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Exact exponent A, of the autocorrelation function for a soluble model of coarsening
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The exponent k that describes the decay of the autocorrelation function A(t) in a phase ordering system,
A(t) —L i" l, where d is the dimension and L the characteristic length scale at time t, is calculated exactly
for the time-dependent Ginzburg-Landau equation in d= 1. We find X=0.399 383 5. . . . We also show ex-
plicitly that a small bias of positive domains over negative gives a magnetization which grows in time as

M(t) —L" and prove that for the one-dimensional Ginzburg-Landau equation, ~= X, exemplifying a general
result.

PACS number(s): 64.60.Cn, 64.60.My

The field of phase ordering kinetics has seen a number of
new developments in recent years [1].In particular, the val-
ues of the growth exponents z, which describe the time-
dependence of the characteristic scale L(t) via L —t /', are
known exactly for most models with purely dissipative dy-
namics [1,2]. For systems with short-range interactions and
dynamics which are either nonconserved or obey a local con-
servation law, the exponent z is usually a dimension-
independent integer [2]. Recently, however, it has been real-
ized that for nonconserved dynamics the description of two-
time correlations requires a new exponent, whose
dependence on the spatial dimension d and on the symmetry
of the order parameter is nontrivial [3,4].

The exponent X can be defined in terms of the general
two-point correlation function C(r; t, , t2) = ( P(x, t i) @(x
+ r, t2)), where @ is the order parameter field. In the scaling
regime, this is expected to have the scaling form
C(r;ti, t2) =f(r/L, , r/Lz), where Li, L2 are the character-
istic length scales at times t, and t2 [5,6]. In the limit of
well-separated times, L2))L i, one anticipates [5] the power-
law form C(r;ti, t2) —(Li/L2)" f(r/L2), defining the ex-
ponent X. An especially simple case is where we take
r=0, and the initial time t&=0. Then the general form re-
duces to

A (t) —=C(0; O,t) —[(,/L (t) ]" ~,
where (o is some fixed length related to the initial condi-
tions. The "autocorrelation function" A(t) has been mea-
sured in simulations of O(n) models for various spatial di-
mensions d, [3,7], and in experiments on twisted nematic
liquid crystals films [8], and the exponent X deduced. It gen-
erally has a nontrivial value.

There are a few analytical results for X — the noncon-
served O(n) model for n=~ ()i =d/2 [4]), and the d=1
Glauber model (X=0 [9]), while for nonconserved scalar
fields in d=2 Fisher and Huse [3] have conjectured that
X = 3/4 exactly. In general, however, k appears to be a non-
trivial exponent associated with ordering dynamics, although
it is known to satisfy the bound (in our notation) k(d/2 for
nonconserved dynamics [3,10].

In this paper we calculate P exactly for a soluble model
corresponding to the late-time, zero-temperature coarsening l(I) = l(Ii) + l(I;„)+ l(I2) (2)

dynamics of the time-dependent Ginzburg-Landau (TDGL)
equation for a scalar field in d = 1. The equation of motion is

8,/=8 @—dV/dP, where V(P) is a symmetric, double-
well potential with minima at P= ~1 [e.g. , V(@)=(1—rt ) ].
At late times, when the mean separation L of domain walls is
large compared to their intrinsic width g(= [V"(1)] '/ ), the
walls only interact weakly, through the exponential tails of
the wall profile function. Then the dynamics is very simple
[11—13]. The closest pair of walls move together and anni-

hilate, while the other walls hardly move at all, and the sys-
tem coarsens by successively eliminating the smallest do-
mains. It is found that the distribution of domain sizes I
approaches a scaling form, P(l) =L f(l/L) The scali.ng
function f(x) can be exactly calculated [11—13].

In an earlier work [13], we have shown that there is a
nontrivial exponent associated with the fraction of the line
that has never been traversed by a domain wall (i.e., the
fraction of the line where the order parameter @ has never
changed its sign [14]).This fraction decays as L l @, with
P= 0.824 924 12. . . . Here we show that the approach devel-
oped in [13]can be generalized to calculate k for this model.
The result is X =0.3993835. . . . A recent simulation of the
same model [15] gave the estimate li =0.43~0.01, which,
we think, is in reasonable agreement with our exact result,
given that the extrapolation to large L was not straightfor-
ward.

The exponent k can also be obtained from the rate at
which a small initial bias in the order parameter grows with
time [16], (P)-L . We demonstrate this explicitly within
the present model in the second part of this work.

The calculation of the autocorrelation exponent k follows
closely that presented in Ref. [13].One starts with random
intervals on the line. Each interval I is characterized by its
length l(I) and by its overlap q(I) with its initial condition
[initially q(I)=l(I) for all I] At each iteration step, t.he
smallest interval I;„is removed (i.e., the field @ is replaced
by —P in this interval). So three intervals (the smallest in-

terval I;„andits two neighbors Ii and I2) are replaced by a
single interval I. The length and the overlap of the new
interval I are given by
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q(I) =q(Ii) +q(I2) —q(I;„) (3)

Then the average length I. of domains and the autocorrela-
tion function A are given by

I- = X i(I) X 1 , & = X q(I) X i(I) , (4)

n =n. 1r 1
r

n; n n;

J=lp

/ 2n, )

l 2lp
nJ' l J lp

+n; Q —'
(q, +q;, —q, ).

J = lp

This is only valid under the condition that n; &&N which is

indeed valid when i p becomes large and as long as the sys-
tem consists of a large number of intervals.

We assume that after many iterations, i.e., when ip be-
comes large, a scaling limit is reached where

n; = (N/io) f(i/io), n;q;=N(io) 'g(i/io), (6)

where X. is the exponent we want to calculate. Because i p is
so large, we can consider x=i/io as a continuous variable.
This gives

n,
' = [N'/(io+ 1)]f(i/(io+ 1))

N 2 1 1
f(x) —. f(1)f(x)——. f—(x) xf'(x), ——.

lp lp lp lp
(7)

where the sums are over all the intervals I present in the
system.

The argument showing that no correlations develop if
none is present initially was given earlier [13]and the calcu-
lation is then very similar to that for the evaluation of the
exponent P. The only difference is that in the previous work
Eq. (3) for the overlap q(I) was replaced by the equation
d(I) = d(I, )+d(I2) for the length d(I) of interval I that has
never been traversed by a domain wall.

We take, for simplicity, the lengths of the intervals to be
integers and i p to be the minimal length in the system. We
also assume that the total number N of intervals is very large.
We call n; the number of intervals of length i and q; the
average overlap of the intervals of length i. At the beginning,
q;=i. We denote with a prime the values of these quantities
after all the n; intervals of length i p have been eliminated,lp

so that the minimal length has become ip+ 1. Then the time
evolution is given by [compare Eq. (2) of [13]]
N' =N —2n;

Bf
io . =f(x)+xf'(x)+ 8(x —3)f(1)

Blp

X dy f(y)f(x —y —1)
J1

Bg
io . = (1—X)g(x) + xg'(x) + 2 0(x —3)f(1)

Blp

x 2

dy g(y)f(x y —1)——g(1) ~(x —3)

"x—2

dy f(y)f(x-y —1). (9)

Defining the function h(p) by

(13)h(p) =2f(1), dt

the solutions of the above equations are

4 (p) = tanh[h(p)/2], (14)

1 —4'(p) q' '
P(p) =g(1) [1+qP(q)] z r, e ~dq . (15)

0 p 1 — q p
The constants of integration implied by these forms were
fixed by the requirement that both P and r/ decay fast
enough for large p, as is clear from the definitions (10). So
far the parameters f(1), g(1), and k are arbitrary. We shall
see that they are fixed by physical considerations.

Equation (14) for P, which determines the domain size
distribution, is of course identical to that obtained in previ-
ous work [11—13]. Equation (15) for P can be rewritten in
the more convenient form

h(q) + -h(q) A. —1

p(p) =2g(1) hr & t, r„r r, e ~dq . (16)

It is helpful to introduce the expansion

In (6), both n; and n;q; are functions of x= i/io and of io,
and the partial derivatives in (9) mean the derivative with
respect to i p, keeping x fixed. Demanding that the system is
self-similar, i.e., that the functions f(x) and g(x) do not
change with time [i.e., replacing the left-hand sides of (9) by
zero], one finds that the Laplace transforms

I
oo f oo

P(p) = e ~ f(x)dx, P(p) = e J' g(x)dx, (10)Ji
satisfy the following equations (where primes now indicate
derivatives):
—f(1)e '—p 4 '(p)+ f(1)e "4 '(p) =o, (11)
—kg(p) —g(1)e ~ pr/I'(—p)+2f(1)e i'@(p) P(p)

-g(1)e '4'(p) =0 (12)

2
=Nio g(x) ——. f(1)g(x)

lp

i
n,'q,'=N'(io+ 1.) g

( ip+ 1(
X —1 1'

+ . g(x) ——. xg'(x)
lp lp

Inserting these expressions in the time evolution equations
(5) gives

( —p)"
dq = —lnp —y —g

q n n! (17)

where y= —Jodt e ' lnt=0. 577215 6. . . is Euler's con-
stant.

From the small-p expansion of (14), it is easy to show
that, provided the first moment of the domain size distribu-
tion exists, one must have f(1)= 1/2 [11—13].From now on,
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we will consider only this case (see [17]for the discussion of
cases where the stationary distribution has long tails). Defin-
ing the function r(p) by

m = 1l

2n; mJ ms
2 io

N'
J=Ep

f e
r(p) =h(p) + lnp = dq+ lnp

q
(18) N'=N —n —m

Ep lp

0(p) =A+Bp' '+O(p),
where A=2g(1)/(1 —X) and

(20)

one obtains, using (16),

e (q)+ q e
— (q) qP(p)=2g(1) „t» „t»„,e qdq . (19)

jp e" ~ +2p+p e '~ p

Now r(p) can be expanded in powers of p, using (17), and
so this last form makes it easier to analyze the singular be-
havior of P(p) at p = 0. One finds that, for small p,

n,
' = [(N n;— m—; )/(ip+ 1)]fi (i/(ip+ 1)), (25)

which gives, for ip large (when x=i/ip can be treated as a
continuous variable),

n =(N/ip)[fi(x)+(I/ip)( —fi(1)fi(x) —f2(1)fi(x)-fi(x) -xf i(x))] (26)

Let us write forms for n; and m; analogous to the first of
equations (6):

n; = (N/ip) fi(i/ip), m;= (N/ip) f2(i/ip). (24)

Then one has

B=2g(1)e
k —1 q

[r '(q) —1]e"'"dq
)p 1 —)

[' oo

+ q'e qe 'q'dq
Jp

=2g(1)e (1—k) q e [(1—q
—e )e"t

aO

+q'(1 —
» )e-"t~»]dq . (21)

+ 8(x —3)fp(1) J1
dy fi(y)fi(x —

y
—1),

(27)

and a similar expression for m,'.
Inserting the forms (24) into (26) gives coupled evolution

equations for f, and f2..
8f, (x)

ip . =[fi(1) f2(1)]fi(x)+fi(x)+xfi(x)
Blp

Px —2

Now compare (20) with a direct expansion of (10),
nainely, i/I(p) =f i dxg(x)[1 —px+O(p )]. If the function

g(x) is to have a finite first moment then we must have B= 0
in (20). This condition determines»i. as

k=0.3993835. . . .
From numerical simulations of the same model, Majumdar

and Huse [15] found the power-law decay A(t)-L, with
X = 0.57~ 0.01 corresponding to X=—d —X = 0.43+.0.01.
There were, however, large corrections to scaling in their
numerical data, which we think are the origin of the dis-
agreement between their numerical estimate and our exact
result.

As in [13],one can show that 8 40 would correspond to
a power-law decay in g(x) and that such a power law cannot
be produced if it is not present in the initial condition. Note
that g(1) cannot be determined as one can always multiply
all the q; by a constant without changing our results.

For the remainder of this paper we will look at a related
quantity, the growth of an initially small bias in the order
parameter, and show that the bias grows as L" as the system
coarsens (while the bias remains small). Furthermore, we
will show explicitly that p, = X for this model, exemplifying
a general result [16].

Consider a sequence of positive and negative domains on
a line. We call n; (m;) the number of positive (negative)
domains of length i, . The total number N of positive domains
is of course equal to the total number of negative domains,
N = X;n; = X;m; . When the domains of size i o are removed,
the new values of n;, m;, and N are given by

and a second equation obtained by interchanging the sub-
scripts 1 and 2. Note that the derivatives on the left-hand
sides are with respect to the (implicit) second argument i p.
Introducing the Laplace transforms with respect to the first
argument,

(28)

f.(1)= 2 —«, (31)

with e small and the + (—) sign corresponding to n = 1

(n = 2). If the bias represented by the terms in e is a relevant
perturbation, o(p) will grow under iteration: o.-(ip)" with

p, )0 [and similarly, a —(ip)~ in (31)]. Subtracting from
(29) its counterpart with subscripts 1 and 2 interchanged, and

putting ip 8 (p)o/Rip= p, o.(p), yields the eigenvalue equa-
tion

one finds that their evolution is given by

ip[&Pi(p)/&ip] = [fi(1)—f2(l )]Pi(p) p Pi(p)—fi(1)e +f2(1)e i'Pi(p), (29)

and a second equation with subscripts 1 and 2 interchanged.
So far this is completely general. The basic idea is to

perform a linear stability analysis around the "symmetric"
solution P, (p) = Pz(p) = P(p), where P(p) satisfies (11)
with f(1)=1/2, in order to determine the rate at which a
small perturbation will grow. We therefore take i/Ii(p) and

$2(p) to have the forms

~/. (p) = 4(p) —e~(p), (30)

with

n = 1
2m; »

' 'onj n;

N 'o N
J=/p

p, o.=2ag —po' —ae i' —ae t'P +e t'Ptr, (32)

with solution
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o.(p) =a @2(q)e ~+e ~ —2$(q) Jq ~1 —@ (p)
cSq

q is 1 —0'(q)
(33)

(S,(t)S,(0))=(1/2") X X S;(t)S,(0)
(s(t)) (s(o))

x P((s;(t))
l (S,(0))), (36)

The integration constant was fixed as before by the require-
ment that o(p) decrease as exp( —p)/p for large p, which
follows from (28), (30), and (31).Demanding once more that
o.(p) be regular at p=o [so that the first moments of
fi(x) and f2(x) exist] yields the following equation for /z:

P oo p 1

dq[e ~P (q)+e ~ —2@(q)] 2 =0. (34)
30 1 —

q

Using P(q) = (e"I l —q)/(e "I@+q), which follows from
(14) and (18), gives the condition

P
oo

J
dq[(e ~ —1)e" +q (e q+1)e " ]q~ =0 (35)

for p, , with solution p, =0.399 38. . . . Comparison with
(22) suggests that p, = k. In fact, using integration by parts
one can show that condition (35) for p, is identical to (21)
(with B =0) for k, and so p, =k exactly.

The result p, =k is, in fact, quite general. For TDGL dy-
namics, it has been discussed elsewhere [16].Let us derive it
for any kind of dynamics of an Ising model. Consider a
system of N Ising spins in dimension d. We call
P((s;(t)) ts;(0)j ) the probability of finding the system in
the spin configuration (S;(t)) at time t given that it was in
configuration is;(0)) at time 0. We assume that the system
evolves in a zero magnetic field and that the dynamics pre-
serves the ~ symmetry, namely, P((s;(t) )I (S;(0)))

( )) (— (o)) ).
Suppose that one starts with an initial condition {S;(0)t

chosen completely at random, then the correlation
(S;(t)S,(0)) is given by

where X~s(,&)
indicates a sum over the 2 configurations at

time t.
Suppose, on the other hand, that one starts with a weakly

magnetized initial condition, i.e., the initial configuration
(S;(0)) is chosen with probability

1+m os;0
g((s, (o)))= II

1+m(0)g, S,(0)
2N

when m(0) is infinitesimal. Then the magnetization m(t) per
spin at time t is a function of m(0), and to first order in
powers of m(0) one has

(t) = g g P((s;(t))l (s,(0)))g((s,(0)))
(s(f)) (s(0))

X, s, (t)

=m(0)
g, g, (s,(t)s, (o))

(37)

m(t) =L "m(0) d"Rf(R)

which means that the magnetization and the autocorrelation
exponents are the same.

To summarize, we have derived a nontrivial value for the
exponent X within an exactly soluble model, and shown ex-
plicitly that the growth of an initial bias in the order param-
eter is controlled by the same exponent.

We thank the Isaac Newton Institute, Cambridge, En-
gland, where this work was carried out, for its hospitality.

Therefore if one assumes that due to some coarsening phe-
nomenon the two-point function scales as

(S,(0)SJ(t))=L " )f(RJ /L)

where R;, is the distance between sites i and j, one finds that
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