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Generating partition for the standard map
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A procedure to obtain the symbolic dynamics for conservative dynamical systems is introduced with refer-
ence to the standard map in a strongly chaotic regime. The method extends an approach previously developed
for highly dissipative systems. It is based on the construction of a generating partition from homoclinic
tangencies and fibers of invariant manifolds. It is found that some arbitrariness in the construction of the
partition is unavoidable.

PACS number(s): 05.45.+b

An effective representation of chaotic dynamics can be
achieved by encoding any trajectory as an infinite sequence
of symbols. This enables a fruitful mapping: orbits can for-
mally be seen as microstates of some spin chain (the symbols
corresponding to spin values). Accordingly, a thermodynami-
cal formalism can be developed [1] to compute relevant sta-
tistical averages such as Lyapunov exponents, dynamical en-
tropies, and fractal dimensions [2].

Various approaches have been introduced to encode a
given trajectory in phase space. One method relies on the
assumption that the code assigned to each periodic orbit re-
mains unchanged when the dynamical system is smoothly
modified [3].The key aspect of this is the identification of
some parameter value kI, such that the resulting dynamics is
characterized by a complete horseshoe. The encoding of each
periodic orbit for the desired parameter value ko is obtained
by smoothly deforming the orbit from kI, to ko. Unfortu-
nately, it has been discovered that there exist periodic orbits
which, followed along closed paths in parameter space, are
transformed into different orbits, thus showing unavoidable
ambiguities [4]. A second method is based on the simulta-
neous introduction of a pseudodynamics along a formal time
axis and on the interpretation of the true time variable n as a
spatial index [5].The applicability of this approach is limited
to strongly dissipative models.

A last powerful method, which works whenever a horse-
shoe type mechanism is present in the dynamics, is based on
the direct construction of a generating partition (Gp) by con-
necting together the relevant (primary) homoclinic tangen-
cies (HTs) to eventually split the phase space into disjoint
atoms [6]. Such a strategy has been successfully applied to
both maps and flows [7] and it appears to be of general
validity, although there is no rigorous proof that it is always
applicable. However, this method too has been implemented
only in dissipative systems. In fact, for the Hamiltonian case
serious difficulties arise in connecting the primary HTs to
form continuous partition lines.

A complete encoding of the dynamics in a conservative
system requires taking into account stability islands as well
as the chaotic component in which they are embedded. The
former problem can in principle be solved by encoding the
rotation angles with respect to suitable reference points. An
approach in this direction has been developed by Russberg
[8] for the piecewise linear standard map in a regime where

the phase space is essentially filled by islands. Here, we fo-
cus our attention on the complementary problem of a correct
description of the evolution in the chaotic component. To this
aim we have studied the standard map for a large nonlinear-
ity, such that the stability islands cover a tiny portion of the
phase space. In particular, we describe a procedure to iden-
tify and connect primary HTs in such a way that the resulting
line represents the border of a generating partition.

Let us first briefly recall the main ideas behind the method
originally proposed in Ref. [6]. Because of the folding pro-
cess associated with a horseshoe, if fibers of the unstable

(W„) and stable (W, ) manifolds intersect each other, they
must do so twice except for points of tangency. The trajec-
tories stemming from any pair of intersections approach each
other both in the past and in the future, as they belong to the
same branch of both W, and W„. For a partition to be gen-
erating, it is sufficient that its border separates the two tra-
jectories at least once. Since the same reasoning applies to
any pair of intersections, no matter how close they are, it
follows that the only way to distinguish the corresponding
symbolic sequences is to set the border of the partition ex-
actly on the tangency point, or on some backward (forward)
image of it. As long as one limits the analysis to just one
fiber, all choices are equivalent. However, the partition of
phase space into distinct atoms requires taking all fibers si-
multaneously into account. As a consequence, one is faced
with the problem of identifying the "primary" tangencies as
those effectively used to construct the GP. In practice, one
starts with an Ansatz about the region which is expected to
contain the primary tangencies (typically the folding region
of the horseshoe). Then, different tangencies are connected
by following a sort of trial and error approach.

The standard map represents a simple but general model
for testing methods to analyze Hamiltonian systems. We
write the transformation F as

xn+i =3'n ~

y„+,= —x„+2y„—rr cos(y„)mod 27r.

We have chosen the value n= 6 throughout this paper. The
variables x and y have been introduced in place of the com-
monly used 0=x and p=y —x, since the resulting represen-
tation guarantees that horizontal lines are mapped onto ver-
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FIG. 1. Approximate generating partition. The primary region of
phase space is obtained by using the vertical line L2 (solid) and its
preimage F L2 (dotted). This region is then partitioned by L,
(solid) and the image of L2 (dashed). Dots denote homoclinic tan-

gencies classified as primary according to their vicinity to L i . The
arrows point to the regions reported in Fig. 2.

1.0

0.9

tical lines, thus making the partition look more natural. Let
us note that map (1) is invariant under the composition of a
time reversal plus the exchange of x and y variables, and
under the transformation (x,y) I(m —x, m. —y) (mod 2m).

The map exhibits folding regions situated approximately
at the vertical lines defined by x= sin (—2/n). We specifi-
cally choose the two lines Li (x=3.481. . . ) and L2
(x=5.943. . . ) to be the basis for the construction of an
approximate generating partition.

Since the phase space is a torus, there are no natural
boundaries along both the x and y directions. One must,
therefore, break the continuity by introducing two sets of
transversal lines separated by a distance 2m horizontally and
vertically, respectively. This can, for instance, be done by
using the vertical line L 2 and its horizontal preimage

L2. As a result, the plane is partitioned into infinitely
many equivalent squares S. Any other pair of transversal
lines is, in principle, equivalent; the idea of using a folding
line such as L2 is inspired by an attempt to minimize the
number of partition elements. If the second folding line L & is
also used, then S is split into two elements. The resulting
partition is not sufficiently fine grained to account for the
multiplicity of trajectories generated by map (1). In fact, the
(pre)images of the two elements intersect different copies of
S. One is therefore led to split each of the two elements into
as many atoms as the number of copies of S which are vis-
ited. This is automatically obtained by using I'L2 as a further
dividing line. As a result, one obtains a partition which
should be approximately generating (see Fig. 1). In fact, a
check done with periodic orbits of increasing period shows
that a large fraction of them is correctly discriminated by the
above partition. There are, however, a number of orbits de-
scribed by the same code. This problem is not at all unex-
pected, since the partition has been constructed starting from
rather arbitrary lines identified by just looking at one appli-
cation of the map; it is well known that a HT involves an
infinity of steps.

Before starting the discussion about the refinement of L
&

3.4 3.5

FIG. 2. Enlarged picture of the avoided crossings at the two
arrows in Fig. 1; (b) is the second forward image of Fig. 2(a). Solid
lines denote those HTs which are necessarily classified as primary.
Out of the other tangencies (dotted lines), the points along PORO

may or may not be classified as primary; when not, their second
image, lying on R2P2, must be taken as primary. Qo and its second
image Q2 are identified as the points where two sequences of HTs
meet and collapse. The stable and unstable manifolds (dashed lines)
departing from Qo (Q2) intersect the strand of HTs in Po (P2) and

Ro (R2), respectively. A branch of the unstable manifold containing
three tangencies (triangles) is also shown in (b).

and L2, let us notice that the line L2 can be transformed into
L, by exploiting the symmetry of map (1). We will, there-
fore, study only one folding line, namely, L&. Moreover,
since any piece of unstable manifold eventually fills the
chaotic component densely, we can restrict ourselves to the
unstable manifold lV„of the hyperbolic fixed point
O=(m/2, vr/2). The manifold is formally parametrized as
W„=(x„(s),y„(s)) and the functions x„(s), y„(s) are ex-
panded in a power series of s. The coefficients of the series
can be determined by demanding that the curve is left invari-
ant by the map, i.e., F(x„(s),y„(s))= (x„(Xs),y„()i.s)),
where X is the unstable eigenvalue of the stability matrix for
the fixed point O=(x„(0),y„(0)). HTs can be located by
iterating a piece of W„until it shows a notable curvature,
which happens in the vicinity of Li (L2). The precise loca-
tion of a HT is then determined by monitoring the curvature
of forward iterates of W„[7].In fact, a HT is just a folding
point, i.e., it is characterized by a diverging curvature.

The above procedure leads to a tentative set of primary
HTs which are seen to align approximately along L&. In
analogy with dissipative maps, it appears natural to connect
such points in ascending order, according to their y coordi-
nate. Although the resulting curve is in some places rela-
tively smooth, discontinuities are clearly visible. In dissipa-
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tive maps, this is not considered to be a serious problem. The
fact that the attractor does not fill the whole phase space
gives one a large degree of freedom in connecting HTs that
are far apart, as long as they are not separated by pieces of
the attractor. This is no longer true in a conservative map,
where the entire phase space is typically filled by a single
ergodic component (with the exception of stability islands
which need to be considered separately).

In order to better clarify what happens around each dis-
continuity, let us look closer at one example, namely, the pair
of jumps indicated by arrows in Fig. 1 and enlarged in Fig. 2
[the region in Fig. 2(b) is the second iterate of that depicted
in Fig. 2(a)]. We realize that the jump is the consequence of
an avoided crossing between two lines of HTs. The discon-
tinuity is in fact caused by the intersection of what will be-
come a border of our generating partition with a forward or
backward image of itself. Such a phenomenon is clearly seen
in Fig. 2 where forward and backward images (dotted lines)
of the "primary" tangencies (solid lines) have been added.
Therefore one is faced with the question of which HTs
should be used to discriminate different trajectories. Some
degree of arbitrariness is apparent for tangencies which re-
turn back to the folding region. In principle, discontinuities
arising from the intersections of a dividing line with forward
and backward images of itself are present everywhere, but
the jumps appear to diminish with the respective number of
iterates needed to return to the folding region. We can there-
fore attack this problem starting from the larger gaps.

In Fig. 2(b) it is seen that three distinct tangencies are
identified on those fibers of W, which are not too close to the
jump. The first and the last of such points are unambiguously
classified as primary points, whereas the middle one corre-
sponds to the second iterate of a tangency classified as pri-
mary [in Fig. 2(a)]. Upon shifting the fiber of reference to-
wards the critical region, the two lower HTs meet and
eventually disappear, preventing a continuation of the divid-
ing line. This process was already discovered in dissipative
maps upon changing a control parameter [9].In particular, it
was shown how it is associated with the difficulty of provid-
ing a unique characterization of the symbolic encoding of
periodic orbits [4]. In a conservative system, like the stan-
dard map under investigation, the same problem occurs for
any parameter value, since moving with continuity across the
fibers of W„ is like changing a parameter of the dynamics.

From the point Qz, where two strands of HTs collide, one
would like to find a way to connect the partition to the
nearby sequence of HTs, thus bridging the gap arising from
the apparent avoided crossing. Let us focus our attention on
the closed region U delimited by the line of HTs between
R2 and P2 and by the fibers of stable and unstable manifold
departing from Qz. With reference to Fig. 2, it is seen that
trajectories visiting U can be discriminated against compan-
ion orbits (lying on the opposite side of a dividing line)
either when they lie in F U, or when they are in U itself.
We conjecture that any curve C lying in U and connecting
Qz with a point 5 on the strand of HTs between Pz and Rz is
appropriate, provided that F C also is used in F U in a
self-consistent manner. Two of the infinitely many possible
choices for C appear to be most natural: W, and W, them-
selves. This same ambiguity arises for any point on the di-
viding line which returns to the folding region. Thus we have
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FIG. 3. The generating partition as constructed from primary
HTs and suitable pieces of unstable manifolds. In analogy to Fig. 1
we have used the dividing line Dz (solid) and its preimage (dotted)
to define the primary region of phase space. This is then partitioned

by D, (solid) and the image of Dz (dashed).

TABLE I. Block entropies Hl, defined in Eq. (2) for lengths
k~11.

1

2
3
4
5
6
7
8
9

10
11

1.77292
1.69554
1.59844
1.52601
1.47195
1.43028
1.39680
1.36969
1.3475
1.326
1.312

an infinity of bubbles analogous to U. It is therefore conve-
nient to adopt everywhere the same choice. The line D& re-
sulting from the application of this procedure to the larger
gaps is plotted in Fig. 3, where fibers of the unstable mani-
fold have been used.

A generating partition can be constructed by using D
&

and
its symmetric equivalent D2 analogously to the construction
of the preliminary partition from the lines L& and L2. This
finally results in a seven letter alphabet as shown in Fig. 3.
We have tested the partition on all periodic orbits, both stable
and unstable, up to length 9 (=30 000 orbits), and found that
the symbol sequences were unique except for a period-6 or-
bit and four period-8 orbits around a stable period-2 region,
sharing that of the mother orbit. A correct encoding of such
orbits requires an ad hoc treatment of the corresponding sta-
bility island [8].

From the existence of seven different period-2 orbits, it
turns out that at least five symbols are needed for a correct
encoding of the dynamics. One might try to combine some of
the atoms of the seven letter alphabet of Fig. 3 into larger
elements. However, from the study of all possible combina-
tions of atoms it is verified that only the triangular region
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appearing at small y values can be assimilated to another
region without loss of information. It is therefore very likely
that 6 represents the minimum number of symbols.

A further check of the correctness of the partition has
been performed by estimating the Kolmogorov-Sinai entropy
from the block entropies

~here p;(ic) is the probability of the ith symbol sequence of
length k and the sum is taken over all sequences of length k.
The block entropies computed for k~11 and reported in
Table I appear to converge slower than exponentially and
faster than algebraically. By taking this into account, the ex-
trapolated value of 0 is in good agreement with the nu-

merical estimate of the maximum Lyapunov exponent
X.=1.1365. . . , as expected from the Pesin relation.

We can therefore conclude that the partition constructed
in this paper is a good generating partition for the main er-
godic component. Moreover, since we have not made use of
the specific structure of the standard map other than for sym-
metry reasons, we believe that our approach can be applied
to any two-dimensional conservative map and even in prin-
ciple to Hamiltonian ordinary differential equations. The last
problem which still remains to be solved concerns the con-
struction a unique approach encompassing both the method
described here and winding-number-type arguments for
stable islands.
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