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A generalization of the stochastic method of simulated annealing algorithm based on Tsallis statistics is
proposed. This algorithm is considerably faster than the traditional ones in solving the traveling salesman
problem. Acceptable solutions are found in fewer steps and higher temperatures than both the classical and the
fast simulated annealings. Recent developments in solving NP-complete problems can be incorporated and

improve the performance even more.
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A class of difficult optimization problems is the so-called
NP (nonpolynomial) complete. For this class of problems,
the computational effort for an exact solution grows more
rapidly than a polynomial function of size. A well-known
example is "the traveling salesman problem" (TSP) in which
one must find the shortest path through X given cities only
once. There are (N I)!/2 possible —paths to be examined in
order to find the global minimum. This large number of can-
didate solutions is not the only difficulty in this problem. The
TSP presents a highly rugged landscape, i.e., there are a great
number of local minima of a cost function (the length of the

path), hence a gradient descent method will fail by reaching
local minima instead of a global one. A strategy widely used
consists in perturbing a local minimum following a well-
defined strategy, by taking a step away from it and checking
whether a new minimum is reached or the system returns to
the same minimum.

Methods from statistical physics, such as neural network
dynamics [1]and simulated annealing [2], besides others (as
genetic algorithm [3]), have been applied to find global
minima of nonconvex functions and specifically to the TSP.
Simulated annealing, on which this work is based, is one of
the most celebrated and efficient methods in the task of find-
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ing global minima (or an approximate solution). In physical
annealing, a metal, for example, is heated to a high tempera-
ture and slowly cooled, allowing the atoms to search for a
configuration with lowest energy (crystalline state). How-
ever, if the metal is quickly cooled (or "quenched" ) it will
eventually be trapped in a metastable configuration (amor-
phous or polycrystalline state). Classical simulated annealing
(CSA), as proposed by Kirkpatrick et al. [2], extended the
well-known procedure by Metropolis et al. [4] for equilib-
rium Boltzmann-Gibbs statistics: the system is assumed to
change from an energy E& to energy Ez with probability

p = exp[ —(E2—Ei)/kT]. It is clear that if E2~Et the system
will always accept the change. The annealing consists in de-
creasing the temperature gradually. Geman and Geman [5]
showed that if the temperature decreases as the inverse loga-
rithm of time, the system will end in a global minimum. In
the TSP the energy function will be the length of the path.

Recently, Szu and Hartley [6] proposed a more efficient
procedure, called fast simulated annealing (FSA), where the
cooling can be faster (the temperature decreases as the in-
verse of time). In the Szu and Hartley recipe, the system can
jump around the energy landscape according to a Cauchy-
Lorentz visiting distribution, instead of the Gaussian used in
the CSA. Thereby, longer jumps are allowed describing a
Levy-flight distribution. Both procedures (FSA and CSA)
were generalized by Tsallis and Stariolo [7] (GSA), with the
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additional bonus of providing a quicker algorithm than the
FSA. The GSA is based on the Tsallis entropy [8]

jop
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where the [p;) are the probabilities of the microscopic con-
figurations. The Shannon entropy

(2)

p = min(1, exp( —AE/kT) ) (3)

At each temperature, this is the Metropolis algorithm [4] for
equilibrium thermodynamics. Here, we generalize the algo-
rithm, introducing the probability

p=min(1, [1—(1—q)bE/kT] ~ & ).

We recover (3) in the q~1 limit. Let us stress here that (4)
is different from the one presented by Tsallis and Stariolo
[7], which is a heat-bath generalization, and also slightly

is recovered in the q~1 limit. The relation between Tsallis
entropy and Levy flights was recently established [9], by
applying the maximum entropy formalism. Levy walks with
fractal dimension y are generated using suitable constraints
plus the variational principle. The value of q determines the
fractal dimension of the Levy walk. From the Tsallis entropy
it also is possible to derive a generalized thermodynamics
[10] which elegantly preserves the Legendre-transformation
structure. It also claimed to provide the solution for the di-
vergent mass problem in the polytropic model of stellar sys-
tems [11].In view of these results, it is worthwhile to test (1)
in optimization problems.

In this paper we present an application of the generalized
simulated annealing to a combinatorial optimization prob-
lem: the TSP. Since we are interested in studying the en-
hancements specifically due to Tsallis statistics, we chose to
work with the traditional techniques for the TSP such as the
Lin-Kernighan method [12,13].Below, we describe the com-
putational implementation of this problem.

(i) The cities are numbered i =1, . . . ,N. A configuration
is described by the order in which the cities are visited. Start-
ing from a given city we have (N I)! permuta—tions. The
number of configurations is half of that number because a
configuration and its reverse (the cities in the opposite order)
have the same length.

(ii) The rearrangements are performed following an effi-
cient strategy [12,13]. Basically there are two types of trial
moves: path reversal, where a section of the path is removed
and replaced by the cities in the opposite order, and path
segment transport, where a section of the path is removed
and replaced at a different location randomly chosen.

(iii) The new length is evaluated. We define AE as the
difference between the length of the configuration before the
trial described above and the length of the rearranged con-
figuration. In the CSA by Kirkpatrick et al. , the rearranged
configuration is accepted with probability
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FIG. 1. Average path length versus temperature for 50 different
initial configurations of N = 150 cities. The q = 1 case is CSA, using
Boltzmann-Gibbs statistics.

different from the one used in Monte Carlo simulations of
the ferromagnetic two-dimensional Ising model in the Tsallis
statistics [14]. In the latter the probability (4) must be raised
to the q power, as demanded by the generalized thermody-
namics [10].

(iv) The annealing schedule starts from a high tempera-
ture considerably larger than the largest AE. We kept T as
constant for 100% trial reconfigurations or for 10N success-
ful rearrangements, whichever comes first [13].After this the
temperature is decreased by 10% (one annealing step, here-
after). In our computer tests, we stop the process if no trial
reconfiguration is accepted after five successive temperature
steps. At this point, we expected the solution to be very close
to the optimal one.

Let us present some results from numerical simulations.
In Fig. 1 we present how the path length decreases as the
temperature decreases in the annealing schedule. The results
refer to N= 150 cities. The average is taken over the same 50
initial configurations for each value of q. The random num-
ber sequences are initialized with the same seed for each
initial configuration. Clearly, good solutions are found faster
when q(1. In particular, our numerical simulations suggest
that the best results (as far as time is concerned) improve
more and more when q decreases towards —~. It is worth
stressing that large absolute values of q lead to numerical
roundoff errors, mainly due to the 1/(q —1) power in (4). For
q~ 1 more annealing steps are needed to reach a good solu-
tion. This fact illustrates the usefulness of considering nega-
tive values of q. As can be seen in Fig. 1, the results are
more drastically modified by q)1 than the opposite direc-
tion. To confirm the good performance of the procedure in
Fig. 2 we present the number of steps needed to reach a
stationary state versus the number of cities for q = 1 and
q= —5. Although the qualitative behavior is the same for
both values, represented by the exponent n, the number of
annealing steps is considerably smaller for negative q.

It is well established, for CSA, that a fast cool increases
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FIG. 2. Number of annealing steps versus number of cities (N).
The results from CSA are represented by empty circles, whereas the
q= —5 case are represented by squares. The lines are least square
fits to a power law steps -W

the probability of the system to be trapped in a metastable
state. Hence we have to test the quality of the minima
reached by the GSA. We present in Fig. 3 the average final
length and the shortest path for 50 realizations for the same
arrangement of %= 150 cities. As can be seen, the quality of
results is the same for any value of q, i.e., the GSA is as
efficient in reaching the optimal solution as the CSA but, in
addition, is faster in converging for good solutions. A pos-
sible extension for searching the optimal solution is also per-
form the "annealing steps" in the q variable, for a given
temperature. It would act as an additional perturbation and
some additional minima could be reached.

FIG. 3. Final length versus q. We use the same initial configu-
rations for the %= 150 cities. The error bars are dispersions in the
final length.

In summary, a stochastic generalized simulated annealing
was presented. We tested it in a NP-complete problem: the
traveling salesman problem. We found approximate solutions
considerably faster than the traditional methods of simulated
annealing (CSA). Since the modification is easily imple-
mented, all the recipes [3] applied in the TSP can be imple-
mented in the present generalization, improving the perfor-
mance even more. This generalization makes possible the
solution of larger systems than have been presented.
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