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We present a design strategy in terms of ordinary differential equations which creates chaotic attractors with
an increasing number of positive Lyapunov exponents as the (finite) dimension of the system is increased.
First, we introduce the most simple abstract equation containing only one nonlinearity. Second, we suggest a
piecewise linear version of the abstract equation. Third, we propose a set of chemical reactions and demon-
strate that the corresponding rate equations produce hyperchaotic behavior equivalent to the abstract system.

PACS number(s): 05.45.+b 82.40.Bj

L. INTRODUCTION

An equation for chaos with two positive Lyapunov char-
acteristic exponents (LCEs) was given in 1979 by Rossler
[1]. It contained only one nonlinearity and it was assumed
that a hierarchy of higher chaotic attractors might exist in
equally simple (with respect to nonlinearity) deterministic
equations if the dimension of the equation is increased step-
wise. However, the proposed equation did not show generic
routes from limit cycle to hyperchaos and it was not possible
to extend it to higher dimensions. On the other hand, hyper-
chaos and the chaotic hierarchy [2] can easily be modeled in
discrete maps (i.e., explicit models of cross sections of at-
tractors) if a nonlinear variable in a unimodal map with cha-
otic behavior is delayed linearly. This is a means to generate
maximum hyperchaos in diffeomorphisms with only one
nonlinear term [3]. We propose an equally simple mechanism
in an abstract ordinary differential equation and demonstrate
that a chemical reaction mechanism producing the chaotic
hierarchy can be derived.

II. ABSTRACT EQUATION

Consider the N-dimensional system of ordinary differen-
tial equations

X1=—x,+axy,
Xi=X; 17 Xiy1, (1)
XN= €+be (fol"-d)’

with x,a,b,d,ee R; a>0; i=2,... ,N—1; and Ne N.
The linear subsystem (x;, ...,xy—1) is a chain of har-
monic oscillators for a =0. The fixed point condition leads to
x;=x;=0, when N is odd; and to x;=x3= -+ =xy_; and
Xo=x4= -+ =xy5_,=0, when N is even. If a>0, the an-
tidissipative term a x; leads to an expanding spiraling flow
in (N —1) directions with (N —1)/2 pairs of complex conju-
gated eigenvalues for odd N. For even N, a>0 leads to a
spiraling expansion in (N—2) directions with (N—2)/2
pairs of complex eigenvalues with positive real part plus one
expanding direction with (positive) real eigenvalue. Variable
X, contains a constant €, one nonlinear expression of second
order, and linear dissipation. In accordance with Rossler’s
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equation xy acts as a threshold variable. Depending on the
value of xy_, it either shrinks or grows. Finally, variable
xy is linearly coupled to the equation for xy_; to yield the
complete system. Equation (1) thus contains only one non-
linear term.

For N=3, Eq. (1) is Rossler’s equation for chaotic flows
[4]. For N=4, Eq. (1) is a prototypical system for hypercha-
otic flows with two positive LCEs. The linear three-variable
subsystem (x;, x5, X3) possesses eigenvalues

N =0, Np3=*i V2,

for a=0. If a>0, the subsystem possesses one positive real
eigenvalue and one pair of complex eigenvalues with posi-
tive real part. The flow expands along the axis x;=x3 in a
spiral-like manner. The growth in variable x; activates the
nonlinear switch x,. For certain sets of parameters x, keeps
the flow bounded and leads to attractive solutions. As in the
system with N=3, the nonlinearity may create chaotic mix-
ing. However, in the four-dimensional system two directions
of stretching and folding are possible. For example, for the
set of parameters b=4,d=2, €e=0.1 a sequence of bifurca-
tions from fixed point to hyperchaos is observed as param-
eter a is increased starting at a=0. First, a limit cycle is
created in a Hopf bifurcation and the limit cycle loses stabil-
ity in a secondary Hopf bifurcation to give rise to an attract-
ing two-torus. The quasiperiodic motion is followed by a
locked mode on the two-torus. The locked mode loses sta-
bility in a secondary Hopf bifurcation and wrinkling of the
two-torus leads to chaos on a fractal torus. In the region of
chaotic behavior we find a small window of chaos with one
positive LCE and a broader window with hyperchaos. For
a=0.4 we calculated the following spectrum of LCEs (nu-
merical values in bits per time unit): (0.146, 0.071, O,
—1.80), and thus two positive exponents. The cross section
is sheetlike and shows several foldings.

For N=35, Eq. (1) possesses attractors with three positive
LCEs. The linear subsystem (x, ...,x;) possesses eigen-
values

Nip3a=*i(3/2% J5/4)12,

for a=0. If a>0, the subsystem possesses two pairs of com-
plex eigenvalues with positive real part. The flow takes place
on an expanding two-torus. Again, the nonlinear variable
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FIG. 1. Second-order cross section of higher chaotic flow in Eq.
(1) with N=5 and a=0.33, b=4, d=2, e=0.1. The first-order
cross section was taken at xs=1. For the second cut the slice
x,=0=0.07 of the cross section was plotted.

may lead to bounded solutions in the complete system and
creates positive LCEs by means of the stretching and folding
procedure. Starting with a stable fixed point solution at
a=0, two successive Hopf bifurcations lead to a limit cycle
and an attracting two-torus, respectively. As a is increased
further, the bifurcation diagram shows lockings, chaos, and
hyperchaos. There are crises, and several regions of multista-
bility with complicated basin boundary structure. Qualita-
tively, the bifurcation diagram of Poincaré cross sections of
the flow resembles the corresponding diagram of the four-
dimensional (4D) diffeomorphism in [5] which also pos-
sesses only one nonlinearity. The spectrum of LCEs for the
higher chaotic attractor at a=0.33 (other parameters:
b=4,d=2,€e=0.1) was numerically calculated as (0.141,
0.108, 0.048, 0, —9.95) and thus three positive LCEs, i.e.,
maximum hyperchaos for N=5. The Poincaré cross section
of this attractor has a Lyapunov dimension 3<D,<4 and
appears as a fuzzy. cloud of points. Figurel is a second-order
cross section which shows a folded sheetlike structure pre-
dicted from the study of 4D diffeomorphisms [3].

We calculated the spectrum of LCEs for Eq. (1) with
N=7 at a=0.32, b=4, d=2,e=0.1 and found (0.102,
0.079, 0.067, 0.035, 0, —0.024, —9.95). There are four posi-
tive LCEs, one less than the maximal possible number. For
N=09, we calculated six positive LCEs (0.078, 0.066, 0.057,
0.043, 0.027, 0.010, 0, —0.024, —9.63) at a=0.30, b=4,
d=2,€=0.1. Thus the number of positive LCEs keeps in-
creasing as N is increased. If all parameters are kept constant
the numerical value of the first exponent decreases as N is
increased and the sum of positive LCEs (as an estimation for
the metric entropy) stays nearly constant as N is increased
(cf. [6] for a related observation).

If the equation for x in system (1) is substituted by

iy=b (lxy_1—d|+xy_1—d)—xy (2

then a piecewise linear version is obtained. For
N=5,a=0.30, b=4,d=2 the following spectrum of LCEs
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was calculated: (0.123, 0.096, 0.062, 0, — 1.16). Again, three
positive LCEs demonstrate maximum hyperchaos.

III. CHEMICAL EQUATION

One major field where low-dimensional chaotic events
have been observed experimentally is chemical kinetics. Iso-
thermal, well-stirred reactions with continuous supply of
substrate can be modeled successfully by a finite set of de-
terministic differential equations. Consider the following set
of reactions:

X, —2X,
2x,53x,
X,»_1+X,-—>2X,~
Xy-1—

Xy 1+Xy 22Xy

SXy

c

XN‘—>

with i=2,...,N—1, Ne N. X; denotes chemical species.
Species X is supplied at a constant rate, and species X and
Xy_1 are assumed to decay in a first-order reaction. The
nonlinearities stem from the autocatalytic reactions which
are assumed to be second-order reactions. The initial condi-
tions of species X; through Xy have to be nonzero.

Applying the laws of mass-action the dynamics of this
scheme is described by the following set of ordinary differ-
ential equations:

X1=X1—X1Xx,ta x%,
X=X 1%, —X; Xj41, (3)
XN-1FXN-2XN-1"XN-1—DXNXN_1,
xy=€+bxy(xy_1—d),

with x,a,b,d,ee R, c=bd; i=2,...,N—1; and NeN.
Here, x; denotes the concentration of species X ;.

Equation (3) is a chemical system which works analo-
gously to the abstract system Eq. (1). There is a phase-space-
volume preserving set of reactions in the subsystem
(x15...,xy—1) for a=0. This subsystem is a generalized
Lotka-Volterra scheme for a sequence of autocatalytic reac-
tions with conservative periodic or quasiperiodic dynamics.
For a >0, the second-order autocatalytic term in the equation
for x; leads to antidissipative spiral-like blowup of the flow.
Switching variable xy can keep the solutions bounded for
certain ranges of parameters and introduces dissipation to the
system. xy is coupled to the Lotka-Volterra subsystem by
means of an additional autocatalytic reaction. Equation (3)
possesses chaotic attractors for N=3 and attractors with two
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positive LCEs for N=4. As parameter a is increased (start-
ing from a=0), for N=3,b=10,d=2.4, €=0.01 there is a
Hopf bifurcation from fixed point to limit cycle followed by
a period-doubling sequence of the limit cycle to chaos. As in
the Rossler equation, spiral chaos and Shilnikov chaos can
be distinguished. If parameter a is increased (starting at
a=0) in Eq. (3) with N=4,b=10,d=2.4, €e=0.01, the fol-
lowing sequence of attractors is observed: fixed point—Ilimit
cycle—quasiperiodic motion on a two-torus—Ilocked mode
on a two-torus—chaos on a fractalized two-torus—
hyperchaos. Qualitatively, the chemical equation (3) thus re-
produces the bifurcation sequence of the abstract equation
(1). Also, this sequence and the hyperchaotic attractor are
found in a broad region of parameters b, d, and €. With
N=5 and the set of parameters a=0.3, b=10,
d=2.4, €=0.01, the spectrum of LCEs is (0.135, 0.089,
0.030, 0, —14.87), and thus three positive LCEs. Again, the
bifurcation diagram was found to be qualitatively the same
as in the abstract system Eq. (1) if parameter a is varied at
fixed values of b, d, and €. The attractor with three positive
LCE:s exists in a broad region of parameters.

The chemical model suggests that the design principle of
Eq. (1) can be implemented in homogeneous chemical or
biochemical reactions. Autocatalytic sets of reactions with
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nonlinear feedback show features of self-organized metabo-
lism [7] and they may serve the study of the role of chaotic
dynamics in information processing.

Hyperchaos with two positive LCEs was observed experi-
mentally in a periodically driven NMR laser [8], avalanche
breakdown of p-germanium [9], and during the catalytic CO
oxidation on a platinum single crystal [10]. Killory et al.
found two positive LCEs in a 4D chemical system derived
from Rossler’s equation [11]. Chaos with three positive
LCE:s in continuous systems was observed numerically in a
model of bacteria-phage interaction [12], in a chemical reac-
tion chain with nonlinear feedback control [13], and in dif-
fusively coupled biochemical oscillators [14]. In the present
contribution we presented the fundamental design of higher
chaos and the chaotic hierarchy in a prototypical ordinary
differential equation, in a piecewise linear version for future
analytic studies, and in a system composed of chemical re-
actions as a model application.
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