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P relaxation in a highly supercooled state via molecular dynamics simulation
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We have studied the P relaxation of the density autocorrelation for a two dimensional model fluid via

molecular dynamics (MD) simulation. We have found that correlated motions composed of many particles

occur in the time scales of about 20 times the time scales of the thermal oscillations, which corresponds to the

P peak frequency of the imaginary self-part of the generalized susceptibility. It is also discussed that the

self-part of the density autocorrelation function F,(k, t) below the glass transition temperature

(1,„=1.2 —1.3) presents an oscillatory behavior at the time scales of about 100 times the time scales of the

thermal oscillations, which may be caused by the periodic boundary conditions adopted in the MD simulation

as usual.

PACS number(s): 61.20.Ja, 64.70.Pf, 61.20.Lc

Neutron spin-echo measurements on F(k, t) [1] revealed
two types of distinct relaxations in the ionic system

Cao4KO 6(NO3)& 4 (CKN). Cummins et al. [2] have recently
measured the dynamical properties of the same material with
light scattering, and analyzed both cr and P relaxations in

detail, leading to a conclusion that their experiments are con-
sistent with the mode-coupling theory [3].On the other hand,
molecular dynamics (MD) simulations [4—6] have found that

the jump motion of atoms is an essential nature of the cx

relaxation in supercooled fluids. Theoretical works have re-
cently been proposed, which take into consideration such

jump motions phenomenologically.
In this paper we have carried out an MD simulation using

a two dimensional (2D) soft-core model fluid to study the
dynamical features in a different (lower) dimensionality,
which is also much more advantageous than 3D in visualiz-

ing the data.
Since the n relaxation in highly supercooled Auids close

to the liquid-glass transition is essentially due to the jurnp-
motion diffusion, to study the o. relaxation by MD simula-
tion one inevitably needs a super-long-time calculation [8].
In fact, the jump motions rarely take place near the glass
transition temperature: there are only several jump motions
for the period of 7 [see Eq. (3) for the definition] in a system
of 10000 atoms. In the present work we focus on the P
relaxation, which has much less extensively been studied so
far in molecular levels. The P relaxation takes place in much
shorter time scales than the n relaxation, and is rather insen-
sitive to the temperatures of the system [7].Thus motives of
the present work are as follows: we do not need a super-
long-time MD simulation, and the P relaxation can much
more easily be studied at low temperatures than is possible
for the a relaxation.

The P peak in the imaginary part of the generalized sus-
ceptibility y,"(k,co) appears in the time scales of the order of
several times 7 [8]. Since the period of thermal oscillations
(Einstein frequency) of atoms turns out to be at least one
order of magnitude smaller than the time scale of the P peak,
the P peak can be well separated from the peak correspond-
ing to the Einstein frequency. Then, one may ask what type

of atomic motions cause the P relaxation. This is our main
concern in this work and for this purpose we have carried out
an MD simulation for a two dimensional system composed
of 10 000 particles.

The present model is composed of equal numbers of two
different species of 5000 atoms each (N& = 5000,
N2=5000). The smaller (lighter) species has a diameter
trt = 1.0 and a mass m, = 1.0, and the larger (heavier) species
has a diameter o.2=1.4 and a mass m2=2. 0. The periodic
boundary conditions were adopted as usual. Numerical time
integrations were carried out with the velocity form of the
Verlet algorithm [9], and the temperature of the system was
controlled with the Nose algorithm [10].

Atoms interact through the purely repulsive soft-core po-
tentials:

120 up(rij) = &(trap/rij)

where

(2)

and n and P are species indices (1 or 2). The cutoff radius of
the interaction was chosen to be 4.5o.i. Hereafter we use the
following units: cr& (the unit of length), m, (the unit of
mass), and e (the unit of energy). The reduced unit of time is
chosen to be

27— m101 8 (3)

(For example, 7. is 2.45X 10 ' sec for an argon liquid. ) We
also use the reduced temperature T*=ktjT/e and the re-
duced number density p* =N/S, where N is the total number
of atoms (=10000) and 5 is the total area of the system in

units of cr, . In the present work the reduced number density
is fixed at p*=0.8.

According to the scaling property of the inverse power
potentials, all reduced equilibrium properties of the model
fluid depend only on the coupling constant I = p*(T*)
apart from the core-size ratio o.2/o. , and the concentration

yr or y2, where Jr t =N
& /N and y2 = 1 —

y& . It is convenient
to use the following effective coupling constant for the bi-
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nary mixtures using the effective one-component approxima-
tion [11] as in the case of the three dimensional soft-core
system:

0 position ( 5.59,16.77)(a,
+5.0

(4)

where

(5)

In our molecular dynamics simulations, starting from a
liquid equilibrated at I',ft=0.8 (T*= 9.685), which was ob-
tained from initially randomized two species configurations
on simple square lattices, we have obtained supercooled
states by means of rapid cooling of the liquid. In this paper
we investigate a glassy state simulated over the time steps
between 1000r and 1500r at I,ff= 1.4 (T*= 0.3372). In ar-

gon Quid the above condition corresponds to quenching from
T= 1115 K (liquid) to 38.83 K (glass); the cooling rate be-
comes of the order of 10' K/sec. The freezing point of the
one-component soft-core model is about I,fr=0.987 [12].
The glass transition point of the present model is around

I,&=1.2—1.3, which is estimated by the analyses of the
pair distribution functions [13].

By analyzing the movements of atoms on the display of
our workstation, we have found remarkable correlated mo-
tions composed of many atoms in the time scales of several
r to a few dozen r (Fig. 1). In Fig. 1 movements of atoms
from t= ~ to t=5 7. are shown, after being well equilibrated
(annealing). The displacements of atoms for such periods are
shorter than cr, , but substantially longer than the amplitude
of thermal vibrations. Their directions are highly correlated.
Previously, two types of correlated displacements of atoms
have been reported for a glassy material [14], the linear cor-
relation and the circular correlation. We have found that the
circular correlation is very rare for our system. Therefore we
assume the linear correlation is a main contribution. Below,
we define "the correlated motion coefficient, " which mea-
sures the degree of correlated motion between the ith atom
and the surrounding near atoms within the cutoff distance
r, . We call it C;(r, , t), defined as

(6)

where Ar;(t) is the displacement vector of the ith atom for

an elapsed time t, Ar (t) is the mean square displacement
for an elapsed time t, and X; is the number of atoms within
the distance r, centered at the ith atom for t=o.

Figure 2 shows the space distribution of C;(r, , t) We see.
that there are large clusters of dark points marked by the
highest gradation in the figure, connected to each other
throughout the whole simulation cell. This is in contrast with
the result obtained for t= r (Fig. 3), in which the dark and
white points are almost randomly distributed. Note that in
the latter case the time scale is of the order of the thermal
oscillations, while in the former it is 5r. The C; analysis
indicates that atoms move in a correlated way for the time
scales of several 7.. The pattern of the C; map is significantly
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FIG. 1. Movements of atoms near the position (5.59,16.77) (the center
of this figure) of the present simulation cell with a side length =111.80crI
for the period from r to Sr The initial posit. ions (at t= r) of atoms are
marked by the circles and the final positions (at t =5 r) of atoms are marked

by the triangles. The axes X,Y are the relative distance from central position
(5.59,16.77) in units of o,

F, (k, t) = g exp{ik b, r, (t)) (7)

where n denote the species indices, and (- ) denotes an

changed with t: The correlation domains change in place and
time. It is interesting to note that such a characteristic time
scale corresponds to that of the p peak as shown below (see
Fig. 5). Figure 4 shows the averaged values of C;, divided
into five successive shells with an equal width 0.25o.1. It
turns out that the values increase as t increases up to several
7. and the strength of the correlation decreases as the distance
from the origin increases.

The imaginary part of the generalized susceptibility (self-
part) is shown in Fig. 5. The peak around logtp(to) ~2 cor-
responds to the thermal vibrations. The peak between
logtp(co) =0 and 1 (co in the unit of r ) is the P Peak. The
characteristic time is of the order of several 7;

Therefore it turns out that the correlated motions which
we have obtained above (Figs. 1—4) are the molecular-level
origin of the p relaxation. By analyzing the temperature de-
pendence of the C;, we have found that the correlation areas
become significantly larger as the temperature is lowered.
We will report on these analyses in detail in a forthcoming
paper.

In Fig. 5, the highest and the near scattered data at the left
(lower frequency) side of the p peak need special care: These
are regarded as spurious results, which may be caused by the
periodic boundary conditions imposed by the simulation, be-
cause the location of this spurious peak depends strongly on
the system size, and it turns out that this is inversely propor-
tional to the length of the simulation cell size.

Such an effect is also observed in F,(k, t) (see Fig. 6).
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FIG. 2. The correlated motion coefficient C;(2.0,5.0) is calculated for
all atoms (N= 10 000). A circle on the right side of this figure denotes the

size of the cutoff radius (r„=2.0o.i). All circles indicate the initial positions
of atoms with the respective size of each species. The gradation is made

according to the (five classed) values of the C;; the darker the gradation is,
the higher the value of the C; . The axes X,Y are the absolute distance from
central position (0.0,0.0) in units of o.i .

initial time average. For large wave numbers the curves de-
crease monotonously up to t-157., then increase up to
t-307., followed by clear oscillations. The oscillations re-
peat many times with about the same period (see Fig. 6).
This behavior is commonly observed for both species. Mean
square displacements and non-Gaussian parameters exhibit
similar oscillatory behavior. The curves of F( )(k, r) at

I,ff= 1.3 also have such oscillatory behaviors, but much less
weak. Mean square displacements and non-Gaussian param-
eters at I,fr= 1.3 have the same tendency. Figure 6 was ob-
tained by averaging over 5000 atoms (species 1 only) and
250 initial times. These results show a remarkable contrast to
the result of F( )(k, t) obtained for the supercooled liquid at

r,„=1.2, which decreases smoothly without oscillations.
The mean square displacement increases linearly as a func-
tion of time and the non-Gaussian parameter vanishes
quickly (at very short time).

We have attempted to fit the MD data for F( )(k, t) in

terms of the stretched exponential function of the form of the
Williams-Watts law in the time range between 7. and
10007-.
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FIG. 3. The correlated motion coefficient C,(2,0,1.0) is calculated for
all atoms (N= 10 000). The gradations of the circles are made according to
the (five classed) values of the C;, as shown below the figure; each class
gradation has 2000 particles. The axes X,Y are the absolute distance from

central position (0.0,0.0) in units of o.i.
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where (l r( )(r) —r( )(0)
l ) is the mean square displacement.

This approximation is obtained by the general cumulant ex-
pansion [17]with only the first term taken into account. The
result of the comparison for the case I,ff= 1.4 and
k=27rlo. i shows that up to t= lor both are in good agree-
ment, but the discrepancy becomes remarkable for t~10~.

f(t) =A exP( —(tltti) P'I

The best fitted value of P obtained is about 0.7, being sig-
nificantly smaller than 1.0. This indicates that the system is
in a highly supercooled state below the kinetic transition
[15].The present system is probably below the glass transi-
tion temperature.

Also we have compared the MD data for F( )(k, t) with

the Gaussian approximation [5,16] of it, i.e.,

F,"(k,r) =«p[ —.-'k'(I r"(r) —r( )(0)I')],

0.0

0.0 10.0 20.0
(&)

FIG. 4. The averaged value of the correlated motion coefficient

C;(r, , t) divided into five successive shells with an equal width 0.25cri:
This average was made over all atoms (N = 10 000) and 695 configurations.

For example, the solid line is a result of the case that another particle j lies

in distances from the ith atom between 0.75o.1 and 1.00o, The abscissa t

is time in units of 7..
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This result indicates that the next term of the cumulant ex-
pansion, proportional to the non-Gaussian parameter, plays
an important role and the higher-order moments of the cu-
mulant expansion are not negligible.

The full density autocorrelation function F( )(k, t) was
also computed.

g exp(ik r,' )(t))

X g exp( —ik r,"(0)) N

A similar oscillatory behavior to that of F, (k, t) was also
obtained for F( )(k, t), though the total length of the time

FIG. 5. The imaginary part of the generalized susceptibility (self-part)
for species 1 at I,ff= 1.4. The reduced wave number is It..=2m/1 (in units of
o., '). The abscissa log, a(as) is a logarithmic frequency in units of r

FIG. 6. Self-part of the density autocorrelation function
Fi'~(k, t) for species 1 at l,rf= 1.4. Curves, from top to bottom, are for the

reduced wave numbers k=2m/10, 2m/5, 2m/3, 2m/2, 2~/1. 5, 2m/1, 27'/0. 8,
and 2rr/0. 6, respectively, in units of sr, '. The abscissa log, a(t) is logarith-
mic time in units of ~.

steps of our MD simulation (1500'=300000 steps) is not

enough to obtain F( (k, t) as accurately as for F, )(k, t).
Therefore we see such oscillatory behaviors are rather

common results obtained from the present MD simulation at
a very low temperature. However, as was already mentioned,
these oscillatory behaviors are considered to be a spurious
effect due to the periodic boundary conditions used in the
MD.

We conclude that the averaged value of the correlated
motion coefficient increases as t increases in the time scale
of several ~ and the highly correlated areas increase as well
in the same time scale. For this time scale the imaginary part
of the generalized susceptibility (self-part) has the p peak.
After all, we conclude the correlated motion is the
molecular-level origin of the p relaxation.
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