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We have implemented the tracking of unstable orbits using the full control method of Ott, Grebogi, and

Yorke (OGY). (Previous implementations have used only limiting cases of the OGY method. ) The implemen-

tation is achieved in a mechanical system, the magnetoelastic ribbon. In addition, a method is demonstrated

whereby the OGY control parameter may be optimized using only experimental data.

PACS number(s): 05.45.+b, 75.80.+q

The control of chaotic systems has generated tremendous
interest in the scientific community. Since the pioneering
work of Ott, Grebogi, and Yorke [1]demonstrated that cha-
otic systems could be readily controlled (OGY method), an
enormous amount of work has demonstrated that the control
of chaos provides a powerful tool for anyone attempting to
manipulate chaotic systems (for a review see Refs. [2,3]).
Recently adaptive control techniques known as tracking have
been devised to extend the reach of control of chaos tech-
niques to account for a problem encountered by applied sci-
entists and engineers known as drift or nonstationarity.
Schwartz and Triandaf [4] devised an extension to the OGY
method which adaptively tracks and maintains control of un-
stable periodic orbits through large parameter changes. Re-
cent experiments have dramatically demonstrated successful
tracking in circuits [5], lasers [6], and, in a remarkable ex-
periment by Petrov and collaborators, in the Belousov-
Zhabotinksy (BZ) chemical reaction [7].The tracking proce-
dure as implemented in electronic circuits by Carroll et al.
[5] and in multimode lasers by Gills et al. [6] is based upon
the occasional proportional feedback method (OPF) of chaos
control, a limiting case of the OGY method [6]. The imple-
mentation of tracking in the BZ reaction [7] is founded on a
one-dimensional map-based chaos control algorithm which
is a one-dimensional simplification of the OGY algorithm

particularly well suited for use in a low-dimensional, highly
dissipative chaotic system in combination with Petrov s sta-
bility analysis routine.

The main contributions of this paper are the following: (1)
experimental demonstration of tracking based on the classic
OGY chaos control algorithm; (2) experimental demonstra-
tion of tracking in a mechanical system; and (3) an adaptive
and very general method of optimizing OGY control that
requires very little additional computation and work.

The experimental system consisted of a gravitationally
buckled, amorphous magnetoelastic ribbon driven parametri-
cally by a sinusoidally varying magnetic field [8].The ribbon
is clamped at its lower end and its position is measured at a
point a short distance above the clamp. The Young's modulus
of the ribbon can be varied by more than a factor of 10 by the
application of an external magnetic field. We apply an ac
magnetic field of amplitude H„and frequency f added to a
dc field of amplitude Hd„such that H,~~t;,d(t) =Hd,
+H„si (2mnft). In this experiment we choose f= 1.18 Hz,
0„=1.05 Oe and typically Hd, is between —1.02 and —1.80
Oe. To implement the OGY control algorithm, we measure
the position g, of a point on the ribbon once every driving
period. We then construct a delay coordinate embedding by
plotting the current position g~ vs gj d, where d is the delay.
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Bp„=C(g„—gy) f„,

where f„ is the unstable contravariant eigenvector,
=(g„,$„d), and C is defined as

1C=
X.„—1g f (2)

is the unstable eigenvalue of the system and

g 8'(p)/ Bp is the change in the position of the fixed point
given a change in the control parameter. All of the param-
eters that comprise C are determined experimentally in the
usual fashion [9].

Once control is established, the tracking is begun by ad-
vancing (or drifting) our chosen tracking parameter Hd, a
small increment (0.0034 Oe). Because of our applied "drift"
in Hd, the value of the fixed point about which we are cur-
rently controlling (g~) will not be the correct value for the
new tracking parameter value. To check the closeness of the
fixed point about which we are currently controlling to that
of the "true" fixed point, we examine the mean of the last 10
values of the control parameter. If the value of the current
control fixed point is correct, then the mean of the Auctua-
tions of the control parameter will be zero, within experi-
mental error. If it is not zero, one needs to correct the fixed
point about which we are currently controlling in such a way
as to minimize this mean. Schwartz and Triandaf relate the
fixed point position to the fluctuations in the control param-
eter:

where (8p„) is the mean value of the fiuctuations in the
control parameter. For our experiment we have previously
shown these fluctuations to have a Gaussian distribution
[10].Thus the definition of C given by Eq. (2) implies that
the correction to the fixed point is

(4)

If the system were linear, this would suffice to place us ex-
actly at the correct value of the fixed point. In practice this
equation is iterated until the control converges to the correct
value.

The effects of noise in the system and of uncertainties in
determining the quantities that go into the estimate of C may
cause Eq. (4) to overestimate the location of the "true" fixed
point with a subsequent loss of control. To guard against this,
we replace it with the following equation:

In the chaotic regime we identify unstable periodic orbits of
period d by looking for saddle points lying on the diagonal,

d. In order to control the system onto one of these
unstable periodic fixed points g~, we identify an accessible
system control parameter p (which in this instance is Hd, ).
When the system state point begins to depart the vicinity of
the unstable fixed point along its unstable manifold, a small
time dependent change is made to this parameter such that
the next iterate will fall onto the stable manifold of the un-
stable fixed point. According to OGY this control parameter
shift is

where V is a number that is chosen experimentally to im-
prove the estimate. To be conservative we set V=4. This
modification' has the added benefit of guaranteeing that con-
vergence to the correct value for the fixed point is taken in
smaller steps than those given by Eq. (4), preventing the loss
of control during tracking. With this value we never lost
control.

The difficulty with estimating the correct value of the
fixed point arises because we are using a linear estimator.
Schwartz and Triandaf employ a nonlinear predictor-
corrector method to get their estimate. However, this par-
ticular method, at least when implemented in our experi-
ment, is sensitive to system noise and to uncertainties in the
constituent quantities of the constant C and thus renders the
estimate of the fixed point unusable in our experiment. A
more robust nonlinear estimator would serve to improve this
procedure.

During stabilization, the mean of the perturbation distri-
bution and its standard deviation are calculated for 10 iter-
ates. We then check the mean against the standard deviation.
If the mean is more than the standard deviation (thus ensur-
ing that the mean is statistically different from zero), the
position of the fixed point is corrected according to Eq. (5);
otherwise the process is deemed complete.

Once the fixed point has been determined for the second
value of the tracking parameter, subsequent values are ini-
tially estimated as

(6)

and then refined according to the procedure outlined above.
An enhancement to the above procedure is suggested by

Eq. (1). Since the quantities that are represented by the con-
stant C, namely X.„, f, , and g, are changing as we change
the tracking parameter, they should be redetermined at each
step along the way. Indeed Petrov and co-workers similarly
redetermine ) „ in their experiment at each new value of the
tracking parameter. However, this type of optimization re-
quires that control be lapsed during the process. In order to
maintain continuous control, we resort to the following opti-
mization procedure. After the tracking process has converged
to the "true" fixed point for a new tracking parameter, we
vary C slightly from its current value and examine the re-
sultant change in the standard deviation of the distribution in
the controlled points around the "true" fixed point. C is var-
ied in fixed step sizes of 1% until the standard deviation is
minimized (a more sophisticated technique could employ a
variable step size if optimal convergence is required). The
value of C that minimizes the standard deviation is then
taken to be the new value of C.

Figure 1(a) shows the results of this tracking procedure as
applied to an unstable period-1 fixed point. Starting from
within the chaotic regime (since ergodicity guarantees that
the neighborhood of the desired unstable fixed point will
eventually be visited), this point is controlled and tracked
through the chaos (through both decreasing and increasing
tracking parameter Hd, ), into the period-doubling region and
finally into the period-1 region where the fixed point is
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FIG. 1. (a) The bifurcation diagram (gray) for the magnetoelastic

ribbon at f= 1.18 Hz and H„=1.05 Oe. The lower dark line de-

notes the tracked period-1 fixed point starting from the dc field
where the fixed point is unstable in the chaotic region, through the
bifurcation regions on either side to where the fixed point becomes
stable. The upper dark line similarly marks the tracked period-2
orbit. (Only the upper branch is shown. ) Note the agreement be-
tween the tracked fixed points and the natural period-1 and period-2
fixed points (in the regions where they are stable). (b) The variation
of C as a result of optimizing the control during the tracking shown
in (a). Note the correspondence of the attractor blowup with the

plateau between —1.25 and —1.35 Oe.

stable. Note that the excellent agreement between the tracked
period-1 point and the uncontrolled period-1 point in the
latter region assures us that the tracking and optimization are
working correctly. This tracking procedure is accomplished
with no loss of control over the whole range of "drift" or
tracking parameter region.

Figure 1(b) shows the variation in C obtained from our
optimization process for the data in Fig. 1(a). It is interesting
that the plateau between —1.25 and —1.35 Oe corresponds to
the attractor blowup seen in Fig. 1(a) (for which we have no
explanation).

Also shown in Fig. 1(a) is the result of tracking a period-2
orbit (upper leg shown). Note that the control, and hence the
tracking, were only applied about one of the two saddles of
this unstable orbit. Again note that there is strong agreement
between the tracked fixed point and the natural period-2
fixed point in the period-2 region.

Figure 2(a) shows the distribution of the deviations from
the control fixed point at each iteration (after the correct
fixed point has been determined) during the optimization of
the value of C. This value of C is 4% larger than the original

FIG. 2. (a) The distribution of the ribbon position about the
control fixed point for the iterations after the correct fixed point has
been determined in a typical run. The fit of this data to a Gaussian
distribution is shown by the heavy line. The width of this distribu-
tion is a function of the control feedback parameter C, as shown in

(b). (b) The width of the Gaussian for several different changes of
the value of C by AC%. The data have a well defined minimum

that we use to correct the value of C to improve the control. The
solid line shows a quadratic fit to the data.

value of C. The solid line is a fit of this data to a Gaussian
distribution. Figure 2(b) plots the width of the fitted Gauss-
ian for five different values of C. The value of C at the
minimum is taken as the new C. (In the case shown, no
adjustment to C was necessary. More typically changes in C
of ~5% or less were required for optimization of control. )

It is anticipated that tracking unstable periodic motions in
nonstationary systems will have application to mechanical,
optical, and electrical systems. Additionally the demon-
strated robustness and computational simplicity of our adap-
tive tracking could also provide a key improvement in the
control of chaos in such typically nonstationary biological
dynamics as the beating of hearts [11]and seizures in brains
[12].Indeed tracking may prove indispensable for the main-
tenance of long term control of chaos in engineering or bio-
logical systems where loss of control could prove cata-
strophic.
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