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Prediction of the lowest energy structure of clusters using a genetic algorithm
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An optimization approach using a genetic algorithm in the search for a global minimum is described. The
method is based on the use of control variables to form the genotypes in each generation. This procedure
allows an accurate representation of the control variables, and consequently, a high resolution determination of
the optimum solution. A set of genetic operators, appropriate for the operation on genes represented by real
numbers, is introduced. The method is used to predict the lowest energy structures of Ar„H2 microclusters with

n=4, 5, 6, 7, and 12. Comparison between the performance of this optimization approach and the well
established simulated annealing method clearly demonstrates the superiority of the genetic algorithm based
search.

PACS number(s): 02.70.—c, 07.05.—t, 36.40.+d

The considerable recent interest in the physics and chem-
istry of atomic and molecular clusters motivated many theo-
retical studies devoted to the search for the lowest energy
structure of such systems [1,2]. The interest in impure mi-
croclusters which include an infrared active molecule in-

creased due to the development of a spectroscopic technique

[3]which allows the determination of structural properties of
such systems. Hence, recent theoretical investigations were
aimed at obtaining detailed understanding of such systems.
For example, molecular dynamics (MD) investigations were
performed to study the structural, dynamical [4], and spectral
[5] properties of Lennard-Jones clusters. The MD method
was also utilized in the investigation of phase changes of Ni
clusters [6] and the use of clusters in the catalysis of hydro-

gen chemisorption onto the Si(111) surface [7].
There is a large literature describing various approaches

used for the energy minimization of molecular systems [8].
The main difficulty in such optimizations is the high dimen-
sionality of the energy hypersurfaces governing the structure
of the systems which gives rise to many local minima. Hence
the main challenge of any search method is to converge to
the global minimum without being trapped in a local mini-
mum. In the following we describe a method, based on ge-
netic algorithms, which allows an efficient search of the glo-
bal minimum in multidimensional energy hypersurfaces of
molecular systems.

Genetic algorithms (GAs) are global optimization meth-

ods based on several metaphors from biological evolution.
The name is derived form the ability of the algorithm to
simulate selection in an evolving population of living crea-
tures attempting to adapt to their environment. Genetic algo-
rithms have been applied successfully in a wide variety of
fields [9—11].The conventional GA's differ from traditional
optimization methods in four important respects. (a) They
employ an encoding of the control variables (usually as bi-
nary bit strings termed "genes") rather than the variables
themselves. (b) GA's search from one population of solutions
to another population, rather than from individual to indi-
vidual. (c) The GA uses only objective function information,
not derivatives. (d) GAs use probabilistic, not deterministic,
transition rules.

In the following, a brief outline of an approach based on
GA's will be described. A detailed description of the method
will be given elsewhere [12].

The main deviation of the present approach form the con-
ventional GA's is in the use of real numbers to construct the
individuals in a generation. Since we shall be dealing with
optimization of molecular structures, the elements of a gene
correspond to the coordinates of the various atoms in the
system, the control variables. The main advantage of this
representation is its capability to deal with problems in
which the control variables are continuous. Hence the encod-
ing and decoding of the genes can be avoided and the opti-
mum solution can be found with any required accuracy.

The first generation, containing Wz, &= 100 individuals, is
formed by randomly placing the Ar atoms and the H2 mol-
ecule (fixed at its equilibrium distance) in a "box" whose
dimensions are large compared with the expected size of the
cluster. Once the initial generation is formed, the potential
energy F. , associated with each structure (gene) is calculated.
The fitness of the ith gene in the pth generation, f~, is cal-
culated by scaling the E s in the range span by the best and
worst genes in the population and normalizing the scaled
value by the value of the best solution. These values serve as
the probability according to which a gene is selected to be
used as a parent in the preparation of the next generation.

The following procedure was used to form the next
generation. First, the highest fitness kb„, genes
(kb„, /N~, „=0.1) are transferred to the new generation. The
second step is to form k„„d (k„„d/n~, ~=0.05) random
genes which are included in the new generation to allow the
flow of new structures into the simulation. The remaining
number of genes needed to complete the new generation are
constructed by the application of six GA operators to indi-
viduals in the present generation. The following operators
were used. (1) n-mutation (0 „„):one of the kb„, genes is
chosen randomly and some of its elements (randomly cho-
sen) were modified by the addition of a random number
evaluated from a normal Gaussian distribution. (2) Inversion

(0;„):the elements in a segment, randomly chosen, of the
parent gene were inverted to generate a son. (3) Two-point
cross link (0„„2):two parent genes were connected head-
to-tail to from a cyclic object which was then disconnected
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FIG. 1. Convergence rate of
the GA method as obtained in

typical calculations of the lowest
energy structures of three Ar„H2
(n=4, 6, and 12) clusters. Also
shown is the convergence rate as
obtained in an SA calculation
for Ar&2H2, marked as "SA
(n= 12)" (note that the iteration
number in this case was divided

by 1000).

microcluster N,„„=5different simulations were performed.
At the end of each simulation the highest fitness It..b„, genes
were stored. Finally, an additional calculation was performed
where the initial population contained the N „kb„, highest
fitness genes obtained together with (N„,~

—N,„„kb„,) ran-
dom structures. This additional simulation resulted usually in
a 0—10 % improvement in the lowest energy structure.

The optimization method described above was applied
to the search for the lowest energy structures of five
Ar„H2 (n = 4, 5, 6, 7, and 12) clusters using the interaction
potentials of Ref. [7). The results of the present approach
will be compared with those obtained by the simulated an-
nealing (SA) approach [7].

The convergence rates of our GA based method to the
lowest energy structure in some typical calculation for three
cluster sizes is shown in Fig. 1 (the curves marked accord-
ing to the cluster size as n =4, n = 6, and n = 12).The mea-
sure of convergence rate is defined as the natural logarithm
of the normalized energy difference between the lowest en-
ergy in generation i and the global minimum found in the
search. In all the GA based calculations the initial conver-
gence is exponential. During the later stages the convergence
rate changes in steps. This stepwise change is associated with
the formation of a subgroup of "good" genes which were
then improved by the action of the GA operators. It should
be noted that this subgroup of good genes is usually formed
shortly after a reshuffling process. These results clearly indi-
cate that increase in the size of the cluster results in a corre-
sponding increase in the number of generations needed to
reach the lowest energy structure. However, it is clear that
the number of generations needed to converge depends on
the accuracy requirement in the search. In the present case
the required accuracy was set to 1X10 kcal/mole.

Let us turn now to a comparison of the results obtained
using the GA approach with those of the SA [7]. The ener-
gies associated with the most stable geometry of the various
microclusters investigated are summarized in Table I. In-
spection of these results shows that the GA method yields
results which agree extremely well with those obtained using
the SA approach. Moreover, for all the microclusters consid-
ered, the energy of the most stable geometry calculated by

randomly to form two new genes. (4) n-point cross link

(0„„„):the elements of two parent genes were copied to
form two "sons. " The rearrangement of the parent's ele-
ments was accomplished by the following steps: a random
number g was chosen from a uniform distribution in the
range 0—1. If j~0.5 the element of parent 1 was copied to
son 1 and the corresponding element from parent 2 to son 2,
while, if g(0.5, the element of parent 2 was copied to son 1
and the corresponding element from parent 1 to son 2. (5)
Arithmetic average (0,„):the arithmetic average of the ele-
ments of two parent genes were used to form a son. (6)
Geometric average (Os„): the geometric average of the
elements of two parent genes were used to form a son.

These operators were applied to genes in the pth genera-
tion to form sons which were transferred to the p+ 1 genera-
tion. In all cases, the probability to choose the ith gene as a
parent was proportional to its fitness, f~.

Once the new generation was completed, the energies and
corresponding fitness values of the individuals were com-
puted. A uniform initial probability for the application of
each one of these operators, Po, was used in the first N~
iterations. These probabilities were modified every N~=20
generations according to the number of times each operation
was successful in generating a son whose fitness was better
than f~z . To ensure that the search did not converge to a

best

local minimum a reshuffling procedure was introduced.
Namely, if the best gene in the population did not alter for
N, =8 generations, the kb„, genes of generation p were cop-
ied to generation p+1 in addition to (Nz, z kb„,)/2 ran-—
domly created genes and (Nz, z

—kb„,)/2 genes which were
generated by the application of 0 „„to the kb„, genes of
generation p. To complete the description of the method we
have to specify the conditions which were used to terminate
a calculation. Two termination conditions were used: first, if
the number of iterations exceeded 5000 the calculation was
terminated. This condition did not occur in any of the calcu-
lations reported below. The second condition is related to the
variation of the highest fitness structure in the population. If
this best gene did not alter for N;„,=50 generations it was
assumed the convergence was reached.

To ensure that the global minimum was found, for each
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TABLE I. Energies of the most stable Ar„H2 clusters as calcu-
lated using the GA method described here and by the SA approach
[7].All energies are in units of eV. The values in parentheses rep-
resent energies of geometries other than the most stable.

TABLE II. Average number of cost function evaluations

(Nr„„,), for each cluster using simulated annealing (SA) and the
genetic algorithm based (GA) optimization approach.

5
6
7

12

SA

—0.09533
—0.13352
—0.17861
—0.21678
—0.50085

GA

—0.09623
—0.13495
—0.18253 (—0.17879)
—0.21855
—0.49946

4
5
6
7

12

SA
(units of 10 )

1832
1975
1621
2080
2137

GA
(units of 10 )

42
45
57

100
225

GA is slightly lower than the corresponding value obtained
by SA (except for n = 12). These negligible differences are
due to a slight variation in the orientation of the H2 relative
to the structure of the Ar atoms. We have plotted the struc-
ture of the various Ar„H2 clusters and found that they agree
very well with those presented in Ref. [7]. The only case
where a slightly larger difference between the results of the
two methods was detected is for Ar6H2. For this cluster an
additional calculation was performed. In this additional cal-
culation we discarded in each generation all genes whose
potential energy was lower than that obtained by the SA
approach. The energy associated with the most stable geom-
etry obtained in this calculation is added in parentheses in
Table I. Figure 2 describes the most stable structures of
Ar6H2 as obtained in the energy unrestricted [Fig. 2(a)] and
the energy restricted [Fig. 2(b)] calculations. Comparison of
Fig. 2(b) with Fig. 1(c) in Ref. [7] indicates that these two
geometries are practically identical. However, the geometry
in Fig. 2(a) is a slightly different one.

To assess the potential value of the GA based method as
an efficient optimization approach, the rate at which it con-
verges towards the global minimum should be compared to
that of the widely used SA method. Unfortunately, it is not
possible to base such a comparison on the results of Ref. [7]
since no details of the SA calculations were given. Hence we
recalculated the lowest energy structures of these micro-
clusters using the SA approach [13].In these SA calculations
a geometric cooling schedule [13] (i.e., Tx+ t =0.9Tz) was
employed where the magnitude of the initial temperature was
chosen to yield an average increase acceptance probability of

FIG. 2. Two geometries for the Ar6H2 cluster as obtain in en-

ergy unrestricted (a) and energy restricted (b) calculations. The
large balls represent Ar atoms and the small balls H atoms.

80%. To improve performance, cluster structures which in-
cluded an Ar-Ar or Ar-H distance smaller than 3.024 A were
rejected without further examination. As in the GA simula-
tions, for each cluster five independent calculations were per-
formed. The energies obtained for the various clusters by
these SA calculations were identical (to at least three signifi-
cant digits) to those obtained by the GA approach.

To assess the relative efficiency of the two optimization
methods, we shaH compare the average number of cost func-
tion (cluster potential energy) evaluations required to reach
convergence, (Nr„„,). Here, () denotes the average over the
five independent runs performed by each method. The results
are summarized in Table II. These results clearly demon-
strate the superior overall convergence of the GA based ap-
proach as compared to the SA method. We turn now to a
comparison between the convergence rates obtained by the
GA and the SA approaches. The curve marked as "SA
(n = 12)"in Fig. 1 represents the convergence rate of a typi-
cal calculation for Ar&2H2 using the SA approach. To fit this
curve into the range of iterations used in Fig. 1, the number
of iterations in this case was scaled by a factor of 1000.
Comparison between the convergence rates of the GA and
SA results for Ar&2H2 shows a number of differences. How-
ever, before the discussion of these differences, the meaning
of the convergence rates shown in Fig. 1 should be exam-
ined. The computational effort involved in an iteration of
each approach is determined by the number of cost function
evaluations. In the case of the GA based method, each itera-
tion involves N &,z evaluations of the cluster energy, while in
the SA approach each iteration involves a single evaluation
of the energy function. Hence a meaningful comparison of
the convergence rates of the two methods should examine
the variation of the F; as a function of the number of energy
evaluations. Since we used Np p

100 in the GA calcula-
tions, each iteration in Fig. 1 corresponds to 100 evaluations
of the cluster energy. Thus in terms of cost function evalua-
tions, the scaling factor of the SA results shown in Fig. 1 is
10 (and not 1000, see above) as compared to the GA results.

The SA results (Fig. 1) show practically two stages in the
convergence rate, a very slow initial convergence followed
by a much faster one. On the other hand, the GA results
exhibit a larger number of steplike distinct convergence
stages, where in aH cases the first stage is the fastest. More-
over, the convergence rates of all the distinct stages in the
GA calculation are more rapid than those of the SA calcula-
tion (note that the SA results are scaled by a factor of 10).
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These differences, together with the results shown in Table
II, demonstrate the superiority of the GA based method over
the SA one. A more elaborate comparison between these two
optimization methods can be found in Ref. [12].

To summarize, an optimization method based on a genetic
algorithm in which the control variables are used to construct
the genes has been developed. The main advantage of the
approach is its capability to deal with problems in which the
control variables are continuous. As a result, the encoding
and decoding of the decision variables can be avoided.
Hence the search for the optimum solution using this method

is much more accurate than in conventional GA procedures.
The method was applied to the search for the lowest energy
structures of Ar„H2 clusters. The optimized cluster structures
obtained compare extremely well with the results obtained
using the simulated annealing approach. Comparison be-
tween the convergence rates of these two methods clearly
indicates that the GA based approach is much more efficient.

It is believed that the high efficiency and accuracy of the
GA based method presented here makes it a very useful ap-
proach for structural studies of a large variety of atomic and
molecular systems [12].
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