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Statistical theory of sedimentation of disordered suspensions
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An analytical treatment for the sedimentation rate of disordered suspensions is presented in the context of a
resistance problem. From the calculation it is confirmed that the lubrication effect is important in contrast to the

suggestion by Brady and Durlofsky [J. F. Brady and L. J. Durlofsky, Phys. Fluids 31, 717 (1988)]. The
calculated sedimentation rate agrees well with the experimental results throughout the range of the volume
fraction.

PACS number(s): 05.60.+w, 05.40.+j, 47.55.Kf, 83.70.Hq

The sedimentation of disordered suspensions is important
in both technology and the laboratory [1,2]. The role of sedi-
mentation is relevant to current topics of statistical mechan-
ics such as fIuidized beds of gas-solid or liquid-solid mix-
tures [3—5], and density waves in granular flows in vertical
tubes [6]. We believe the subject is a fundamental one in
fluid mechanics [7].The rate of sedimentation for disordered
suspensions under gravity has yet to be determined theoreti-
cally except for a problem for dilute spheres with hard core
interactions at a small Reynolds number [1,8].

Our present understanding of theoretical studies of sedi-
mentation of monodisperse random suspensions can be sum-
marized as follows. Batchelor [8] has calculated the sedi-
mentation rate in the dilute limit of hard core particles with
the radius a based on the following assumptions: (i) The rate
can be obtained from the combination of the mobility matrix
of two particles and the two-body correlation function

g,q(r) where r is the relative distance of particles, and (ii)
the correlation function is assumed to be g,q(r)
= 0(r 2a), where H(x)—is the step function g(x) =1 for
x~0 and 8(x) =0 otherwise. His result at the volume frac-
tion P can be written as U(rt)/Uo= 1 —6.55$+O(@ ) for
$~0, where U(@) is the sedimentation velocity at P and

Uo is the equilibrium sedimentation velocity of one particle.
The result of Batchelor consists of two parts: one is 1 —5$
from the Rotne-Prager tensor which represents the effects of
long-range hydrodynamic interaction, and another is
—1.55@ from the lubrication, the hydrodynamic repulsive
force. Extensions of this dilute theory to concentrated sus-
pensions require an account of many-body hydrodynamic in-
teractions. A generalization [9], based on the method of
0 Brien [10], predicts negative sedimentation rate for
P)0.27. Brady and Durlofsky [11] have also obtained a
negative sedimentation rate for P)0.23 when they adopt the
well accepted correlation function g,q(r) for concentrated
suspensions. As a result, they claim that the Rotne-Prager
approximation actually captures the correct features of sedi-
mentation and ignore all of the contributions from the lubri-
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1
U= M F, M=R

6mp, a

where U and F denote the sets of the velocity field of N
particles and the force exerted on N particles, respectively,
and p, is the shear viscosity. These mobility and resistance
problems are not easy to solve even numerically. One of the
most successful numerical methods, the Stokesian dynamics,
has been developed by Brady and co-workers [15,16]. The
extension by Ladd [14] also follows an algorithm similar to
the Stokesian dynamics. They decouple the resistance matrix
into the far-field part (M ) and the lubrication part R" as

R=(M") '+R'"" (2)

where R'" is calculated by the pairwise additive expression
of the two-body lubrication matrix Rz~ =R2it —(Mz~)
The resistance matrix is calculated as a function of the par-
ticle configuration at each numerical step. Then the force
exerted on spheres and consequently the equation of motion
are obtained. The success in the Stokesian dynamics suggests
that the problem for sedimentations should be considered
based on a resistance picture. In fact, some unphysical results
of simulations based on a mobility picture support this state-
ment. We may understand the relevance of a resistance pic-
ture as follows. Since the contribution of the lubrication is
proportional to the number of particles, as will be shown, the

cation force. We feel, however, the statement by Brady and
Durlofsky [11]is unacceptable, because there is no reason to
ignore lubrication effects in the dilute limit [8].On the other
hand, Beenakker and Mazur [12,13] also calculated the sedi-
mentation rate based on an effective medium approximation
and multipole expansions. Although they did not present an
explicit expression of the sedimentation rate, Ladd [14] indi-
cated that their result is better than the result by Brady and
Durlofsky [11] for concentrated suspensions. In this Rapid
Communication, we wish to demonstrate the relevance of the
lubrication force and improve the theory by Brady and Dur-
lofsky [11].We also clarify the relationship between our
theory and that by Beenakker and Mazur [11,12].

The problem of sedimentation of N particles with radius a
at low Reynolds numbers is equivalent to obtaining the re-
sistance matrix R or the mobility matrix M in
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direct addition of the lubrication for the mobility cannot
avoid a negative sedimentation rate. In other words, the lin-
ear contribution of the lubrication to the drag is reasonable,
while the linear addition of the lubrication to the mobility
cannot produce any nonlinear complicated motion of par-
ticles in experiments.

Thus we are not surprised by the failure of direct gener-
alizations of Batchelor's theory which is described as a mo-
bility problem. We must calculate the sedimentation rate in
the context of a resistance problem. The problem is thus
reduced to obtaining ((M") )+(R'" ), where the angular
brackets represent the average over the particle configura-
tions. Note that ((M") ') and (R'"") are the scalar quanti-
ties. The far-field part can be calculated from
((M ) ')=(M") '=M(k=0) ', where M(k) is defined
by

(R ) n drg q(r)k' I Aii Ai2 ((M28) ii
J v

+(Mz~) ',2)] k. (7)

The tensor A p is a part of R2~ and its subscripts represent
the particles. The tensor A»+A12, thus, is given by

( Y»+ Y»

A11+A12 &11+&12

0

X„+Xiz)

where the explicit representations of X;, and Y, are given by
Jeffrey and Onishi [22] as a series expression. On the other
hand, (Mzii)» is the unit tensor and (Mzii), 2 is the Rotne-
Prager tensor which is represented by

M(k) = 1+«' "'[g q(riz) 1]k G(r») ' kdriz
Jv

(Mzii), z=x (r)rr+y (r)(l —rr), (9)

Here k= k/k, r, z is the relative position of the particles 1 and

2, and n is the number density of particles. The explicit
representation of the Fourier component of the tensor
G=(G;,j is given by [13,17] (Mzii) 'ii+ (Mz~) ',z ——X (r)rr+ Y'"(r)(l —rr), (10)

where x (r) = 2(r/a) —(r/a) and y™(r)= 4(r/a)
+ 2(r/a) . The tensor (Mzii) ii+ (Mzii) ',2 can be
readily calculated as

jo(ka) ~ kk, 't

G;, (k) =67ra 2 8;,—k (4)

where X"(r)=[1+x (r)] i and Y™(r)=[1+y™(r)]
Thus the average of the contribution from the lubrication part
is described by

with the spherical Bessel function jo(ka). For later discus-
sion we drop the subscripts to r12 and assume the isotropy of
systems as g,q(r =

I
rl).

The correlation function g, (r) can be approximated
[16,17] by the equilibrium distribution function for hard
sphere systems based on the Percus-Yevick approximation
[18]. The Fourier transform of g,q(r) —1, h(k) is repre-
sented by [19]

(Rlub)
J2

dzz g, q(r) W(z),

where z = r/a and

W(z) =Xii+Xiz+ 2Y'i i+ 2Yiz

6z'(-2+ sz'+ 4z')

( —2+3z +2z )(2+3z +4z )
(12)

47ra c(ka)
h(k) =—

1+3 Pc(ka)
(5)

With the aid of the exact result by Jeffrey and Onishi [22]
W(z) can be evaluated as

where c(x) is the direct correlation function which also de-
pends on @. The correlation function in (5) reduces to
g,q(r) = 0(r —2a) in the dilute limit. From (5) we can evalu-
ate (M")=(2/qr) Jodx[(sinx)/x] [1+3@c(x)] numeri-
cally. Brady and Durlofsky [11]evaluated this [20] by using
the Laplace transform of the Percus-Yevick distribution func-
tion [21] and the method of O' Brien [10] as

21 1 789 1 ( 1
W(z) = ——

4
— —q+04 z 64 z iz i

for z&)1. Thus we can evaluate (R" ) by the numerical in-
tegral. For practical purposes, it is convenient to have an
explicit expression for (R" ). If we assume g,q(r)
=- 0(r —2a), (R'" ) is approximately represented by

(1—4)'
(M )= (6)

(20 2~21 1 789 1(R'" )=(0 dzz W(z)+ @ dzzz
Jz Jzo (4 z 64 z5

= 1.492$. (14)

which is a correct evaluation of the contribution from the
far-Geld part.

Now, we evaluate the contribution from (R'" ). For sim-
plicity of the argument, we neglect contributions from higher
order moments such as torque and shear. Since (R'"") is
evaluated from a pairwise additive approximation, (R'" ) is
represented by

When we compare the result (14) with the one obtained with
the aid of the Percus- Yevick distribution function for
g,q(r), we find that the two results have no significant dif-
ference (see Fig. 1). This statement is applicable to the cal-
culation for the lubrication part of the mobility matrix as
(M ' )=—1.55@. ~e thus confirm that the contribution
from the lubrication is insensitive to the form of g, q(r) and
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FIG. 1. The comparison of several theoretical and numerical
predictions of the sedimentation rate U(P)/Uo as functions of P.
For Eq. (11) with PY, we use the Percus-Yevick distribution func-
tion for g,~(r) in (11) to evaluate (R'" ). The result of Ref. [14] is
obtained from his precise simulation. Reference [12] is from their

Fig. 2 with k=0 and its approximate expression is given by (18).

is proportional to P. Thus we should solve the problem in
the context of a resistance problem to avoid a negative sedi-
mentation rate.

From (6) and (14) we obtain

(1—0)'
(M ) + (R "

) 1+2@+1.492@(1—P)
(15)

M~ (k) =1+k G (r=O) k

+ n dre'"'k. G~ (r) . k(g, ~(r) —I), (16)

where G (r) is given by

dk @S~ (ka)
G (r) =G(r) —

(2 )
e'" '1+ ~S (k )G(k).

Yp

(17)

Here S~ (x) is the structure factor and G(r) = 0 for

r =0 and G(r) = G(r) for r 4 0. Substituting (5) into
(16) and noting (M) =M~ (k=O), we obtain (M)
= (2/7r) Jo dx[(sinx)/x] ([1+@S~ (x)][1+3Pc(x)]) . The

As will be shown, this result is sufficiently close to experi-
mental values. The dilute limit of our result U/Uo
=1—6.49/+0(P ) is slightly different from Batchelor's
result U/Uo= 1 —6.55/+0(@ ). This discrepancy comes
from the relation R'" 4 (M'" ) '. The true dilute limit
should be calculated under the considerations of all of higher
order moments [23]. It is worthwhile, however, to indicate
that our theory essentially resolves the contradiction about
contributions from the lubrication in the result by Brady and
Durlofsky [11].

Now we compare our result with that by Beenakker and
Mazur [12].They rewrite the renormalized (4) as

FIG. 2. The comparison of several theoretical results with ex-
perimental results for U(P)/Uo. We also plot the data of our Monte
Carlo simulation. See the text for the details.

function S (x) tends to —, for the dilute case and small x. In
Yo

the dilute limit, the result by Beenakker and Mazur [12] is
reduced to U/Un=1 ——2/+0(@ ), which is considerably
far from Batchelor's result [8]. Even in concentrated cases,
S~ (x) may still be replaced by L although its actual expres-

sion is complicated. With the aid of (6) an approximate ex-
pression of Beenakker and Mazur [12] is given by

(1—4)'
Uo (1+2$)(1+5P/2)

(18)

From (18), it is easy to understand that Beenakker and Mazur
[12] renormalize the Rotne-Prager tensor by taking into ac-
count the contribution from the structure factor. The devia-
tion from Batchelor's result in the dilute limit suggests that
they miss the quantitative description for the short-range
force, because their effective field approximation includes
only parts of the lubrication by a collection of ladder dia-
grams. Their theory, however, may be good for dense sus-
pensions where the requirement for their approximation may
be satisfied.

Let us compare theoretical results with experimental ones
[24—28] (Fig. 2). We recognize that our theory improves the
result by Brady and Durlofsky [11]and achieves good agree-
ment with experiments. Therefore we conclude that the con-
tribution from the lubrication force is small but relevant. For
@(0.2, it seems that our result is better than that by Beenak-
ker and Mazur [12].In high concentration regions, however,
our sedimentation rate is a little larger than the experimental
values, while the prediction by Beenakker and Mazur [12]
works well. This disagreement between our theory and ex-
periments in concentrated regions seems to come from the
neglect of higher order moments. A high sedimentation rate
without higher order moments for a regular configuration of
particles has been reported [15].To check this tendency for
random particle configurations we have performed a sirnula-
tion for 50 particles based on the Stokesian dynamics, where
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we neglect the contributions from higher order multipole ex-
pansions. In our simulation the particle configuration is at
random and we use an average of 100 configurations for each

@ to calculate the sedimentation rate. When we neglect the
statistical error, the tendency of high sedimentation rates in

large P coincides with that of our theory.
In conclusion, we have confirmed that the calculation of

sedimentation rate should be performed in the context of a
resistance problem. It is not surprising that the direct gener-
alization of Batchelor's theory based on the mobility picture
gives us wrong answers. Thus we should include the lubri-
cation effects in contrast to the claim by Brady and Durlof-
sky [11].Our method of including the lubrication force is an
adequate systematic approach to extend the dilute theory. We

demonstrate that the lowest order contribution to the sedi-
mentation rate of the lubrication force becomes closer to ex-
perimental values than the Rotne-Prager approximation. The
discrepancy between our calculation and experiments at high

P should be improved if we include the contribution from
torque and other moments. The consecutive improvement of
our calculation of the sedimentation rate will be reported
elsewhere.

We thank T. Ohta and S. Sasa for stimulating discussion
and Y. Oono for his critical reading and his useful comments.
This work is, in part, supported by Foundation for Promotion
of Industrial Science and by National Science Foundation
Grant No. NSF-DMR-93-14938.

[1]W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal
Dispersions (Cambridge University Press, Cambridge, En-

gland, 1989).
[2] R. H. Davis and A. Acrivos, Annu. Rev. Fluid Mech. 17, 91

(1985).
[3] G. K. Batchelor, J. Fluid Mech. 193, 75 (1988).
[4] S. Sass and H. Hayakawa, Europhys. Lett. 17, 685 (1992);

T. S. Komatsu and H. Hayakawa, Phys. Lett. A 1$3, 56 (1993);
K. Ichiki and H. Hayakawa, Int. J. Mod. Phys. 8 7, 1899
(1993); Phys. Rev. E (to be published); H. Hayakawa, T. S.
Komatsu, and T. Tsuzuki, Physics A 204, 277 (1994).

[5] See, e.g. , S. E. Harris and D. G. Crighton, J. Fluid. Mech. 266,
243 (1994); M. F. Goz, Physica D 65, 319 (1993), and unpub-

lished; D. Gidaspow, Multiphase Flow and Fluidization (Aca-
demic, New York, 1994).

[6] J. Lee, Phys. Rev. E 49, 281 (1994); G. Peng and H. J. Her-

mann, ibid 49, 1796 (1.994).
[7] S. Kim and S. J. Karrila, Microhydrodynamics: Principles and

Selected Applications (Butterworth-Heinemann, Boston,
1991).

[8] G. K. Batchelor, J. Fluid Mech. 52, 245 (1972).
[9] A. B. Glendinning and W. B. Russel, J. Colloid Interface Sci.

$9, 124 (1982).
[10]R. W. O' Brien, J. Fluid Mech. 91, 17 (1979).
[11]J. F. Brady and L. J. Durlofsky, Phys. Fluids 31, 717 (1988).
[12] C. W. J. Beenakker and P. Mazur, Physica A 120, 388 (1983);

126, 349 (1984).
[13]P. Mazur and W. van Saarloos, Physics A 115, 21 (1982).

[14]A. J. C. Ladd, J. Chem. Phys. 93, 3484 (1990).
[15] See, e.g. , J. F. Brady and G. Bossis, Annu. Rev. Fluid Mech.

20, 111 (1988).
[16] G. Bossis and J. F. Brady, J. Chem. Phys. $7, 5437 (1987).
[17]A. J. C. Ladd, Phys. Fluids A 5, 299 (1993).
[18]J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).
[19]M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).
[20] The equivalency between this expression and O'Brien's

method is not trivial. We, however, have checked that the de-

viation between the direct integration of the Percus-Yevick dis-

tribution function and (6) is very small.

[21] G. A. Mansoori, J. A. Provine, and F. B. Canfield, J. Chem.

Phys. 50, 5292 (1969).
[22] D. J. Jeffrey and Y. Onishi, J. Fluid Mech. 139, 261 (1984).
[23] There is no reason to believe that Batchelor's result is exact,

since the correct calculation should be based on the picture of
a resistance problem.

[24] R. Buscall, J. W. Goodwin, R. H. Ottewill, and T. F. Trados,
J. Colloid Interface Sci. $5, 78 (1982).

[25] J. C. Bacri et al. , Europhys. Lett. 2, 123 (1986).
[26] S. E. Paulin and B. J. Ackerson, Phys. Rev. Lett. 64, 2663

(1990).
[27] J. Z. Xue et al. , Phys. Rev. Lett. 69, 1715 (1992).
[28] C. G. de Kruif, J. W. Jansen, and A. Vrij, in A Sterically Sta

bilized Silica Colloid as a Model Supramolecular Fluid, edited

by S. A. Safran and N. A. Clark (Wiley-lnterscience, New

York, 1987), p. 315.


