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The chaotic diffusion of periodically kicked charges in a uniform magnetic field is systematically ap-
proached by considering general values of a conserved quantity for the problem, namely the coordinate x. of
the orbit center. The dependence of the diffusion coefficient D on the correlation function C is explicitly given.
Assuming “crystalline” resonance conditions, exact closed expressions are derived for C, both at fixed x,. and
averaged over x.. This averaging removes much of the rich structure of D(K) (K is the kicking parameter),

found at fixed x. .

PACS number(s): 05.45.+b

The interaction of charged particles with an electrostatic
wave packet in a magnetic field is a problem of central im-
portance in plasma physics [1]. A case of major interest is
that of a uniform magnetic field perpendicular to the direc-
tion of propagation of the wave packet. The presence of
chaos in this case leads to “stochastic-resonance” heating of
the plasma particles and to the appearance of a nonlinear
mechanism of damping of the wave packet [1,2]. A basic
investigation of this chaotic motion was initiated in the last
decade [2—4]. The model system used was that correspond-
ing to a wave packet with a well-defined wave vector k and
time periodic with a very broad Fourier spectrum. The time
dependence can then be approximated by a periodic § func-
tion, and the general Hamiltonian describing the system is

o0

H=TI¥(2M)+KV(kx) >, &(t—sT). (1)

§=—00

Here II=p—gA/c is the kinetic momentum of a particle
with charge ¢ and mass M in a uniform magnetic field B
(along the z axis), K is a parameter, Kk is taken in the x
direction, V is a general periodic function with period 2,
and T is the time period. Without loss of generality, the val-
ues of M and k will both be set to 1 from now on.

Before discussing the known properties of the system (1)
and stating the aims of this paper, let us first represent (1) in
a different form. The natural degrees of freedom in a mag-
netic field are given by [5] the conjugate pairs (x., y.) (co-
ordinates of the center of a cyclotron orbit) and (IL,, II,).
Defining [2] u=1II,/|w|, v=1II,/w, where w=gB/c is the
cyclotron frequency, and using the relation x,=x+1I, /@
=x+v (easily derivable from simple geometry), (1) can be
rewritten as follows:

oo

H=o*(u?+v?)2+KV(x,~v) 2, 8(t—sT). (2)

§=—00

Since H does not depend on y,, x. is conserved. One may
therefore treat x. in (2) as a parameter, thus reducing the
system to a periodically kicked harmonic oscillator.

As far as we are aware, all the investigations of the sys-
tem (1) have assumed the very specific value x. =0 in (2) [2]
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and an even function V(x). In most cases, the standard
choice V(x)= —cosx was made [2], and other choices of
even V(x) were studied in Ref. [6]. These investigations
have led to the discovery of the well-known properties of
this system. Since the harmonic oscillator is degenerate (lin-
ear in the action), the nonlinear perturbation in (2) is strong
[in the sense of Kol’mogorov-Arnol’d-Moser (KAM) theory]
for all values of K, especially under resonance conditions,
a=wT=2mm/n (m and n are coprime integers). One then
expects, on the basis of general arguments [2], that un-
bounded chaotic motion of (#, v) should exist for arbi-
trarily small values of K in the resonance case. This motion
is observed to take place diffusively [2—4] on a “‘stochastic
web” [see Fig. 1(a)], analogous in some aspects to the
Arnol’d web [7]. For n=3, 4, 6, the web has crystalline
symmetry (triangular, square, hexagonal), while for all other
values of n>4 it has quasicrystalline symmetry.

However, assuming a specific value for x, is quite restric-
tive for several reasons. First, it is obviously impossible to
prepare an ensemble of particles all having the same value of
x.. In general, such an ensemble will exhibit all values of
x.mod2 7 in the interval of periodicity [0, 27) of V(x).
Second, while the basic symmetry of the stochastic web is
completely determined by «, its actual structure and dynam-
ics (at fixed K) may drastically change as x,, is varied. This is
clearly illustrated in Fig. 1. Notice that if V(x) is even (as,
apparently, in all cases considered in the literature),
V(x.—v) in (2) is generally not even. In particular, for
V(x)=—cosx and x.=/2 [see Fig. 1(c)], V(x.—v)
= —sinv, an odd function. As pointed out recently [8], both
the classical and quantum dynamics of (2) for odd
V(x.—v) are significantly different than for even
V(x.—v). Finally, it is important to realize that any small
y-dependent perturbation in (1) (corresponding, e.g., to a
second drift wave [1]) will lead to the destruction of the
conserved quantity x., and thus to a full four dimensional
(4D) phase-space diffusion. If the perturbation is sufficiently
small, this diffusion may be approximately decomposed into
two components: (i) a slow diffusion in x,; (ii) a fast diffu-
sion within the web associated with an “instantaneous”
value of x, .

Because of all these reasons, a systematic approach to the
chaotic diffusion in the system (1) should take into consid-
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FIG. 1. Portions of the stochastic webs for m/n=1/4, V(x)= —cosx, K=1.4, and several values of x.: (a) x.=0, (b) x,=2m/8,
(c) x.=4m/8, (d) x,=6m/8. Each of these plots contains 40 000 points of chaotic orbits, generated by iterating an ensemble of initial
conditions near the origin with the Poincaré map (3). Notice the diffusive decay away from the origin, and the crystalline square symmetry

shared by all the webs.

eration general values of x., as well as the problem of av-
eraging physical quantities, e.g., the diffusion coefficient,
over x.. Such an approach is introduced in this Rapid Com-
munication. We start by writing the general Poincaré map for
(2). Assuming, without loss of generality, ®=1 from now
on, this map is easily derived as in Ref. [2]:

ug1=lu;,+Kg(v,)]cosa+uvsina,

3)

Vgr1=—[u,+Kg(v,)]sina+vcosa,

where (u,, v,) are the values of (u, v) at time s7—0, and
g(v)=f(x.—v), with f(x)=—dV(x)/dx, is the force func-
tion. Defining z,=u +iv,, the map (3) can be written more
compactly as

Zs+1= [zs+Kg(Us)]e_iazzoe_ia(s+l)
s+1
+K 2 8(Usr1-j)e Ve, (4)
j=1

after iterating backward in time. Under resonance conditions,
a=2mm/n, the resonance is fully realized every n itera-
tions. The diffusion coefficient is then given by

1
D:blif:o Z_b—ndzbn_zolz)E , %)

where b is an integer, and { )z means averaging over a large
ensemble E={(ug, vo)} of initial conditions. Cases of
anomalous diffusion [4,9] are D=0 (subdiffusion) and
D=0c (superdiffusion). Using (4) with s=bn—1 and
j=ran+l (r=0,...,b—1; I=0,...,n—1), Eq. (5) can be
expressed as follows:

2 n—1 b—1
D= lim Z_br; 2 elet=1) 2 <g(Urn+1)g(Ur’n+1’)>E~
b—o LI'=0 ror'=0

(6)
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As in the usual approach to the calculation of D [10-12], we
shall assume that the ensemble E is (essentially) invariant
under the map (3). For example, £ may be chosen as a set of
infinitely long chaotic orbits [11], or as a set of unstable
periodic orbits and accelerator modes in the chaotic region
[12] with maximal period bn [giving a good approximation
to D in (6) if b is sufficiently large]. For crystalline webs, E
may be chosen as one unit cell (see below) [13]. When E is
invariant, the average in (6) depends only on the difference
(r'=r)n+1'—1, and (6) thus reduces to

n—1 n—1
D=K2? Co2+ 2, cos(la)C;+ D, cos(la)z Crnsil s
I=1 =0 r=1

)

where C;=(g(vo)g(v,))g is the force-force correlation
function. As in Ref. [10], relation (7) follows exactly from
(6) only if C; falls off with j faster than j '

In the case of crystalline webs, one can obtain explicit
expressions for C;. We define, as in the case of Taylor-
Chirikov maps [10], the characteristic functions

j
.pj)=\ exp i pw , ®
1=0

Xj(Po,Pl, .-
E

where p;, [=0,...,j, are integers. The correlation function
C; may then be expressed as follows:

o0

C]= 2 grgr'Xj(r,O,---,O,r’), (9)

ror'=—o

where g,=(27) " [2"dvexp(—irv)g(v) are the Fourier co-
efficients of g(v), and in x; only po=r and p;=r' are non-
zero. To obtain an explicit expression for this y;, we start
from the “Newton” equation for v, which is easily derived
from (3):

Usr1— MU+ U, 1= €8(vy), (10)
where 7=2cosa and €= —Ksina. Denoting by G,(€) the
Fourier coefficients of exp[ieg(v)] (defined as g, above), we
get from (8) and (10) the recursion relation

Xj(pO’Oa -aOst~1,Pj)

o0

-3

r=-—0o0

G, (p;€)xj-1(po;0,...,0,—p;.pj_1tnp;+r).

(11)

Notice that relation (11) involves characteristic functions
with only the first and last two indices p; nonzero. Since the
p/’s are general integers, relation (11) is well defined only if
7 is an integer, which corresponds precisely to the crystalline
webs (7=0 for n=4 and »==1 for n=3, 6). The sim-
plest choice for the invariant ensemble E in the crystalline
case is just the unit cell of the crystal [13]. With this choice,
which we shall adopt from now on, one can easily verify that
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X1(Po,P1)= 6,06y, o for all the crystalline webs. Using this
result, and iterating (11) backward, we get the formula

Xj(pOsO’ '70’pj)

i-
I Grppy=mrivr,,(71€); 12)
=0

with r_1=r;_1=0, ro=p;, and r;_,=p,. A simple but
crucial observation is now that the x. dependence of the
Fourier coefficients g, and G,(€) (see definitions above) can
be explicitly written from the definition g(v)=f(x.—v):

gr:fre_lrxc7

where f, and F,(€) are, respectively, the Fourier coefficients
of f(—v) and exp[ief(—v)]. Using (12) and (13) in (9), we
obtain, after a straightforward calculation, the following
closed expression for C;:

G (€)=F (e)e ", (13)

) © j—2

2 2 ffr | —i2-m X e

ro=-—o Fjop=—® =0
j—2

S H Fr,+1—77rl+r[‘1(rl€)- (14)
=0

Because of the relatively simple dependence of C; on x,
in (14), averages of C; and of D [see (7)] over x, can easily
be performed in several cases. The simplest and most natural
case is that of uniform average. This gives our main result

.1 (2m - > =2
Cjz'i; 0 dxccj= 2 Z A 2 ry frofrj_z
ro=—o rjog=—e 1=0
j-2
XI1 Frp mppor, (116), (15)
1=0
where A(r)=4,, is the Kronecker function. The average

diffusion coefficient D, is then obtamed from (7) with C;
replacing C ;. Because of the restriction 2J_ Orl— 0, the com-
putation of C using (15) is usually shorter than the compu-
tation of C;.

As an example, consider the case of V(x)

=—cosx [f(—v)=sinv]. In this case, one immediately ob-
tains from the definition of C; that Cy=1/2 and C,;=0 for
all x., so that also C0= 1/2 and C,=0. The next two values
of C; (for x,=0) and C; are easily calculated from (14) and
(15):

1 1 2 2
C2= =5/ -4(e), Cy=3 Uiy =Ti- ()],

-2::0’ C3 1+7](€)’ (16)
where J,;(€) is a Bessel function. Results for the diffusion
coefficient, both at x.=0 and averaged over x., are shown
in Figs. 2 and 3 for m/n=1/4 (square symmetry) [14]. The
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FIG. 2. Solid line: D/Dg; as a function of K for m/n=1/4,
V(x)= —cosx, and x,=0. Here D is calculated using (7) up to, and
including C;-¢, as explained in the text. Dot-dashed line: Numeri-
cal results obtained from (5) by iterating 400 times with the map (3)
(x.=0) a 200X 200 ensemble of chaotic initial conditions around a
hyperbolic fixed point.

values of D and D,, are normalized by the ‘“quasilinear”
value Dq,=K2/4, corresponding to the leading term C/2 in
(7). In Fig. 2, we plot D/D,; as a function of K, where D is
calculated using the expansion (7) up to, and including
Cj-¢ (ie., r=1 and [/=2). Notice that for m/n=1/4 only
correlation functions C; with even j appear in (7), since
cos(la)=0 for odd . The values of C; (and C) for j>3, not
given in (16), were calculated from (14) [and (15)] by keep-
ing in the sum only terms contributing factors
F.(r'e€)=J.(r'€) with r<20. The results are compared with
numerical results of D, obtained from (5) by using an en-
semble E of chaotic orbits (see caption). The agreement is
very good, except near values of K where accelerator islands
are born and are relatively large. Here the chaotic diffusion is
actually anomalous (superdiffusion) [9], and D =c. In Fig.
3, we plot D, /D ,; as a function of K, where D, is calcu-
lated using (7) up to, and including C;_5. Again, except near
K values where accelerator islands exert influence, these re-
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FIG. 3. Solid line: D, /D ,; as a function of K for m/n=1/4 and
V(x)= —cosx. Here D, is calculated using (7) up to, and including
C ;=g (see text). Dot-dashed line: Numerical results obtained from
(5) by iterating 1200 times with (3) a 50X 50 ensemble E uniformly
distributed in a unit cell, and averaging over 50 values of x. uni-

formly distributed in [0, 27r).

sults are in good agreement with those obtained by averaging
(5) over an x. ensemble (see caption). As one could expect,
this averaging removes much of the rich structure of D(K) at
fixed x. (see Fig. 2), and D,,(K) approaches the quasilinear
value more rapidly than D(K) as K is increased.

In conclusion, we have introduced a systematic approach
to the problem of chaotic diffusion of periodically kicked
charges in a magnetic field. Unlike previous approaches
[2-4], we consider here general values of the conserved
quantity of the problem, i.e., the coordinate x. of the orbit
center. The dependence of the diffusion coefficient D on x,
can thus be studied, and the averaging of D over x,., which
is naturally required on physical grounds, can be effectively
performed.
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