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Targeting unstable periodic orbits
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Specific targeting of unstable periodic orbits has been achieved by using large-amplitude perturbations in a

dynamical system. The method has been demonstrated experimentally on a CO2 laser with modulated losses
whose unstable periodic orbits are created either at a period-doubling or at a saddle-node bifurcation. Appli-
cations of the technique to switch the phase of the dynamical motion, to set boundaries of basins of attraction,
and to measure Floquet rnultipliers are discussed.

PACS number(s): 05.45.+b, 42.50.Lc, 42.55.—f

In the early studies on nonlinear dynamical systems, the
interest was centered on attractors since they represent the
long-term behavior which is observable both in numerical
simulations and real experiments. More recently, it appeared
that unstable periodic orbits (UPO's) were an extremely in-

teresting characteristic of such systems. They could be used
successfully to control chaotic systems and stabilize them in
periodic regimes [I]. Unstable periodic orbits are also the
basis of a method of communication using chaos I2]. More-
over, their topological invariants allow one to unfold the
complexity of chaotic attractors by determining the template
on which they are wound [3].

Until recently, the method to reach these UPO's was to
use the ergodicity of the chaotic attractors. The dynamical
system explores its phase space until it reaches the vicinity
of the desired UPO, then tiny corrections allow one to keep
the system in this particular periodic state. Recently, Shinbrot
et al. proposed an iterative method to reduce the time re-
quired to reach a special region of the phase space using the
exponential sensitivity of a chaotic system to small perturba-
tions I4]. In this paper we use a single-step trial and error
method to reach UPO's. We show that suitable timing of
large perturbations allows one to target specifically such
UPO's and possibly to set the boundaries of basins of attrac-
tion. Contrary to the control methods, the technique devel-
oped here uses large-amplitude perturbations. We show ex-
perimentally that strong corrections may keep the high
selectivity required to set the system in the close vicinity of
the unstable cycle.

The method has been implemented on a CO2 laser with
modulated losses, a system which has been demonstrated to
evolve towards chaos via a period-doubling cascade and si-
multaneously displays the sequential formation of horse-
shoes I5]. Therefore the CO2 laser with modulated losses
allows one to illustrate targeting in different situations since
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the targeted UPO may be a periodic orbit which destabilized
in a period-doubling bifurcation or an unstable orbit created
in a saddle-node bifurcation responsible for the creation of
coexisting attractors

I 5].
In the first case, the target UPO is embedded inside the

basin of attraction of the initial state and fluctuations will

always make it evolve back to the initial state. In the second
case the UPO which is targeted was created in a saddle-node
bifurcation. Therefore it sets the limit of two basins of attrac-
tion and the system will evolve through fluctuations towards
either of the two attractors whose basin of attraction is lim-
ited by the UPO.

In our case the method has been applied to a nonautono-
mous (driven) system which makes the timing procedure
easier. Nonetheless, it is of general use and is also valid for
autonomous systems. The purpose of this paper is to show
that the trial and error approach is efficient because there
exists generically a solution to the problem of one-step tar-

geting of UPO s. For instance, in a three-dimensional (3D)
phase space, the UPO and its stable manifold define a 2D
manifold. Starting from an initial point on the attractor, a
perturbation with suitable strength and sign will intersect this
2D manifold and lead to a trajectory evolving towards the
UPO. For a perturbation which does not reach exactly that
2D subspace, the divergence from the UPO tells us how
close to the UPO the system was sent by the targeting pulse
and allows us, by the same algorithms as those used for the
control of chaos, to reach the target. The experiments re-
ported here take explicit advantage of the access to two con-
trol parameters, namely, the amplitude and the phase of short
perturbations. In the general case, the amplitude and the tim-
ing (here the phase) of the targeting pulse allows one to span
a 2D subset of the phase space which generically intersects
the UPO's and has a 1D set of intersections with their stable
manifold in the case of the 3D phase space. Therefore for
each timing there should be one amplitude leading to the
targeted subspace. The other parameter allows one to tune
the perturbation in order to reach the UPO. Let us emphasize
once again that this is achieved by a trial and error learning
procedure which compares the results of two targeting pulses
reaching the vicinity of the desired target.
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FIG. 1. Bifurcation diagram of the CO2 laser with modulated
losses versus amplitude of the modulation. Full (dotted) lines cor-
respond to stable (unstable) cycles. The arrows illustrate the effect
of the pulsed loss perturbation and letters refer to the recordings of
Fig. 2.

Experiments have been performed on a single mode
COz laser with an intracavity acousto-optic modulator oper-
ated at 100 kHz. Short lived perturbations are caused by
optically induced ir absorption of nonequilibrium charge car-
riers (NCC's) in a GaAs window of the CO2 laser tube.
NCC's are excited in the impurity band by illuminating the
laser window with 15 ns pulses from a Q-switched
neodymium-doped yttrium aluminum garnet (Nd: YAG) la-
ser, as described in [6].The rise and fall times of the losses
have been estimated by the method proposed in [7] as 50 and
300 ns, respectively. They are significantly lower than the
modulation period of 10 p, s, therefore allowing for a pulse
description of the perturbation. The output intensity is moni-
tored by a Hg Cd& Te photodetector and a digital oscillo-
scope at a time resolution of 50 ns and further computer
processed. Several clock and delay modules allow one to
synchronize and choose the phase of the pulsed perturbation
for any periodic n T regime with n ~ 8.

This laser is well modeled by equations for the population
inversion D and the laser intensity I

I=2trI[AD —1],

D = y[1 D DI], — —

where ~ is the cavity damping rate, y the population inver-
sion rate, and A the pump parameter. In our experiments
cavity losses are sinusoidally modulated at a frequency co„
close to the relaxation frequency of the system. Moreover,

FIG. 2. Examples of switching from stable orbits to unstable
ones for different initial states and pulse perturbation: (a)
2T~T„, (b) 4T~T„, (c) 4T~2T, , (d) 4T~3T„, (e)
8T,~T„, (f) 8T, +2T, . The—notation nT, ~mT„ indicates that

the initial dynamical state is the nT stable orbit and the final state,
i.e., the target, is the mT unstable orbit. The time of the pulse
perturbation is shown by dots: here the modulation frequency (100
kHz) is twice the laser relaxation frequency.

the targeting pulse is also applied to this parameter. There-
fore K: Icp(1+m si nrtu)+ 8 (tlat), where Blr(t) describes the

targeting pulse. Note that this is specific to our device. In the
fiber laser, for instance, the targeting pulses could more eas-
ily be applied to the pump parameter A. The bifurcation
diagram of the laser used in the experiments is shown in Fig.
1 and the different targets which were reached are indicated

by the arrows.
Let us first consider the case where the targeted UPO has

been created in a period-doubling bifurcation, i.e., it is em-
bedded inside the basin of attraction of the initial orbit. As
mentioned earlier, the unstable manifold of the UPO is con-
nected to the stable manifold of the initial state and, what-
ever the perturbation, the system will evolve back to the
initial state, unless it reaches exactly the stable manifold of
the UPO. The phase of the perturbation, i.e., its timing with
respect to the modulation in a driven system or the stable
oscillation in an autonomous system, sets the direction of the
perturbation induced shift in the Poincare section and in par-
ticular which of the two intersections will be the initial state.
Therefore for any phase, at least within a half-period because
of sign problems, there exists a perturbation amplitude which
allows the system to reach the target. An example of such
targeting is given in Fig. 2(a), where the laser is sent onto the
T orbit which destabilized in the period-doubling bifurcation.
A series of similar experiments carried out for different arn-

plitudes of the periodic external driving allows one to follow
the evolution of a particular unstable periodic orbit. Figure 3
gives an example of such an investigation in the case of the
T-unstable orbit for whose amplitudes the maxima and the
Floquet multipliers as measured from the signal divergence
have been reported. The T-unstable orbit obviously has am-
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FIG. 3. (a) Part of the bifurcation diagram
showing the laser intensity maxima versus modu-
lation amplitude near the T-2T bifurcation. Ampli-
tudes of the maxima corresponding to the T„orbit
are shown to be in continuity with those of the T
orbit before the period-doubling bifurcation. (b)
Dependence of the Floquet multiplier X, on the
bifurcation parameter (in units of the threshold for
the T 2T bifur-cation).
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FIG. 4. Dependence of the amplitude of loss perturbations
matching the targeting condition on the phase in 2m units for the
2T cycle. Dots show the 2T stable cycle for reference. The bifur-
cation parameter is 1.25 (in units of the threshold for the T2T-
bifurcation).

plitudes in the continuation of the T orbit from which it
originates and as expected its Floquet multiplier tends to
—1 at the bifurcation point. Targeting optimization is
achieved in two steps. First, for a given phase, the amplitude
of the pulse perturbation is chosen so as to reach exactly the
stable manifold of the UPO, then the amplitude is reduced
and the phase continuously matched as long as the targeting
condition can be met.

The relationship between the amplitude and the moment
(phase) of switching the pulsed losses is a characteristic of
the targeting since for each phase there exists a specific am-
plitude that meets the targeting conditions. The evolution of
this amplitude versus the phase is plotted in Fig. 4 together
with the 2T response of the driven laser which is the initial
dynamical state. It shows the existence of the optimum tar-

geting region. In the case of the driven CO2 laser with a
bifurcation parameter of 1.25 (in units of the first threshold
for period doubling), the optimum is obtained for a phase of
about 0.7, which remains about the same as the bifurcation
parameter is increased up to the second (2T 4T) bifurcat-ion
while the (threshold) amplitude values increase in accor-
dance with the increased separation between the unstable T
and stable 2T orbits. Note also that in the phase region be-
tween 0.8 and 0.9 there are amplitudes of the loss perturba-
tion that allow the laser to reach the T-UPO.

The particular situation of the T-UPO created in
T-doubling bifurcations also allows us to use the perturba-
tion technique to Aip the phase of the laser output by ap-
proximately m. The 2T UPO is embedded inside the basin of
attraction of the T orbit, in the vicinity of this orbit. There-
fore the two orbits coexist in neighboring regions of the
phase space but neighboring points of the T correspond to a

t

phase difference of m. For a given phase, if the perturbation
is small, the system returns in the vicinity of the initial state.
There exists a given amplitude for each phase that allows the

system to reach the UPO and, if the pulse amplitude is too
large, the system precipitates to a stable periodic orbit but
with a phase shift of approximately m. Note that as the sys-
tem reaches exactly the UPO, it eventually breaks the sym-
metry and evolves towards one phase state or the other de-
pending on noise and fluctuations. A significantly more
complicated dependence between the amplitude of loss per-
turbations and the relative phase exists in the case of the
switching from the stable 4T regime to unstable T and 2T
orbits. In particular, at the same amplitude of pulse losses,
we can switch to T and 2T depending on the relative phases.
The threshold value for pulse losses discussed above is ob-
viously different for the two orbits and is smaller for the 2T
orbit. This coincides with common intuition at least near the
bifurcation point since the 4T orbit originated from the dou-
bling of the 2T cycle.
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The situation is different when two attractors coexist.
Then, for topological reasons, the boundary of their basins of
attraction is an unstable region, usually an unstable cycle
which can be reached from either attractor. The relative po-
sitions of the different dynamical regimes of the modulated
CO2 laser are illustrated in Fig. 1. For large enough modu-
lation amplitudes, the laser presents generalized bistability
between the original attractor or its period-doubled variations
noted as 2"T (n integer) and the stable cycles 2"mT (m
integer) originating from the sequential horseshoe formation.
The recordings of Figs. 2(b), 2(c), and 2(d) show that, start-
ing from the same initial dynamical state, here a stable 4T
orbit, different states may be aimed at, depending on the
phases of the pulse perturbation. In the recordings of Figs.
2(b) and 2(c), the 2"T attractor is aimed at, and depending on
the phase and/or amplitude, it is possible to steer the system
to the 2T stable orbit [Fig. 2(c)] or to the T unstable orbit
[Fig. 2(b)] if the perturbation is optimized. For a completely
different phase, the pulse perturbation pushes the laser to the
3T unstable orbit [Fig. 2(d)]. Figures 2(e) and 2(f) present a
similar situation with the 8 T stable cycle as the initial regime
and the unstable T or the stable 2,T orbits as final states,
according t~ : perturbation.

These effects are related to the noise-induced hopping be-
tween different attractors studied by Arecchi et al: [8] and
the elimination of multiple basins of attraction using chaos
[9] except that here we have used a single-shot pulse instead
of noise or chaotic driving, i.e., the perturbation is applied
only for a very short time instead of continuously applied
perturbations as in the previous works. Note that here we
reach the UPO's of the unperturbed system while, by using
continuous perturbations, the nature of the system is altered.
Until recently, unperturbed UPO's were accessible only in
chaotic systems because in that case they are embedded in-

side the chaotic attractor. They could be observed in param-
eter domains where the system is not chaotic by using a
tracking technique in which the system is stabilized in these
orbits while chaotic and then brought to the nonchaotic re-
gion [10].The method proposed here allows the system to
reach directly these unstable orbits and uses the phase sensi-
tivity of the system to minimize the required perturbation.
We have shown in the example of the CO2 laser with rnodu-

lated losses that phase switching and measurement of Flo-
quet multipliers are easily achieved by using this targeting
technique.
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