Re —cu

dc'�/

dc'
dg "
dc' 1 p, 1 (1—p, )

li.~= —+ —C 8 ~ ~ + — ln(cr)2~ 2" ~ 2~ 3

with W the complex potential given by —(V„/m)ln(cu).
Equation (3) can be solved perturbatively around the ST field
S(cu) in the limit p, ~1. Expanding g(cu) to first order,
cu(dg/dcu) = cu(dS/dcu)+(p, —1)cu(dh/dcu) in Eq. (3),
one easily obtains cu(dh/dcu)= —(k/7r)ln[ 7rcu(d—S/dcu)] if
V =k~. Of course, to go beyond this approximation is
rather difficult, but this expansion suffices and allows us to
control the validity of our scaling laws for selection.

We consider the regime of small surface tension o, where
an analytical treatment of the selection process can be per-
formed. We use the technique already employed to describe a
variety of physical situations [3„11],which consists of ex-
tending the interface equation to the whole Quid phase. The
boundary conditions on the interface are then transformed
into a differential equation along the finger:

df 1,~ 1~~
f(P i)

dz 2~
~ f )

dW 1+m k(1+ cu)
1+(p,—1)

dz 1+(2k —1)cu 1+ (2X —1)cu

(1+cu)
Xln

( 1+ (2X —1)cu/
(4)

where f=e', 8 being the angle between the normal to the
interface and the cell axis and z=x+iy represents any point
of the Aow. We assume that we can take the zero-surface-
tension Laplacian field expanded to first order in (p, —1) but
we retain the differential and local terms on the left-hand
side of Eq. (4), which are dominant for the selection process.
The numerical results suggest that, after the crossover, a
standard spectrum is obtained for small but finite cr. So we
adapt here the usual treatment and we modify only the scal-
ing laws for the y model.

The curvature term in Eq. (4) acts as a singular perturba-
tion: it becomes important when f becomes singular, when
X~=(1/2~) ft~ &. This happens in the fluid phase, far away
from the finger so that ~ is small, and the y correction to the
ST field is irrelevant. In the neighborhood of this singular
point, we introduce rescaled quantities: e = 2~7r cr/4~,
f=e "&' ~~F and, Y =2~2K~(1 —k)/pe&»t »cu In
reduced variables, Eq. (4) then reads

when o.—+0.

Of course, this relation assumes that the last term is small
so that both o. and (1—p, )ln(cr) need to be small; so o.
cannot be too small. This relation is very similar to the ST
selection rule, which is recovered if y= p, = 1. It gives also
the crossover position which occurs when (1—p, )ln(cr) is
not negligible in comparison to X, i.e., when (1—p, )ln(cr)
is of order 0.1. The above relation shows that the traditional
"X=-,'" P value is shifted, and indicates that wider fingers are
expected for r/(1 (p,)1) and thinner fingers in the opposite
situation. If y(1, the two corrections to o. act in opposite
directions; this effect of compensation explains the plateau
observed in Fig. 1. However, in order for this estimate to be
valid, o. cannot be too small and cannot reach values of order
10,10 which are common in experiments.

Now, let us try to understand the behavior of X for very
small o; at fixed y, before the crossover. We assume here
that our expansion of the y field remains valid for all values
of y. The analysis is different depending on whether y is
greater or smaller than 1. For r/)1 (p,(1) the leading term
on the left-hand side of Eq. (4), when f is singular, is
f&~ 'l which goes to zero. This is consistent with a singular
point far away from the finger in the limit X—+0. The rescaled
inner equation we find is not very different from the previous
one, if we introduce the rescaled variables: e1=ap, ,

"&' »G and Z =[2~2k~(1 —k)/e&' """»]~

d dG
Z Z +6~ =D +Y

with

2~k~
D = so ) = (1 P')/P'(2 P'

p, (1—p, )/(2 —p, )81

Like C„,D~ is a nonlinear eigenvalue which can be cal-
culated numerically. It gives the selection rule and the scal-
ing of k with o. when both o. and X~O. Remember that this
scaling is valid only for r/)1 (p,(1).

The most intriguing situation is the case y~1 where an
abrupt jump is observed in the X spectrum, at the crossover
in Fig. 1. If X goes to zero as suggested by the numerical
calculations, a boundary layer equation can be obtained only
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in the vicinity of the finger tip. However, in this region,
probably our zero-surface-tension expansion fails. If we as-
sume it valid, and if W is of order k~+, the right-hand side
of Eq. (4) is of order 1 so that f remains of order 1. As a
consequence z is of order P

"+' as is W, so that the rescaled
equation in the vicinity of the finger tip is

1 d 1 dF 1
F(P,—1)

~1+V dV 1+V dV 2" ( F

1 ( 1 1 j
I+V( 1+V 1+VI'

with F. = 7r /4) (~+ )o, F(V) =f(z), and V= 7r/
2X"+ W. The scaling law suggested by this equation is

k=o' ~~+'& which, unfortunately, is impossible to verify
numerically.

To summarize, why X=-,' is never observed for F41 ap-
pears clearly from the very beginning (Eq. 4). Naively speak-
ing, it is only when p, =g=1 that the constant —,

' appears
explicitly. No other value is pointed out by Eq. (4). More-
over, the boundary layer necessary to explain the selection
mechanism appears only when X goes to zero.

Here, we have shown that the ideal viscous fingering in-
stability is an exception among all the possible Laplacian
growth processes. The most simple nonlinearity one can
imagine deeply modifies the physical results. Our numerical
results destroy the naive ideas one can have after a decade of
extensive studies on an ideal model.
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sions. Laboratoire de Physique Statistique de 1'Ecole Nor-
male Superieure is associe au CNRS et aux Universites Paris
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