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Phase ordering of two-dimensional XY systems below
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We consider quenches in nonconserved two-dimensional XY systems between any two temperatures below
the Kosterlitz-Thouless transition. The evolving systems are defect free at coarse-grained scales, and can be
exactly treated. Correlations scale with a characteristic length L(t)~t" at late times. The autocorrelation

decay exponent, k=(r/;+ r/&)/2, depends on both the initial and the final state of the quench through the

respective decay exponents of equilibrium correlations, C,„(r)—r ". We also discuss time-dependent

quenches.
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Phase-ordering kinetics is the study of the nonequilibrium
process of equilibration after a rapid change of system pa-
rameters such as temperature or pressure [1].Typically, the

system is quenched from a high-temperature disordered
phase to a low-temperature ordered phase. The problem is
challenging because there are degenerate ground states corn-

peting to select the ordered phase and because the evolution
of the order parameter is typically determined by a nonlinear
partial differential equation. Indeed, there have been only a
handful of exact solutions in phase-ordering systems (see
[1]): nonconserved scalar and XI' [O(2)] systems in one
dimension, and both nonconserved and conserved spherical
models in general dimensions. Typically, phase-ordering sys-
tems have singular topological defects (such as domain
walls, vortex lines, or point defects) seeded from the disor-
dered initial conditions. While the structure of singular de-
fects can be used to extract the growth laws of characteristic
scales through energy-scaling arguments [2], their singular
nature makes exact solutions of correlation functions diffi-
cult. In fact, most of the exact solutions mentioned above do
not involve singular defects: one-dimensional XY systems
have only nonsingular topological textures [3],while spheri-
cal systems have no topological defects. It is natural, there-
fore, to consider other systems without topological defects.

In this paper, we consider the coarse-grained two-
dimensional (2D) XI' model below the Kosterlitz-Thouless
transition temperature TzT, where there are no free vortices
[4]. For nonconserved dynamics we determine exactly the
two-point correlations after a quench between any two tem-
peratures at or below TzT. We find scaling solutions charac-
terized by a single time-dependent length L(t) —t t without
the logarithmic factor [L—(t/lnt) t ] associated with
quenches to states with free vortices (i.e., from above TKT)
[2,5]. We also measure autocorrelations for which the decay
of the overlap with initial conditions is characterized by an

exponent X throughA(t)-L [6—8]. For quenches to T=O
we find )i.= ri;/2, where r/; characterizes the initial asymp-
totic spatial correlations through C(r) —r ". This agrees
with the predictions of Bray et al. for quenches from a criti-
cal point to zero temperature [9]. For quenches between ar-

bitrary temperatures below Txr we find X = ( r/;+ ri/)/2,
which depends on the initial and final states of the quench

[r// characterizes the asymptotic equilibrium correlations at

the final state through C,q(r) —r "&]. We also discuss
quenches with arbitrary temperature histories, and show that
asymptotic correlations and autocorrelations are independent
of the early temperature history.

We consider overdamped, nonconserved, dissipative,
"model A" dynamics with an equation of motion

ct, p= —r BH/Sruti+ ((X,t),

where P(x) is a two-component order parameter. The energy
functional

d'x [2(~4)'+ V(A] (2)

p, t'

H= — (VO) d x,

where p, is the coarse-grained spin-wave stiffness of the sys-
tem [4].The equation of motion (1) simplifies to

(4)

where we only keep the component of the thermal noise
locally orthogonal to the order parameter P, with

(gk(t)sk (t'))=2I kttTBk k 8(t t'). (We will adsorb I"—

has a potential with a symmetric global minimum at

~/~=1, such as V($)=Vo(P —1) . The thermal noise (
= ((i,gz) is a Gaussian distributed with zero mean, with
correlations determined by the fluctuation dissipation theo-
rem ((;(x,t)g, (x', t')) =2I k&TB (x x') 8(t t')6—;i. Be-— .

low the Kosterlitz-Thouless transition for the 2D LY model
[4], any vortices present will be bound in oppositely charged
pairs. We only consider correlations at distances much larger
than the characteristic pair size so that we need only treat the
renormalized spin waves of the system. We work effectively
on the line of zero-fugacity renormalization-group fixed
points with 0~ T» T+T. In the limit Vo~~ the field, coarse
grained beyond the pair scale, has unit magnitude. We
change to the phase variables P= e' and the energy-
functional takes the form
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and p, into the time scale, making [t] dimensionally equiva-

lent to [I] for the rest of the paper, except when we discuss
quenches with general temperature history. ) We have ignored
the 27r periodicity of 0 in Eq. (4) because our system has no
vortices after coarse graining so that the phase can be taken
to be continuous everywhere.

The solution to the equation of motion (4) is

9„(t)=0 (0) " '+ dt " ' '( (t),
Jo

(5)

where the time t~O is measured from the time of the
quench. Since we start from an equilibrated state at or below
TzT, the initial phases are determined by the spin-wave
Hamiltonian (3). The Fourier transformed phases are Gauss-
ian distributed with a probability distribution

B„, (r, t, t '
) = ( rA

—
r//) ~ y+ ln

t, 4 (a', +2t)(a'„+2t')/

+E&[r /4(ao+ t+ t ') ] ~, (10)

B„„(r,t, t') =F(r/Pi, r/+t'), t, t' &) a(),

where Et(x)=—f dye Y/y for x)0 and y=0.577 is Euler's
constant. [We have used a soft ultraviolet cutoff, through a
factor of exp( —aok ) in the integrand of each k integral,
where ao is of the order of the lattice spacing. ] Both B, and

B„,q are manifestly symmetric under interchange of t and
B q only depends on the magnitude of the time difference

l
t —t '

l
as expected for an equilibrium correlation. Con-

versely, Bzeq has a scaling form at late times,

k
P[(Ok(0))] ~ exp, —g Ok(0) g k(0), .

I

(6)

We use rg; and yf to describe the initial and final
quench states, respectively, of our system, with r/(T)
= k&T/27rp, (T) They desc.ribe the decay of equilibrium cor-
relations and so are directly measurable in experiments. The
"temperature" T always indicates the combination of system
parameters (temperature, pressure, composition, etc.) that de-
termine p, and rg.

The phase-phase correlations at general times after a
quench at t=O from a temperature T; to a temperature Tf,
both at or below TKT [10],are then straightforward to calcu-
late from (5)

2 7T Q f

(~k( ) ~-k( ')) =
k2 [ 7f ( 7i 7f)

(7)

In particular, the initial correlations are given by
(Ok(0) 0 „(0))= 2qrg;/k . The phase-difference correla-
tions then follow,

B(r, t, t ') =([8(x, t) —8(x+ r, t —') ]')
d k

2 I (~k(t) ~—k(t))+(~k(t') ~—k(t ))

—Zcos(k r) ( Ok(t) B „(t' ))]

=B„(r,t, t')+B„„(r,t, t')

B,q(r, t, t') = r/fry+in(r /4ao)+Et[r /4(a„+ lt —t'l)]),
(9)

and

B,q and B„,q are the equilibrium and nonequilibrium corre-
lations at the final temperature, given by the terms propor-
tional to r/f and rA ref, respectively, in (7):—

where F(x) is a time-independent scaling function.
Order-parameter correlations follow directly from the

phase correlations since the phase variables are Gaussian dis-
tributed at all times —due to the linear evolution equation (5)
and the Gaussian nature of the noise and the initial
conditions. The general two-point two-time correlation
function is

C(r, t, t')—= (@(x,t) @(x+r,t')),
= (cos([0(x, t) —0(x+ r, t ') ])),
= exp{—B(r, t, t')/2)

= C„(r,lt t'l)C„„(r,—t, t'), (12)

where C,q(r, lt t'l) —= exp( —B,q(r—,t, t')/2) and C„,q(r, t, t')
=exp( —B„(r,qt, t')/2). We see that C(r, t, t') has a product
scaling form, with a growing length scale of I ~t' char-
acterizing the nonequilibrium factor C„,q through Eq. (11).
For quenches to Tf~0, the equilibrium factor C,q has a non-
trivial form equal to the equilibrium correlation function of
the critical point at the final temperature. This is a generali-
zation of the scaling expected for a quench to within an
ordered phase, dominated by a T=O Axed point, where
C, (r) =(!Pl) . We do not expect the product form seen in

Eq. (12) to hold for general O(n) systems for quenches to
critical points; the product form holds for this XY system due
to the Gaussian distribution of the phase variables.

It is interesting to contrast these scaling results to the
scaling prediction L (t/1nt)'t [2],—for quenches with free
vortices, observed in simulations [5] (note also [11]).
Quenches from below T~r are consistent with previous
energy-scaling predictions [2] which are based on the ob-
served late-time defect structure for quenches to T=O. For
nonconserved quenches without topological defects, a
growth law L(t) —t t is predicted for systems which scale
[2]—in agreement with the results of this paper. For
quenches to T~O, the energy-scaling approach does not di-
rectly apply. However, it is reassuring to note that scaling
and the same growth law is observed in the nonequilibrium
correlations C„,q .

We determine the asymptotic correlations by using the
asymptotics of Et(x):



51 PHASE ORDERING OF TWO-DIMENSIONAL XY SYSTEMS R1643

E,(x)-
—y —1nx,

e '/x, (13)

These determine the asymptotic equilibrium correlations

C,q(r, O) —(r/a()) ~f, r))ao (14)

where r, gt&)ao. They have the same spatial dependence as
the equilibrium correlations (with the final temperature de-
termining the correlations at short distances and the initial
conditions determining them at long distances), but have an
additional amplification factor at long scales. For y;= rg& we
recover the equilibrium correlations (14), as expected.

The autocorrelation function is given by the r = 0 corre-
lations with initial conditions. From Eqs. (8)—(13),

which reproduce the standard result [4]. The full equal-time
correlations after the quench have the asymptotic behavior

(r/ao) "'( Pt/ao) // ~f, r /t&) 1

C(r, t, t) =' („/ )
—

y/ /t(1 (15)

with the general result for d=2, and depends on both the
initial and the final temperatures of the quench,

Arbitrary temperature histories of the quench can be
treated in a similar manner to our discussion so far. %'e as-
sume that the thermal bath has a well-defined time-
dependent temperature T= T(t), i.e., that microscopic time
scales are much faster than the phase-ordering time scales.
Then the renormalized spin-wave stiffness, p, (T), and the
equilibrium decay exponent, rl(T), will both be time depen-
dent through their temperature dependence. Equations (1)—
(4) will be unchanged, while Eq. (5) will change to

2
e„(t)= e„(0)e "~-' + dt e '[~(')--~(')lg„(t)

Jo

where p(t) =fop, (—t)dt. This leads to the phase correlations

( g (t) 6) (t[ ))
'

e
—k [P(t)+P(t )1

2m' t

~ t

+ 2P dt e
—k [P(t)+P(t') —2P(t)]T(t)e

j
—( y;+ gt)/4

A (t)=—C(O, t,O)—
(ao/

(16)

'where again we take t&)ao. Using L —t / and A(t)-L
[6] we determine the exponent X = (i7;+ r/&)/2 that describes
the decay of autocorrelations after a quench. Interestingly,
X. does not change if the quench is reversed: from ref to
y;. For the decay of equilibrium autocorrelations, we set

gf gl = y and find Xeq =
Bray et al. [9] have considered quenches from long-range

correlated initial conditions to T/= 0 (g/= 0). They predict
that if initial long-range correlations are described by
C(r,O)-r ", and if o(o, , the. n C(r, t)-(L/r)" for
r&)L and A(t) t( ")' f—or large t. For quenches from a
critical point, o.=2 —y. Our results for quenches to T=O
agree (with d = 2): from Eq. (15) we have C-(L/r)"' with
L t", whil-e from Eq. (16) we have A(t)-t "//. The ini-
tial correlations are relevant for quenches from all tempera-
tures at or below Tzr, so that o.,~2 —rl(T/(z) =7/4. Be-
cause Xsz, the value for short-range correlated initial
conditions, is never less than ) for long-range correlated ini-
tial conditions [9], we have kzz-k(T&r) = 1/8 for a quench
to T&= 0. This lower bound is much smaller than the values
measured by Pargellis et al. [8]. Theoretical treatments of
quenches to critical points [12] have previously only treated
the case of a quench with uncorrelated initial conditions,
where X is independent of the details of the initial conditions.
The methods of reference [9] can be extended to general
systems, in d dimensions, with a quench to a general critical
point T/ [characterized by an equilibrium correlation func-
tion C(r)-r (" "f)], from a state with power-law spatial
correlations (in the same order-parameter field) decaying as
r (" +'//). We find )I =d —2+(r/;+ rl/)/2 [13], provided
that the long-range correlations in the initial state are rel-
evant, which requires that the exponent Xsz for a quench to

Tg from initial conditions with short-range correlations sat-
isfy Xzz(d+(i7/ —r/;)/2. For quenches between two critical
points in the 2D XY model, our result X= (y;+ g/)/2 agrees

This can be used in Eqs. (8) and (12) to determine correla-
tions under an arbitrary temperature history. It is straight-
forward to show that temperature changes before a time

tM do not affect correlations with t, t'&)tM or autocorrela-
tions A(t) for t)&tM . This is best illustrated by considering
autocorrelations in the low-fugacity limit, where p, is tem-
perature independent. With some work, we have B(0,0, t)
= ( rA/2) ln(t/ao)+//'odt r/(t)/(ao+ 2t —2t). [We have adsorbed
the constant p, into rl(t). ] If we restrict the time de-
pendence of T to times before tkt(~ t, then B(0,0, t)
= In(t/ao)(rA+ rg~)/2+ O(tM /t) and we recover our previous
result. The same approach demonstrates that late-time corre-
lations and autocorrelations are insensitive to the temperature
history before a time tM((t. Exact correlations for simple
quench histories can easily be calculated, and may be useful
for comparing to experiments, but do not appear qualitatively
different than instantaneous quenches.

The ease of calculation of this model is fortuitous. This is
because, in part, for vector systems, the gradient term in Eq.
(2) dominates over the potential term [2].Since the potential
term is not needed to set a core scale for singular defects
(such as free vortices), the hard-spin limit may be taken
without complications. The 20 XF model is special below
TK+ because the vortices are tightly bound and only serve to
renormalize the spin-wave stiffness p, of the effective hard-
spin Hamiltonian. The resulting Gaussian nature of the phase
variables greatly simplifies the analysis. (Note that the hard-

spin limit for conserved "model B"dynamics [3] leads to a
much more complicated evolution equation than (4), and the
phases will not be Gaussian distributed. ) Of course, our re-
sults only apply for distances that are large with respect to
the vortex pair size in the two equilibrium phases at T; and

T/ [14].
The specially prepared nematic system of Pargellis et al.

[8], developed to exhibit 2D X'Y behavior, should exhibit the
behavior described in this paper. The experimental procedure
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will be easier since late time correlations and autocorrela-
tions do not depend on the early stages of the quench. (Ex-
perimental analysis will not be able to rely, however, on the
characteristic schlieren patterns of free vortices, which will
be absent. )

We have calculated correlations for quenches in the 2D
XY model between any two phases at or below the
Kosterlitz-Thouless temperature. The nonequilibrium part of
the correlations scales with a characteristic length scale
1.(r) —t / Th. is growth law differs by a logarithmic factor
from the growth laws expected for quenches involving free

vortices. The autocorrelation decay exponent depends on
both the initial and the Anal state of the quench,
X=(r/;+ r/f)/2. The asymptotic autocorrelations and equal-
time correlations do not depend on the early temperature
history of the quench, but only on the initial conditions
(through r/;) and on the temperature at late times (through

Vf).
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