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Breakdown of simple scaling in Abelian sandpile models in one dimension
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We study the Abelian sandpile model on decorated one-dimensional chains. We determine the structure and
the asymptotic form of distribution of avalanche sizes in these models, and show that these differ qualitatively
from the behavior on a simple linear chain. We find that the probability distribution of the total number of
topplings s on a finite system of size L is not described by a simple finite-size scaling form, but by a linear
combination of two simple scaling forms Prob, (s)=(1/L)f;(s/L)+ (1/L?)f,(s/L?), for large L, where f; and

f> are some scaling functions of one argument.

PACS number(s): 05.40.+j, 02.50.Ey, 05.70.Jk, 05.70.Ln

In recent years there has been a lot of interest in systems
showing self-organized criticality (SOC) [1-3]. However,
the precise conditions under which the steady state of a
driven system shows critical (long range) correlations are not
well understood for nonconservative systems [4—6]. In the
case of systems with conservation laws [7,8], for example in
sandpile models with local conservation of sand, it is easily
shown that the average number of topplings in an avalanche
diverges as a power of the system size [9,10]. This, however,
is not sufficient to ensure criticality, if criticality is defined as
the existence of power law tails in the distribution of ava-
lanche sizes [11].

Lacking a general theory, most studies of SOC depend
upon numerical simulations for evidence of criticality. To
incorporate the effect of finite-size cutoffs, it is usual to fit
data to a finite-size scaling form in which the critical expo-
nents of the infinite system appear as parameters. However,
on the basis of extensive numerical studies of one-
dimensional sandpile automata, Kadanoff and co-workers
[12,13] have argued that there is more than one characteristic
length scale in many of these models. Consequently, a simple
finite-size scaling does not describe the statistics of ava-
lanches, and a more general “multifractal” scaling form
seems necessary.

As the finite-size scaling assumption based on a single
scaling form is widely used in the studies of SOC, it seems
desirable to test it in a simple analytically tractable model.
This we do in this Rapid Communication for a class of one-
dimensional Abelian sandpile models (ASM’s). We find that,
for large L, the distribution functions of duration ¢ of an
avalanche, and of the number of distinct sites toppled s, in
our model do have a simple scaling form. However, the dis-
tribution function of total number of topplings s, and of the
maximum number of topplings n. at any one site in the
avalanche, does not have a simple scaling form, but a more
complicated linear combination of two simple scaling forms
(LC2SSF)

Prob, (X)=L Pif (XL™")+L " Af,(XL™"2), (1)

for large L, where B8,=v;=0 and B,=v,=1 for X=n, and
B1=vi=1 and B,=v,=2 for X=s, and f; and f, are scal-
ing functions, different for X=s and X=n,. We also find
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that this behavior is quite robust and does not depend on the
choice of the unit cell, but in general the functions f; and
f» are not universal.

The ASM on a simple linear chain has been studied earlier
by Bak et al. [14], and in more detail by Ruelle and Sen [15].
We consider ASM on one-dimensional chains formed by
joining a single type of unit cells (see Fig. 1). Such decorated
chains are the simplest generalization of the linear chain. We
have studied two cases in detail. Case A is a chain of alter-
nating double and single bonds. Case B is a chain of dia-
monds joined together by single bonds. We solve these mod-
els exactly in the large L limit, and find that the avalanche
distribution function shows a nontrivial behavior, different
from that of the simple linear chain (case C). In fact, the
behavior of the ASM in case C is not typical of one-
dimensional ASM’s.

The model is defined as follows: A site on the chain is
denoted by a pair of indices (Z,j), where i=1 to L labels the
unit cell and j numbers a site within the unit cell. In case A,
Jj ranges from 1 to 2, and in case B, from 1 to 4. At each site
(i,J) there is an integer variable h;;, called the height of the
sandpile at that site. A particle is added at a randomly se-
lected site. If the height h;; is greater than a preassigned
threshold height A;; at that site it topples, and loses one par-
ticle to each of its neighbors. We choose &j; to be indepen- -
dent of i and equal to the coordination number of sites of
type j. A toppling at a boundary site causes a loss of one
particle from the system. The process of toppling continues
until there are no unstable sites. After the system is stabilized
a new particle is added.
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FIG. 1. The one-dimensional chains formed by joining (A) dou-
blets, (B) diamonds, (C) single sites.
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The critical steady state is easy to characterize using the
general theory of ASM’s [9]. In the steady state all recurrent
configurations occur with equal probability. The set of recur-
rent configurations is characterized by the burning algorithm
(see [2], also [16]). In this algorithm, sites are burned (de-
leted) recursively using the following rule: A site is burned if
its height is greater than the number of bonds joining it to its
unburned neighbors. A stable configuration is recurrent if and
only if all sites are eventually burned.

In this algorithm, the sites can be burned in any order. We
choose the convention that the burning starts from the left
boundary and continues rightward as long as possible. The
unit cell where the rightward burning stops will be called the
break point. Afterwards, the burning is allowed to proceed
leftwards from the right boundary. It is easy to see that in a
recurrent configuration of model A, the allowed values of
(hi1,h;3), for i on the left of the break point, are (3,3) and
(3,2). For i on the right of the break point these are (3,3)
and (2,3) and at the break point these are (2,3), (3,1), and
(1,3). Since each doublet other than the break point has only
two possible configurations, the entropy per site, defined as
the logarithm of the total number of recurrent configurations
divided by the number of sites, is finite and equals In(2)/2 in
the large L limit. For the simple linear chain, the entropy per
site in the SOC state is zero. This fact is responsible for its
nongeneric behavior.

To the left (right) of the break point, the left (right) site of
a doublet always has height 3, and the probability of right
(left) site of a doublet having height 2 and 3 is $ each. The
break point can occur at any of the L doublets with equal
probability. Averaging over the position of the break point,
this implies that the probabilities of the left site of the ith
doublet having height 2 and 3 are i/(2L) and 1—i/(2L),
respectively. Similarly, the probabilities of the right site of a
doublet having height 2 and 3 are 3(1—i/L) and
3(1+i/L), respectively. Thus the average height profile in
the SOC state varies linearly with i in case A, and the SOC
state is not translationally invariant even far away from the
boundaries. This feature is not present in case C.

Now we describe the spread of avalanches in model A,
which again differs qualitatively from case C. Without loss
of generality, we may assume that the point where the par-
ticle is added (to be called the source site), is to the left of the
break point. Then clearly, if the configuration of the doublet
left to it is (3,2), the avalanche does not spread to the left
and propagates a distance of order L up to the break point on
the right. Each site affected by the avalanche topples only
once, and the total number of topplings in an avalanche is of
order L. Such an avalanche is said to be of type I. The
probability of such avalanches is ;. One can easily check
that otherwise the avalanche propagates a distance of order L
on both sides of the source point. In such avalanches . is of
order L, and the total number of topplings in an avalanche is
of order L2. Such an avalanche is said to be of type II (see
Fig. 2). As the probability that the addition of a particle will
cause an avalanche is 2, the fractional number of avalanches
of type I is 3.

The probability distributions of total number of topplings
s, total number of distinct sites toppled s,, duration ¢, and
the number of times the source site topples n., for type I
avalanches can be calculated easily. It is convenient to work
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FIG. 2. The evolution of type II avalanche in model A. A dot
denotes a toppling event.

with the scaled variable a=i/L and B=j/L, such that
a,Be[0,1], where i and j are the position of source point
and break point on the chain, respectively. It can be easily
verified that for type I avalanches, s, s, and ¢ are all equal to
2(B—a)L. Thus the probability distribution of s/L, s,/L,
and ¢/L for given a and B3, and given that an avalanche is of
type I, is a & function at 2(8— «). Using the fact that o and
B are independent random variables uniformly distributed
between 0 and 1, averaging over « and B we find for type I
avalanches

Prob; (X|type I)=[1—X/(2L)]/L for X<2L, (2)

where X=s, s, or t. In type I avalanches any site topples at
most once, so n.=1.

The type II avalanches show a more complicated and in-
teresting structure. The avalanche fronts, i.e., the left and
right boundary sites of the active region at any time, do not
move uniformly in time; the spreading rate depends on the
local height configuration. However, for distances >1, one
can define an average velocity. The analysis of these ava-
lanches become easy using the decomposition of avalanches
into waves of toppling proposed by Ivashkevich et al. [17].
In each wave of toppling the source site topples only once
and all other sites topple until they are stable. Waves of top-
pling propagate in exactly the same way as the burning front
in the burning algorithm. Thus a unit cell which cannot be
fully burned from the left (right) side, stops a left (right)
propagating wave coming towards it. (However, in this pro-
cess, it is itself modified and the next wave may be able to
cross it.) We refer to such cells as left (right) stoppers. The
stoppers slow down the spreading of avalanches. Obviously
the first wave propagates up to the break point with a veloc-
ity equal to 1 site per time step. To calculate the velocity
towards the left from the source point we note that (a) a
doublet of type (3,3) is crossed in 2 time steps and (b) a
doublet of type (3,2) is crossed in 4 time steps because it
stops the first wave approaching to it and it is crossed in 2
time steps by the next wave which follows after 2 time steps
of the previous wave. Thus the average time taken by the
avalanche front to cross a doublet is 3, which implies the
average velocity is % sites per time step. Similarly, one can
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show that if the avalanche crosses the break point on the
right it will advance with an average velocity which is also
% sites per time steps. The velocity with which an avalanche
front recedes backwards after it has hit the boundary is 2.
Details will be presented elsewhere.

Since the avalanche front moves with an average velocity,
it forms a polygon in the space-time history of the avalanche
(see Fig. 2) [18]. The number of sides in the polygon de-
pends on the positions of the source point & and break point
B and on whether the break point is crossed by the avalanche
or not. For example, if 8> a>5p/6 and the break point is
not crossed, then the polygon has only four edges. If
1—6a> B> a, and the break point is crossed, then the poly-
gon has six edges. There are seven possible cases of poly-
gons which need to be analyzed separately. Quantities such
as s4, t, and n, which are proportional to the linear size of
the polygon scale as L, but s varies as the area of the poly-
gon and scales as L?. The expressions of scaled variables
s/L?, sq/L, t/L, and n./L can be easily evaluated in terms
of a and B for each case. The probability distribution func-
tion for given a and B is a sum of two & functions corre-
sponding to the cases of whether the break point is crossed
by the avalanche or not. Averaging over a and B we find

1 1
Prob; (gtype )= >, dadB C;8(g—qla,B)),
0JO
i=1,2
3)

where g is the generic notation for s/L%, s,;/L, t/L, and
n./L, C;=1/3 is the probability that a type Il avalanche
crosses the break point and C,=2/3 is the probability that it
does not cross the break point, and g; and g, denote expres-
sions of g in terms of & and B in the two cases. The full
explicit expression is quite complicated and will be pre-
sented elsewhere.

However, some of the important features of the distribu-
tion function can be understood by simple arguments. Since
s4 is the extension of the polygon along the horizontal axis,
s4/L is a linear function of « and B in each of the seven
cases. Hence the probability distribution of s,/L is a piece-
wise linear function. The same argument works for ¢ and
n. also. The total number of topplings s is proportional to the
area of the polygon. Therefore s/L? is a quadratic function of
a and B in each of the seven cases. The probability distri-
bution in this case is quite complicated and diverges as
(s/L*)™ V2 for small (s/L?).

Using weighted sum of Egs. (2) and (3), we obtain the full
probability distributions. Since . and s scale differently for
type I and type II avalanches, the distributions of these quan-
tities have the form given in Eq. (1). Other quantities such as
sy and ¢ scale as L for both types of avalanches. Therefore
the distributions of s, and ¢ have a simple scaling form.

The treatment is easily extended to other types of unit
cells also. For example, in case B, the unit cell is a diamond.
In this case also, an avalanche always spreads up to the break
point. The spread of avalanches to the other side will be
either of order L or of order 1. Thus, again, there are two
types of avalanches. A detailed calculation shows that these
occur with relative frequencies 5:8 on the average. While the
velocities of avalanche front are different in this case, the
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FIG. 3. The log-log plot of Prob(s) vs s. The solid line shows
the exact asymptotic behavior for L — o, and the dotted line shows
the theoretical curve for L =100.

probability distribution functions for both type I and type II
avalanches have the same qualitative features irrespective of
the velocities. For type I avalanches, t~s,;~(8— @)L to or-
der L. Thus the probability distributions of s, and ¢ have the
same linear form as in model A, but the slopes depend on the
velocities. The variable n, has the probability distribution
Prob(n.)~2"". As s~n.(B—a)L, this implies that the
scaling function f; in Eq. (1) is a piecewise linear function
with many segments. For type II avalanches the space-time
history of active sites forms a polygon exactly as in model A,
except that the slopes of the edges of the polygon (velocities
of avalanche fronts) are different. Therefore the probability
distributions have the same qualitative behavior as in model
A. However, the exact forms of functions f; and f, are not
the same in cases A and B, and these functions are not uni-
versal. In case C, there are no avalanches of type I, and the
simple scaling ansatz works [15].

In the multifractal approach, one defines the function
f(a) by the relation that an avalanche of size X=L“ occurs
with a probability which scales as L/(®), for large L. The
exponent f(a) defined as lim; _, . log[Prob,; (X)]/log(L) is a
function of the a. For our Abelian model it is easy to see
from Eq. (1) that f(«) is a nonincreasing piecewise linear
function for X=s (see Fig. 3). We have also shown results of
a computer simulation of the model for L =100 for 2Xx 10°
avalanches. Also shown is the theoretical curve using Eq. (1)
for L =100 (dotted line) and L = (solid line). Clearly there
is very good agreement with simulation data. We note that
the f versus a curve is qualitatively similar to that obtained
in [13], and that the approach to the L—co limit is quite
slow.

As the LC2SSF involves only a finite number of unknown
parameters, its use when simple scaling fails is preferable
over the more general multifractal form. We also note that
we find the breakdown of simple scaling without the appear-
ance of additional new length scales in our model (the only
relevant scales are lattice spacing, and the size of system).

Similar behavior may be expected in other effectively
one-dimensional models. For example, consider an ASM on
a square lattice with a periodic boundary condition in one
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direction and an open boundary condition in the other direc-
tion, forming a cylindrical surface. It is effectively a one-
dimensional model for the length of the cylinder L much
larger than its width M. We expect three types of avalanches:
type I and II, and finite avalanches of size less than M
(which do not ring the cylinder and are two dimensional in
character). This shows that an LC3SSF would describe this
situation. It remains to be seen whether this behavior sur-
vives in higher dimensions or is specific to one-dimensional
models.

AGHA AFSAR ALI AND DEEPAK DHAR 51

To summarize, we have determined an exact asymptotic
finite-size scaling behavior of the distribution of avalanche
sizes in the Abelian sandpile model on a class of decorated
one-dimensional chains. We find that in these models the
SOC state is not translationally invariant, and the probability
distribution of s and n., unlike the simple linear chain, is
described by a linear combination of two simple scaling
forms, and not by a simple scaling form.
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of the manuscript.
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