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How a solid can be turned into a gas without passing through a first-order phase transformation
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Recent calculations of the absolute free energy of a solid using molecular dynamics and Monte Carlo
simulated data employ a "thermodynamic" path which is numerically indistinguishable from a path which
connects a solid and an ideal gas. No first-order phase transition is observed on this path. We present an

interpretation of this type of path, we identify a particular path along which the numerical uncertainty in
calculating the free energy is minimized, and we report numerical studies on a Lennard-Jones system which

support the surprising proposition that there is such a singularity-free path.

PACS number(s): 05.20.—y, 64.40.—i, 61.20.Ja

Evaluation of an absolute free energy by direct numerical
integration over phase space is not possible because of the
high dimensionality of the integrals, but the free energy
change along a path in thermodynamic state space can be
evaluated by molecular dynamics (MD) [1]and Monte Carlo
(MC) [2—5] simulation [6].At a molecular level a path is
simply a one-parameter family of Hamiltonians H(k). Since
Hamiltonians need only be imagined, simulators have access
to a greater variety of paths than experimenters.

Consider the path associated with the family of Hamilto-
nians

N 2 W

H(X. ) = g + kg V(r; )+(1—k) g U(r;). (1)

is the canonical ensemble expectation of the difference be-
tween the two-particle and one-particle potential energy
functions in state k, a mechanical property which can be
evaluated by simulation at each X. If (V—U)z is nonsingu-
lar, the free energy difference along this path can be deter-
mined from

i'tBA()i )
A(1) —A(0) = dk.

0

Since no two-particle interactions are present in the X. =O
state, explicit integration over phase space gives an absolute
(third law) value for A(0) [7],

oiA (k)/oik = (V—U) ~ (2)

H(0) describes N noninteracting particles in a one-particle
external field U(r) and H(1) describes a system of particles
interacting through pairwise additive forces. If A(X) is the
free energy of the thermodynamic state associated with each
Le[0,1], then [6]

A(0)= NksT ln (e/N—A ) dr exp[ —U(r)/kttT] . (4)
3v

If N/V is chosen so that the k = 1 state will be a solid, (3)
and (4) will identify the absolute free energy for the solid.
We address two important questions about this path. (i)
What external field U(r) should be used? (ii) Where is the
first-order phase transition?
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(i) The choice of U(r) refers to the practical question:
Along what path can the integral in (1) be evaluated with the
least statistical uncertainty? Integrating (2) by parts gives

A(1) —A(0) =A '(1)— dlt. It.A "(It.)Jo

1 | 1

=(V—U), =, + dZ ) [((V—U)')„
B 0

-(V- U)', ]

=(V—U)i, =t+bF.

bhI 10= = dX k[((U —V) )i, —(U —V)~]

[A (1)—A (0)—A '(1)]

[—A(0)-(V- U), =,]

(r) —
p~ o(r). (6)

The fiuctuations are thus minimized by the U(r) field which
produces, in the X = 0 state, the same density as the target
solid. If pz(r)=pi, t(r) is this solid density, the required

U(r) has the form

U(r) = ktiT Inps(r)+—const. (7)

This is a physically attractive result: the statistically optimal
path is that which connects a solid to a system in a one-
particle field with the same ps(r)

Simulations along paths which are numerically indistin-
guishable from (1) have already been performed. Lutsko,
Wolf, and Yip (LWY) [1], for example, evaluated the free
energy of simple solids using the path

There is no statistical uncertainty in calculating A(0). If the
solid state of interest (It. = 1) is carefully characterized, then
AF will be the principal source of statistical uncertainty in

applying (3).
Since b,F in (5) is a weighted integral over the variance of

(V—U), it must be positive definite and there must be a

U(r) field for which b F is minimized, i.e., a best U(r). This
is the U(r) for which

ability of finding a particle between two lattice sites is al-
ways very low: While (1) allows particles in principle to
change lattice positions this never occurs in practice. In fact,
LWY [1]observed that the numerical uncertainty associated
with their thermodynamic integration was quite sensitive to
the choice of the force constant a. in (8). Result (7) explains
this observation and gives a rule for selecting the optimum
potential.

(ii) If we replace U(r) in H(0) with a scaled /J. U(r),
p, = 1~0 completes the conversion of the solid into a text-
book ideal gas. Along this path there is no singularity. But all
laboratory paths which connect a solid and a gas pass
through at least one first-order phase transition. Is there a
singularity along path (1)?

Strictly speaking, ( V—U) i —p should diverge because
there is a small chance that the repulsive cores of the par-
ticles will overlap. The probability of this event is extremely
small, however, and in neither our simulation nor that of
LWY [1]was such a divergence observed. Since A(X = 0) is
not singular, this singularity is an artifact of the path. Mezei
[8]has shown how this type of divergence can be avoided by
altering the path when X gets very close to zero. In any case,
no singularity arising from cooperative phenomena can ap-
pear as X~O. All real measurements and simulations are
performed on finite samples, which means that certain long
wavelength

fluctuations

are suppressed. We have taken

ps(r) from the finite sample actually simulated in order to
avoid a discontinuity at X = 1 due to a change in the con-
straint on these fluctuations.

It was implicitly assumed in the simulations of LAY [1]
and FL [2] that no singularity was present on the X = 1~0
path. This absence of a singularity is more plausible from the
perspective of density functional theory, which guarantees
that we could define a thermodynamic path by prescribing
p(r) rather than U(r). If we define the path by p(r)
=ps(r) then we eliminate a priori the usual signature of a
first-order phase transition, an abrupt change in p(r), while
optimizing the statistics as required by (6). In our numerical
simulation (described below) using path (1) and (7), we
found that p„(r) is a continuous function of It. which remains
close to pz(r) at all X.

I"(Ps()~P—s(0)J

N 2

HLwY(X)=g +X+ V(r;, )+(1—It)g —,'tr(r; —ro),

(8)

a variant of a path originally proposed by Frenkel and Ladd
(FL) [2].The X =0 state has particle i bound harmonically to
lattice site r;o, a system described by FL as an Einstein crys-
tal. There is a large formal difference between (1) and (8):
(8) replaces the two-particle potential V(r,2) with an
N-particle potential which binds each particle harmonically
to a particular lattice site while (1) replaces V(ri2) with a
one-particle potential U(r). But these paths are indistin-
guishable in a low temperature simulation where the prob-
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FIG. 1. —In[ps(r)/ps(0)j vs r along a crystal axis (points
marked +) and along a bisector of two crystal axes (points marked

X). The solid curve is the parabolic representation U(r)/ksT
=52.3(r/cr) for the one-particle potential used in the simulation.
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FIG. 2. ITkkI X108X108 vs k for k along (a) the [111]and (b)
the [400] directions in reciprocal lattice space.
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in our simulation as this simplified the coding.
Simulation at each X enabled us to determine p~(r) and

the pair distribution function p~~ )(r, r'). There is only a small
variation of pz(r) with ). The maximum deviation of the
[111]Fourier amplitude of p~(r) from that of ps(r), for ex-
ample, is only 6%. To test for the existence of nearby phases
or bifurcation off the phase nominally present, we examined
the linear response of p(r) to a perturbing single-particle
field BU(r). This is characterized by the pair distribution
function,

The evidence indicates that no actual discontinuity in

p~(r) is encountered along the path (1) and (7). It remains
possible, however, that this path is sufficiently close to a path
with a discontinuity that there would be singularities associ-
ated with second-order distribution functions. Perturbative
and variational constructions of solids out of Quid states
based on density functional theory [9,10] implicitly contain
such a singularity, for the solidlike p(r) solutions arise by
bifurcation out of fluid solutions and there is an associated
mechanical singularity (unobserved in real systems) [11,12].
To test whether such a singularity is present on path (1) with
external field (7) we have determined the free energy of a
face centered cubic (fcc) solid by making a constant N, T, V
MD simulation [13]of 108 Lennard-Jones particles at a tem-
perature T= 0.5e/kii and density 0.85o. (where the melting
temperature is 0.585e/kz [14]).

With fcc symmetry ps(r) [and hence U(r)] must be iso-
tropic near lattice sites. Figure 1 shows —in[ps(r)/ps(0)]
(the origin is on a lattice site) along two directions in the
X=1 state. Even at large displacements little anisotropy is
apparent in ps(r) so U(r) was taken to be isotropic. In fact,
nonparabolic behavior is only apparent for displacements
~Ikr~)0. 325o., an event with probability (0.001 since the
rms displacement is 0.097o. at this T. Thus taking U(r) to be
harmonic near lattice sites is a good approximation. As par-
ticle interchanges between lattice sites (a jump of Ihr~
=1.1848o.) are not observed, a simulation in U(r) is nu
merically indistinguishable from a simulation in a potential
which binds distinct particles to distinct lattice sites, i.e., an
Einstein solid in the sense of [1,2,4,5]. In fact, we used the
N-particle field

FIG. 3. The integrand (V—U) in (2) vs X. on the integration path
in (3). The error bars represent ~ twice the variance of the obser-
vations.

Bp(r) = dv[pt )(r,r')+ p(r) 8'(r r')—
—p(r) p(r')]~U(r'), (10)

or, in a Fourier representation,

~pk= X Tkt~Ut
l

with

t'

Tkt= dv dv'[pt )(r,r')+ 8(r r')p(r)—kl

-p(r)p(r')le '"' '" '.

The presence of mechanical instability or bifurcation is sig-
naled by a large response, Tkt [11,12]. For each k we found
that ~Tkt~ is largest for 1=k and the )i. dependence shows no
singularity. Figure 2 shows plots of ~TkJ vs k for k in the

[111]and [400] directions. The maximum value occurs at
P =0.025, i.e., in the weakly interacting gas state. Large val-
ues for I Tkt~ which signal singular behavior are not observed.

The values of BA/BX =(V—U)i plotted in Fig. 3 show a
smooth function of X. The absolute (third law) free energy
calculated by evaluating (3) is A(1) = —8.148@ at
p=0 85rr, T.=0.5 /k eatnid —8.667e at p=1.0o, T
=0.5e/kg. For the data in Fig. 3, A(1) —A(0) = —6.8766;
Singer [3] found A (1)= —8 635e at . p =0.9989tr
T=0 5008e/kti . .

The surprising result that emerges from this picture is
that, at least for simple molecular systems, a solid can be
turned continuously into an ideal gas if one chooses a "ther-
modynamic" path along which the pair potential is replaced
by a single-particle potential that keeps the single-particle
density p(r) fixed. In fact, the numerical accuracy of the ther-
modynamic integration is optimized along this path and the
magnitude of the free energy change along this path is not
large.
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