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Random successive growth model for pattern formation
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In order to explain patterns formed during crystallization of metal-semiconductor A.lms and during bacterial

colony growth, a random successive growth model where no long-range diffusion is necessary has been

proposed. In this model the growth is controlled by two local conditions: growth probability of the neighboring
sites around the cluster and occupation ratio of the sites of the cluster inside a small circle with the potential

growth site as its center. Varying these conditions, fractal, dense-branching, and compact growth patterns have

been obtained.

PACS number(s): 82.20.Wt, 82.40.Ck, 68.70.+w, 05.40.+j

There are various patterns such as fractal growth, dense-
branching morphology (DBM), compact growth, dendritic
growth, and chiral growth [1]in the field of materials science
and life science. Understanding the formation of these pat-
terns from a nonequilibrium environment and the transition
between different growth morphologies has long been a chal-
lenge [2]. In the last decade, it was widely studied in order to
characterize the geometrical properties of patterns formed in
electrochemical deposition [3], colloidal aggregation [4], di-
electric breakdown [5], thin solid films [6], and bacterial
colony growth [7]. Much effort has especially been devoted
to establishing the relationship between cluster geometry and
the growth mechanism. A number of models for pattern for-
mation have been proposed to account for various experi-
mental results. For example, the Eden model [8], in which
each vacant surface site of a cluster can grow in the same
probability, can generate a compact pattern with a rough sur-
face. The model proposed by Meinhardt [9] can form a uni-
form (nonfractal) network of occupied lattice sites after com-
bining nonlinear chemical reaction processes and diffusion.
The prototype of the fractal growth model is the diffusion-
limited aggregation (DLA) model introduced by Witten and
Sander [10]. Since this work, many variants of the DLA
model have been studied for various purposes. Erlebacher,
Searson, and Sieradzki [11]divided the growth field of elec-
trochemical deposition into two areas: a "space charge" re-
gion surrounding the aggregate in which particle motion is
biased to branch tips, and a second region surrounding the
first in which particle motion follows unbiased random
walks. They found a smooth transition between DLA and
DBM. Recently, Ben-Jacob and co-workers [12] proposed a
communicating walkers (mesoscopic units of bacteria)
model to simulate the growth of bacterial colonies. The
model incorporates random walkers, representing aggregates
of bacteria, which move in response to gradients of nutrient
concentration and communicate with each other by means of
chemotactic "feedback. " The model can generate self-
organization over a wide range of length scales. DLA and its
variants depend on the Laplace equation which determines a
long-range field, e.g., concentration field, electric potential
field, or pressure field.

While DLA and other related models are important in

understanding growth phenomena in nonequilibrium sys-
tems, it is difficult to simulate various patterns by long-range
growth processes. So the recent model proposed by Ben-
Jacob et al. incorporates local terms expressed in the 6 func-
tions at the walkers sites into the diffusion equation to gen-
erate various patterns. In our opinion, the pattern formation
in thin solid films or in bacterial colony growth processes
might be mainly explained by a local mechanism rather than
the long-range one.

A high-resolution electron microscopy observation [13]
shows that the pattern formation of amorphous Ge crystalla-
tion in metal —a-Ge films is a random successive nucleation
process. The fractal regions are composed of many Ge crys-
tallites, while the Ge sublayer in matrix regions remains in
the amorphous state. At the early stage of crystallization, Ge
nuclei are formed at preferred sites located at the metal-Ge
interface. The released heat (crystallization energy and strain
energy) leads to a local temperature rise which stimulates
new nuclei of the next generation appearing randomly in
nearby regions. The above process repeats many times dur-

ing annealing, resulting in the pattern formation. Based on
the crystallization of amorphous Ge or Si films contacted
with various metal films [13,14] we proposed a random suc-
cessive nucleation model which depends only on local con-
ditions [15]. In this model, long-range diffusion is not nec-
essary since Ge atoms are uniformly distributed over the
whole sublayer. The main purpose of the model is to simu-
late the experimental fractal-like structures, but the growth
conditions remain more or less complicated.

In this paper a simpler and more universal model, the
random successive growth model, is used to simulate not
only fractal-like structures in thin metal-semiconductor films,
but also various patterns of bacterial colony growth, since
the colony growth is also based on the division of existing
bacteria. In Fig. 1 the initial stage of growth on a
181'181 square lattice from a seed of five neighboring sites
(small filled squares) is shown. The random successive
growth proceeds generation by generation at the sites in the
ring of increasing radius R with a width of one lattice unit
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FIG. 2. The simulation results obtained from the nearest-
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FIG. 5, The patterns formed by the random successive growth
model, where (a) p=0.62, c=0.25, (b) p=1.0, c=0.25, (c)
p = 1.0, c = 1.0, which are similar to the patterns of bacterial colony
growth in Ref. [7].

FIG. 6. The result obtained from the next-nearest-neighbor op-
tion in the case of r =3, n = 7 with growth probability p =0.37.

Figures 4(a) —4(c) show the influence of the crowding
condition, where r = 2, 5, and 8, and n = 3, 19, and 46, re-
spectively, and the occupation ratio is nearly the same in
patterns in the case of the growth probability p = 1. It is clear
that the larger the radius r, the thicker the branches of the
patterns. The influence of range r is similar when the growth
probability is much less than 1.

In order to simulate various patterns of bacterial colony
growth (fractal-like, dense branching, and compact mor-
phologies as shown in Ref. [7]), the growth probability p and
the occupation ratio c have changed. In Figs. 5(a)—5(c) pat-
terns are obtained where p=0.62, c=0.25 (a), p=1.0,
c = 0.25 (b), and p= 1.0, c = 1.0 (c), respectively. The fractal
dimension of Fig. 5(a) is 1.65 as measured by the sandbox
method and the dimensions of Figs. 5(b) and 5(c) are obvi-
ously close to 2. It can be seen that the patterns obtained by
the simulation and the pattern generated by the colony
growth (Figs. 1(a), 5, and 8 of Ref. [7]) are quite similar.

Figure 6 shows the pattern obtained by the next-nearest
option where the growth site (Fig. 1) may also be the next-
nearest-neighboring site around the cluster site, and the
growth probability is 0.37 in the case of a constant crowding
condition r=3 and n=7 (c=0.24). Comparing the pattern
with the patterns generated by the nearest option in Fig. 2 we
can see that many next-nearest-neighboring sites have be-
come cluster sites so that the threshold value of continuing
growth is about 0.37, which is much smaller than that of the
nearest option, 0.68. It is also found that the dependence of

the pattern morphology on the growth probability p is more
sensitive than that of the nearest option.

The various patterns formed in the colony growth have
been mainly explained by the diffusion-controlled growth
mechanism [1,7,12]. But the results obtained by the random
successive growth model suggest that a local model not con-
trolled by the long-range [(2—3)R)] process can also generate
various patterns. This model is originally based on the ex-
perimental results of crystallization of metal-semiconductor
bilayer films, but it can also be applied to explain the colony
growth on agar plates. In either of these two cases, atoms of
amorphous semiconductor or the nutrient particles exist ev-
erywhere over the whole area. Indeed the fractal formation is
accompanied by the interdiffusion between metal and semi-
conductor atoms in the bilayer films, but its range is limited
in an order of the spacing between branches as shown by
transmission electron microscopy and x-ray energy disper-
sive spectroscopy [13,16], i.e., in an order of r (much smaller
than R). In the case of colony growth, the range of the inter-
diffusion between nutrients and harmful metabolites may be
similar. So, the pattern formation can be controlled by local
conditions rather than by the long-range field of the DLA
model and the other related models.

The fractal-like structure is obtained when the growth
probability p is less than some certain value. In the case of
large growth probability, a small occupation ratio will gen-
erate a dense-branching pattern and a large one a compact
morphology. So the various patterns of colony growth deter-
mined by the concentration of nutrients and moisture can be
naturally explained by varying the growth probability and
the occupation ratio in our model as shown in Fig. 6, since a
higher concentration of nutrients may be regarded as a larger
allowable occupation ratio and the moisture (later expressed
inversely as the agar concentration) in colony growth [7]
may increase the growth probability. Then as the growth
probability and the allowable occupation ratio increase, the
morphology changes from a fractal-like pattern to a dense-
branching or round pattern, in agreement with the experi-
mental results. It is not necessary to explain the various pat-
terns by different models, e.g., the fractal-like morphology
by the DLA model and the compact one by the Eden model
as suggested by Fujikawa and Matsushita [7]. It is also not
necessary to combine the random walk in the outer region
and migration in the inner region to obtain the transition
between fractals and dense-branching morphology as pro-
posed by Erlebacher er al. [11].

The DLA model and our model can be considered as two
extreme cases: in the former the limiting factor is the long-
range diffusion, and in the latter the limiting factor is the
local growth condition. The situation is similar to the reac-
tive diffusion, where two extreme cases are treated as a
diffusion-limited process through a reacted layer and
reaction-limited process at the interface between the sub-
strate and reacted layer. The communicating walkers model
has combined the local condition into the diffusion equation
so it is situated in the intermediate case. When the nutrient is
sufficient enough, the diffusion process can be neglected and
a compact pattern based on the local reproduction of bacteria
at the envelope is formed.

Since the random successive growth model is simple, it
can be easily modified in several ways. First, the width of the
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ring can be changed from one lattice unit to several units. In
this case the surface of a compact pattern will become rough
when the growth probability is large, and the model will be
similar to the Eden model. Second, the distance between the
potential growth site (filled site) and the nearest cluster site
may be larger and one step of the growth may also be ex-
panded to 5, 9, or more neighboring sites simultaneously.
Then the branches on the fractal-like structure will be
thicker, similar to the morphologies obtained from crystalli-
zation at higher annealing temperature and from the colony
growth at higher nutrient concentration. Finally, the growth
chance for every site is only once, i.e., its growth probability
attenuates suddenly from p to zero in the present simulation.
Of course, the probability p may be gradually decreased gen-
eration by generation. However, we believe that although the
modifications will change the morphology in some detail, the
main results will remain unchanged.

In summary, we have performed a computer simulation

for pattern formation in metal-semiconductor films and in
bacterial colony growth. Our simulations incorporate two lo-
cal conditions: growth probability of the neighboring sites
around the cluster and occupation ratio of the sites of the
cluster inside a small circle with the potential growth site as
its center. Varying growth conditions, a smooth transition
from fractals to DBM and compact growth has been ob-
tained. We have shown that the growth mechanism revealed

by this model applies to pattern formation. A better under-

standing of this mechanism, for example, why the transition
takes place from fractals to DBM, and from DBM to com-
pact growth at certain growth conditions, requires further
theoretical work.
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