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Generalized synchronization of chaos in directionally coupled chaotic systems
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Synchronization of chaotic systems is frequently taken to mean actual equality of the variables of the
coupled systems as they evolve in time. We explore a generalization of this condition, which equates
dynamical variables from one subsystem with a function of the variables of another subsystem. This
means that synchronization implies a collapse of the overall evolution onto a subspace of the system at-
tractor in full space. We explore this idea in systems where a response system y(t) is driven with the out-
put of a driving system x(t), but there is no feedback to the driver. We lose generality but gain tractabili-
ty with this restriction. To investigate the existence of the synchronization condition y(t)=P(x(t)) we

introduce the idea of mutual false nearest neighbors to determine when closeness in response space im-

plies closeness in driving space. The synchronization condition also implies that the response dynamics
is determined by the drive alone, and we provide tests for this as well. Examples are drawn from com-
puter simulations on various known cases of synchronization and on data from nonlinear electrical cir-
cuits. Determining the presence of generalized synchronization will be quite important when one has
only scalar observations from the drive and from the response systems since the use of time delay (or
other) embedding methods will produce "imperfect" coordinates in which strict equality of the syn-
chronized variables is unlikely to transpire.

PACS number(s): 05.45.+b, 84.30.Ng, 07.05.—t

I. INTRODUCTION

Synchronization among dynamical variables in coupled
nonlinear systems exhibiting chaotic motions would ap-
pear to be almost an oxymoron as the definition of chaos
includes the rapid decorrelation of nearby orbits due to
the instabilities throughout phase space. Nonetheless
[1—3], it is quite straightforward to establish situations
where synchronization occurs between signals, each of
which is chaotic. This synchronization has clear applica-
tions to communications [4—6] and control [7,8]. Fur-
ther, it may be responsible for the saturation of the in-
variant characteristics of chaos in chains of coupled non-
linear oscillators and in more complicated systems [9,10].

The synchronized chaotic oscillations, which have been
most studied in the vast literature on the subject, are
those where two coupled systems evolve according to ex-
actly the same dynamics, that is, when the dynamical
variables of the two systems are proportional to each
other. There are two categories of systems where this
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sort of behavior is observed. The first category intro-
duced by Pecora and Carroll [3,11] consists of a driving
system, which exhibits chaotic behavior, and a response
system. The latter is identical to the driving system ex-
cept that some dynamical variables in it are set identical-
ly equal to the variables in the driving system. The
second category includes coupled systems, which at zero
coupling are identical to each other, and which each
display chaotic behavior [1,2, 12]. When the appropriate
coupling is introduced, the systems exhibit identical oscil-
lations associated with the onset of synchronization.
Each of these categories represent degenerate cases, since
the region in parameter space where this identity between
driving and response systems can be observed is small
indeed.

The development of a theoretical basis for synchroni-
zation of chaotic oscillations and for many of its practical
applications calls for an expanded framework for synch-
ronization. A step in this direction can be made by
adopting the view of chaotic synchronization discussed
by Afraimovich, Verichev, and Rabinovich [2]. Their
viewpoint includes synchronization when the coupled
chaotic systems are di6'erent and the form of coupling is
unrestricted. Unfortunately, this general framework is
dii5cult to convert into practical algorithms for analysis
of chaotic synchronization in real physical systems.

In this paper, we limit ourselves to the less complicated
case of forced synchronization between two coupled sys-
tems. The full system consists of an autonomous driving
system and a response system. The chaotic dynamics of
the driving system does not depend on the parameters of
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the response system, so the connection between the sys-
tems is unidirectional. Let us call the vector of variables
of the driving system x and the vector of variables of the
response system y. x is in the phase space of the driving
system D; y, in the state space R. If there is a transfor-
mation p from the trajectories of the attractor in D space
to the trajectories in R space, we say the x and y systems
are synchronized. The properties of this transformation
do not depend upon the initial conditions in the basin of
attraction of the system attractor. If we call the trajecto-
ry of the response system y(t), [y&Rj and that of the
driving system x(t), [x&D], then the transformation as-
sociated with synchronized motions on the overall chaot-
ic attractor is y(t)=P(x(t)). Clearly the orbits of the
overall system lie in a subspace of the whole state space
De R.

One typically studies only the case when P is the iden-
tity [1—3, 13—16]. In such a case, synchronization can be
detected by looking at two variables, one chosen from the
driving system and one from the response system. With a
proper choice of these variables, call them x;(t) from the
driving system and y; (t) from the response system, the
synchronized motion becomes simply a sharp line in y;(t)
versus x, (t) plane [3,13]. If the transformation P is rich-
er, the projection may no longer be a line but may be-
come a rather complicated geometrical object [17,18].
We call this kind of synchronized chaotic behavior gen-
eralized synchronization, and that is the matter we ex-
plore in this paper.

In this paper we describe a numerical method called
mutual false nearest neighbors, which allows us to detect
the presence of the continuous transformation P and
thereby to distinguish between synchronized and unsyn-
chronized behaviors of coupled chaotic systems. The
method relies on the technique of time delay phase space
reconstruction [19—21]. If a synchronizing relationship
of the form y(t)=P(x(t)) occurs, it means that the
motion in the full D R phase space has collapsed onto a
subspace which is the manifold of synchronized motions.
By observing the evolution of the response system in one
scalar variable r(t), we can reconstruct the chaotic tra-
jectory r(t) in the embedding phase space RE from r (t)
and its time delays using d„dimensional vectors

r(t)=(r(t), r(t +T), r(t+2T), . . . , r(t+(d„—l)T)),

istence of @ we will explore the idea of mutual false
nearest neighbors, which tests whether neighborliness in
DE translates in a practical, numerical sense to neighbor-
liness in RE. To test this method, we apply it to a few ex-
amples where the transformation P is known. We also
use the method to study generalized synchronization in
an experiment with chaotic electronic circuits.

It is important to note that if there is a relationship
r(t)=f(d(t)) between the drive system orbits d(t) and
the response system orbits r(t), then the critical charac-
teristic of such synchronization is the ability to predict
the response from observations of the drive [22]. Clearly,
for practical applications of generalized synchronization,
predictability is the crucial feature. In addition to the
mutual false nearest neighbors test, we will examine as-
pects of the predictability of the coupled systems. Cer-
tainly when no relationship of the form suggested occurs,
then observations of d(t) do not allow us to unambigu-
ously determine the behavior of the response system r(t),
and prediction of r(t) from d(t) will not work.

In Sec. II of this paper, we exhibit a class of systems
that can be synchronized by a given driving signal when
the transformation P is a known vector function or func-
tional. The point of working with these "handmade"
transformations is to emphasize that even when we have
synchronized systems in which y( t )=x( t ) holds, observ-
ing the systems in another coordinate system may reveal
a more structured and complex relationship among the
variables. Since time delay embedding does not offer the
luxury of choosing a set of coordinates in which synch-
ronization need be so simple as r(t) =d(t), it is important
to recognize the effect of one's coordinate system on the
decision about the existence of synchronization. In Sec.
III, we describe the mutual false nearest neighbor algo-
rithm which is one of our tests of the existence of the
transformation P. The result of its application to our test
systems is also described. In Sec. IV, we apply the nu-
merical method to characterize chaotic synchronization
in an experiment with nonlinear electronic circuits. In
Sec. V, we discuss other tests of the generalized synch-
ronization based on the predictability of the response in a
drive reconstructed phase space. Section VI contains our
conclusions and additional discussion. An Appendix
contains several general remarks about topics in the main
body of the paper.

and in that space, if synchronization occurs, we expect
there to be a continuous functional relation

II. EXAMPLES OF GENERALIZED
SYNCHRONIZATION

r(t)=g(d(r)), (2)

where d(t) is the chaotic trajectory reconstructed in the
embedding space DE from scalar variables taken from
the drive system. If d„ is large enough, then, due to the
existence of g, many properties of the trajectories of the
synchronized chaotic attractor in the embedding space
RE and of the related trajectories in Dz should be simi-
lar. In particular, any trajectories of the attractor gen-
erated in DE which are close to each other will be unfold-
ed into close trajectories in RE. So, to detect the ex-

We start with a description of a principle for synchron-
izing identical systems with individual chaotic behavior.
The driving system is autonomous and satisfies

=F( ( ))
dt

(3)

dy(t) =F(y(t)) —&.(y(t) —x(t)) .
dt

(4)

This form of the coupling always [13,23] allows simple

In this paper we always consider coupling to the response
system in the straightforward fashion
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synchronized motion of the form

x(t)=y(t),
which can be made stable by appropriate choices of the
coupling matrix G.

The examples we look at in this section are artificial as
we change the appearance of the synchronized motion by
hand, but they provide a testbed for our numerical algo-
rithms discussed below. Our requirement is to find
methods to detect generalized synchronization and not
just the identity relationship between driving and
response variables, which ensues in the "correct" coordi-
nates.

We begin with two systems synchronized by virtue of
the coupling just shown, and then we apply a transforma-
tion into one of the coordinates, say y, to obtain new
variables x in which the relationship expressing synch-
ronization is more subtle. Since we know by construction
that the systems are synchronized, our algorithms should
be able to establish this fact even after the transforma-
tion. In this section we shall present a few examples illus-
trating this procedure. Some of these examples will be
used later to test the numerical methods described in
Secs. III and V. A more general formulation of this pro-
cedure can be found in the Appendix.
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A. Two examples of generalized synchronization

We now look at two examples that illustrate our main
points more concretely. In the first, we consider two cou-
pled Rossler oscillators: driving system,
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x ( =(x2+x3 ),
x2 =x &+0.2x2,

x3 0.2+x3(x& —p)

FIG. 1. The projection of the chaotic attractor generated by
the system of Eqs. (6) and (7) onto the plane (xz,y2): (a) syn-
chronized behavior and (b) unsynchronized behavior.

response system,

6 = —(y2+y3) —g(yi —xi »
y2 =y&+0.2y2

y3=o 2+y3(yi —S»
with p=5. 7.

The integral manifold

x2=y2 ~ x3 =y3 (8)

which contains the trajectories of synchronized motions,
is stable at g =0.20 and unstable at g =0.15. To confirm
this we computed the conditional Lyapunov exponents
[3,12] associated with nonautonomous behavior of the
response system for these two values of the coupling pa-
rameter. The largest conditional Lyapunov exponent was—0.021 at g =0.20 and +0.024 at g =0.15.

Suppose we know only the variables x2 and y2 of these
systems (6) and (7). Then a plot of y2 versus x2 will indi-
cate the onset of synchronization when yz(t) =xz(t).
This plot for g =0.20, shown in Fig. 1(a), is a sharp
straight line, as it should be for these synchronized oscil-
lations (8). Figure 1(b) shows the same plot for g =0.1S.

and we choose a =0.4 and b = —0.008 in what follows.
This system should have the same characteristics as the
original. The equations for this response system become

z, = —[z2+ (1—a)z3 bz, ]—g(z, ——x, (t) ),
z~ =z, +0.2(z~ —az3 bz3)—

+(a +2bz3 )[0.2+z3(z, —p) ], (10)

z3 =0.2+z3(z& —p) .

When we plot z2 versus x2 for the synchronized state at
g =0.20, we no longer see a straight line but the more
complex object in Fig. 2(a). The plot of z2 versus x2 for
the synchronized state looks "cloudy" or "fuzzy. "

Clearly this corresponds to unsynchronized motions in
the coupled systems.

Now we construct a response system that exhibits gen-
eralized synchronization using the procedure described for
a general case in the Appendix Sec. 1. We make the sim-
ple nonlinear transformation among the response vari-
ables

z1 =y1 z2 =y2+ay3 +Ay 3 z3 =y32
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has been studied in detail in [12,24]. Both driving and
response circuits consist of a nonlinear converter and a
linear feedback. The feedback includes the low pass filter
RC' and the resonant circuit rLC. The behavior of these
two electronic circuits with identical parameters can be
modeled by the following equations [13]:driving system,

X) =X2

X2 = X ) 5X2+X3

x3=r[&f(xt )
—x3]—ox&

response system,

12.0

8.0

i2 = —
X ~

—&X2+X3

3 3 1 [~f(yt) 3 3] (ry—2

(12)

4.0

00
N

-4 0

where xt(t), x3(t), y&(t), and y3(t) are the voltages
across the capacitors C&, C'„C2, and C2, respectively.
x,(t)=J, (L, /C, )' ' andy, (t)=Jz(L, /Cz)' ' with J, (t)
the currents through the inductors L;.
t=t, )q(L)C() ' . The nonlinear response of the con-
verter, indicated by f (x) in the equations, can be approx-
imated by the piecewise nonlinear function
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0.528, if x + —1.2
f(x)= x(1—x ), if —1.2&x &1.2

—0.528, if x ~ 1.2,

Nonetheless, since all we did was perform a smooth
change of coordinates, we know that synchronization, as
a basic property of these coupled oscillators, cannot have
been lost. A similar plot for g =0.15, which corresponds
to unsynchronized motions, is shown in Fig. 2(b).

In the second example, we consider chaotic synchroni-
zation in the two coupled nonlinear electronic circuits
shown in Fig. 3. The chaotic dynamics of these circuits

xi(t) )',(t) )N F()') )

L]

J, (i) c,p

vv
x(t) R

OP amp
C2 J'(t}

I

I

12

FIG. 2. The projection of the chaotic attractor generated by
the system of Eqs. (6) and (10) on the plane (x2,z2): (a) syn-
chronized behavior and (b) unsynchronized behavior.

and the parameter a entering the model equations is the
gain of the nonlinear converter at x, =0 (y, =0). The
other parameters of the model are dependent on the
linear feedback loop through

QL;C; C;5=5, =r,
R;C

C;
cr =a- =

l

(14)

1 ~1 2 ~2 3 +3 +2 (15)

where index i = 1 corresponds to the parameters of drive
circuit and i =2 to the parameters of the response circuit,
see Fig. 3. The strength of unidirectional coupling from
one system to the other is controlled by g = 1/R
(L, /C, )' . It is known [13] that the manifold of syn-
chronized motions (8) is stable for g higher than some
critical value, which depends on the parameters of the
circuit.

Again we make a transformation of coordinates on the
response system. This time it is the linear change of vari-
ables

Driving circuit Response circuit

FIG. 3. The circuit diagram of the experiment with driving
and response circuits. Nonlinear converters transform the input
X into the output F(X)=a;f(X);see [12] for details. An opera-
tional amplifier is employed to provide unidirectional coupling.
The value of the coupling is controlled by the resistor R.

It is easy to verify that the response circuit equations pro-
duced by this transformation differs from the original one
by the value of the parameters for the linear feedback and
by having a different function for the nonlinear converter,
namely,
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z, =zz —g(z, x—, (t)),
zp z] 5 zp +z3

3 r'I: J( 1) 31 o 2

where

(16)

5'=5, —a,
o'=o, +a(y, —5, +a ),

71
1+(a/y, )

af (z)+ (a /y &
)z

1+(&/yi)
a (z)=

(17)

B. Systems obtained by an integral-algebraic transformation

The class of coordinate changes described above does
not produce the most general family of response systems,

2.0

By construction, this new response circuit (16) is syn-
chronized with the same driving system as above (11).
Equations (11) and (16) describe two coupled nonlinear
circuits both of which have the circuit diagrams shown in
Fig. 3. The values of the parameters in the linear feed-
back of the response circuit and the characteristic of non-
linear converter are given by (17). In this case, even
when the circuits are synchronized, the plot of the volt-
age across capacitor Cz versus the voltage across C& has
a rich structure as seen in Fig. 4, although the plot of
voltages across capacitors Cz and C& is still a straight
line. The fact that two different chaotic circuits can be
synchronized in a generalized sense is of significant prac-
tical importance because in practice we can never con-
struct two absolutely identical circuits, and it is crucial
for all applications to know that a parameter mismatch
does not always destroy the manifold of synchronized
motions, but may only change its shape.

which can be synchronized by a given driving system.
We only allowed changes of coordinates local in time, so
it excludes the possibility of synchronization with some
time delay or some short-term memory. To illustrate
how one can generalize the procedure described in the
previous section to include these effects, we consider a
preceding example.

To construct a system that wi11 exhibit generalized
synchronization with short-term memory, we employ the
general strategy described in the Appendix Sec. 2. We
start with the following driving and response systems for
variables X and P correspondingly: driving system,

x 1
= —(xz+x3 ),

x& —x
&
+0.2xz,

x3 =0.2+x3(x, —p),
x = —yx +ax j,

(18)

response system,

6 = —(yz+») —g(yi —xi »
yq =y, +0.2y~,

y3=0 2+y3(yi —
S ),

y = —yy +ay&,

(19)

where y &0. System (18) and (19) are similar to the sys-
tem of the two coupled Rossler Eqs. (6) and (7). The ad-
ditional variables x (r) andy (t) introduce a short-term
memory into the system. The equations that describe the
dynamics of these variables decouple from the rest of the
equations and one has for long times

x (t)=a e r" 'x, (r)dr,
(20)

y (t)=a f e r" 'y&(r)dr,

valid with exponential accuracy. Therefore, the intro-
duction of x and y has no efFect on synchronization in
the system, and the driving system will synchronize the
response system at the same values of g as in the example
with the two coupled Rossler systems. Now we follow
the procedure from the preceding section to construct an
equivalent response system, which is connected with the
original one by the following transformation:

0.0
N

-1.0

-2.0
-3.0

I

-2.0 -1.0 0.0
x,(t)

I

2.0 3.0

FICx. 4. The plot of voltage across capacitor C& vs the voltage
across capacitor C&, see Fig. 3. The data was obtained by nu-
merical simulation of (11)and (12) with a =32, y =0.1, 5=0.43,
cr =0.72, a =0.4, and g = 1.0.

ZI =y

z2 y2+ym yz+a e " 'y|(r)dr,

z3

z4 =ym

This construction leads to the new response system X;

z, = —(zz+z3 —
z4, ) —g(z, —x, ),

zz =z, +0.2(zz —z~ ) —yz4 +az, ,

z3 0.2+z3(zf p)

z4= —yz4+az& .

(21)

(22)
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Z) =X)~

z2 x2++ e xl(1 )d'r,

Z3 =X3,
(23)

z, =a e &" 'x, (r)dr.

Figures 5(a) and 5(b) show the projections of the attractor
in the combined driving + response space onto the
(x2,z2) plane. In all computations we used a=10, and
y=1. Figure 5(a) presents the plot of z2 versus x2 for
g =0.20. As in the case considered in Sec. II A, the plot
looks very fuzzy. One can mistakenly draw the con-

Note that x (t) still decouples from the rest of the equa-
tions and, therefore, can be omitted. Therefore, systems
(6) and (22) are synchronized in a generalized sense when

g is such that systems (6) and (7) are synchronized. The
system comprised of Eqs. (6) and (22) is an example of
synchronization between two systems having a different
number of degrees of freedom.

When the systems (18) and (19) are synchronized X=/,
and it follows that the systems (6) and (22) are synchron-
ized in the sense that

elusion that the oscillations are not synchronized, while
we just demonstrated the opposite. The plot of z2 versus
x2 for g =0.15 corresponding to unsynchronized
behavior is shown in Fig. 5(b).

Once again we have produced a "new" system from a
known synchronized driving and response system by a
change of variables which, of course, does not change the
dynamics but only produces a different set of coordinates
in which to view the dynamics. In the new coordinates,
the appearance of synchronization is changed, and we
need to test more than the equality of equivalent coordi-
nates to uncover the synchronization between the sys-
tems. We now turn to some tests for this.

III. MUTUAL FALSE NEAREST NEIGHBORS

y(t)=P(x(t)) . (24)

By making changes of coordinates we demonstrated in
the previous sections that simply looking for synchroni-
zation as the identity matching of drive and response
variables y(t)=x(t) will not uncover synchronization in
general settings. For this we require an algorithm that
rests on the existence of the generalized synchronization
condition
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FIG. 5. The projection of the chaotic attractor generated by
system (6) and (22) on the plane (x2,z2): (a) synchronized
behavior and (b) unsynchronized behavior.

We have emphasized that it is this condition among drive
variables x(t) and response variables y(t) that is the
essence of synchronization of a driving and a response
system. In this section we explore one requirement im-
posed by this connection; in the next section, we examine
another. In our concluding section we will mention oth-
ers that we have not yet explored.

The keystone of the characteristic of coupled systems
that we are considering in this section is the concept of
local neighborliness. When trajectories in the phase
spaces of driving and response systems are connected by
y(t)=P(x(t)), two close states in the phase space of the
response system correspond to two close states in the
space of the driving system. Let us consider a set of
points in the spaces of the coupled systems coming from
finite segments of trajectories sampled at moments of
time t„=nt„&;„where n is integer. For simplicity, we
shall look at the case when the transformation P is alge-
braic. Pick an arbitrary point x„=x(t„) in the phase
space of the driving system. Suppose the nearest phase
space neighbor of this point has time index n N~D. Then
as long as the trajectories are connected by relation (24)
the point y„ in the space of the response system will have
point y„a close neighbor.

NND

In a few words, what we are looking for is a geometric
connection between the driving and response systems
which preserves the identity of neighborhoods in state
space. This is a kind of correlation between observed
dynamical variables, one from the driving system and one
from the response system. It is not a linear correlation,
of course, as the underlying dynamics is nonlinear. We
could cast the statistical tests we are about to consider in
terms of correlations between response and driving vari-
ables. If we were to do so, we would probably prefer to
seek a nonlinear correlation among these variables using
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a statistic similar to mutual information [21]. This is
quite computationally intensive, and for our purposes we
have found the statistics below to be adequate, if not fully
nonlinear. Indeed, they emphasize the geometry more
than the nonlinearity of the dynamics.

This property can be characterized by a numerical pa-
rameter. To form this parameter we notice that when re-
lation (24) holds and the distances between two nearest
neighbors in the phase spaces of the driving and response
systems are small, we can write

y„—y„=f(x„)—$(x„)=DP(x„)(x„—x ),

(26)

This suggests that the ratio

/y„—y„/ x„—x„

I ly. —y.„,„l
' (27)

which we call the mutual false nearest neighbors (MFNN)
parameter, should be of the order of unity when the sys-
tems are synchronized in the sense that y(t)=P(x(t)).
Generally, if the synchronization relation y(t)=P(x(t))
does not hold, then this parameter should on average be
of order (size of attractor squared)/(distance between
nearest neighbors squared).

In experiments, we usually do not have the luxury of
working with the actual vectors of phase space variables.
Normally only the time series of a single variable is avail-
able to characterize the behavior of each system. There-
fore, to be able to analyze experimental as well as numeri-
cal data we will rely upon the phase space reconstruction
method [21].

Suppose we have observed a scalar time series r(n) of
some variable in the response system. We form the
response vector

r(n) =(r(n), r(n —T„),r(n 2T„), . . . , r(n ——(d„—1)T„)),
(28)

where T„ is an integer multiple of the sampling time for
the observations of the response system. T, is selected by
average mutual information [21]. We call the d„dimen-
sional space associated with these vectors RE. We also
observe a scalar time series d(t) of a variable from the
driving system and form the vector

d(m ) =(d(m), d(m —Td ),

Xd(m 2Td ), . . . , d(m —(—dd —1)Td }, (29)

where Td is an integer multiple of the sampling time for

(25)

where DP(x„) is the Jacobian matrix of transformation P
evaluated at location I„. Similarly we go to time index n

and observe the response vector y„and locate its nearest
neighbor y„which comes at time index n NNR. Again,

NNR

when y(t) =P(x(t) } we can write

y„—y„=P(x„)—P(x„)=DQ(x„)(x„—x„).

the observations of the driving system. We call the space
of these vectors Dz. d„and dd are each larger than the
respective global embedding dimensions required to un-
fold the response and the driving attractors, respectively.

By Takens' theorem, the attractor in embedding space
DE inherits all properties of the attractor of the driving
system. Similarly, when the coupling is not zero, the at-
tractor in the embedding space RE is equivalent to the at-
tractor of the whole system; driving + response. When
there is a transformation P that relates the trajectories in
the subspaces of the driving and response systems, there
must also be a transformation that relates the trajectory
in the phase space of the driving system to that in the
phase space of the combined system driving + response.
Therefore, the conclusions made above concerning the
properties of nearest neighbors for synchronized and un-
synchronized behaviors are still true when they are ap-
plied to the reconstructed spaces DE and RE.

At the same time, using the language of embedding
space reconstruction, we can give now a different inter-
pretation to this property. A criterion similar to the one
we use here forms the basis of the false neighbors method
for determining the minimum dimension that is required
to unfold the attractor without self-crossing of the trajec-
tories when one uses embedding methods to reconstruct
the attractor from time series [25]. In the false neighbors
method, one embeds the time series in a k-dimensional
space and finds pairs of nearest neighbors. Then the time
series is embedded in a space of dimension k + 1 and the
points, which were nearest neighbors in k space, are
traced into the new space. When the attractor is fully un-
folded in k space, the two spaces present equivalent char-
acterizations of the attractor. However, if the attractor is
not unfolded in k space and is unfolded in (k+1) space
some pairs of points, called false neighbors, that were
nearest neighbors in k space will no longer be nearest
neighbors in (k + 1) space. A similar picture is observed
when we consider points in the embedding space of the
driving signal and points in the embedding space of the
response signal. If r(t) can be obtained by a transforma-
tion of d(t), that is, the response system is synchronized,
then the attractors constructed in spaces RE and DE can
be considered as different embeddings of the same attrac-
tor, and because of Takens' theorem each provides an
equally appropriate set of coordinates. Therefore, if
points with time indices n and n NND were nearest neigh-
bors in DE space, they will be close neighbors in RE
space too.

Thus, we argued that the points in the embedding
spaces possess the same neighborliness properties as
points in the original spaces of physical variables, and we
can conclude that the MFNN parameter can be comput-
ed according to (27) even when it is computed using the
trajectories in embedding spaces of driving and response
instead of trajectories in original spaces of x and y.
When the systems are synchronized and d„and dd are
large enough, the MFNN parameter should be of order
one at all locations. When the systems are not synchron-
ized, this parameter is expected to be large at some loca-
tions on the attractor.

On further consideration, we find that this test has a
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few problems which are connected with the nontrivial
scaling of the MFNN parameter with the embedding di-
rnensions of driving and response. There are two causes
for these problems, both of which can make the practical
value of this test questionable. First of all, when we use a
time series of fixed length the average distance between
the nearest neighbors becomes larger and is comparable
with the size of the attractor in high embedding dimen-
sions. As a result, the denominator of (27) grows with in-
creasing embedding dimension. The numerator for un-
synchronized trajectories is always of the order of the
square of the size of the attractor and, therefore, the ratio
itself may become small as the embedding dimension in-
creases, even if there is no synchronized motion in the
system. On the other hand, when a time series of fixed
length is embedded in spaces of higher and higher ernbed-
ding dimensions, the population density in the spaces de-
creases. Eventually this leads to loss of any fine structure
at high embedding dimensions. The nearest neighbor
that is found in high-dimensional space may no longer be
a close neighbor. As a result, it becomes more and more
difficult to uncover a connection between two trajectories
when there is such a connection. The MFNN parameter
defined by (27) can be large even when the systems are
synchronized.

Thus, the variation of the parameter with embedding
dimensions occurs for two reasons. (1) The search for
neighbors is performed in spaces of changing dimensions,
and (2) the distances are computed in the spaces of
changing dimensions. The former cannot be helped.
However, without changing the main idea, we can change
the test so that all distances are computed in the same
space.

The modified MFNN parameter, which we will use
throughout the rest of the paper, is constructed as fol-
lows. We embed the response time series in the space RE
of dimension d„, which is then fixed. d„must not be less
than the minimum dimension necessary to unfold the at-
tractor corresponding to the response time series. All
distances will be computed in this space. d& is variable
and is larger than the minimum dimension needed to un-
fold the driver attractor without self-crossing. For each
d&, we go to time index n and locate the nearest neighbor
of point d(n), which comes at time index n»D. We also
find the nearest neighbor r(n»R) of point r(n) in the
response embedding space. Then, we form the ratio

Ir(& ) —r(~»D ) I'

lr(~) —r(~~~R)l'
' (30)

which is a less symmetric form of (27). We evaluate the
squares of Cartesian distances instead of the distances
themselves to reduce the computation time. Finally, to
compensate for the increase of the MFNN parameter in
high dimensions due to the sparseness of the phase space
population, we divide (30) by the same parameter, com-
puted for the driving time series. This brings us to the
final form of the MFNN parameter

Id'(n) —d'(n»D )l' r(~) —r(~»D)l
P(n, d„,dz) =

]d'(n) —d'(n»D)) )r(n) —r(n»a)[
(31)

where d' are vectors of the driving time series embedded
in the space of dimension d„and d'(n ~~D ) .is the nearest
neighbor of point d (n) in this d„dimensional space. This
parameter should on the average be of order unity for
synchronized trajectories. P ( n, d„,dz ) ))1 for unsyn-
chronized trajectories. From now on we will refer to this
quantity as the mutual false nearest neighbor parameter.

It should be understood that P(n, d„,dz) is a local
characteristic of the attractor in the combined DE+RE
space. To obtain reliable information about the regime in
which the system evolves as synchronized or unsynchron-
ized motion, we must determine a statistical ensemble of
MFNN values computed at a number of locations on the
attractor. Examining the statistical distribution of
MFNN is especially important when one studies the sys-
tern close to the onset of synchronization. In many cases,
synchronized chaotic motions appear after an intermit-
tent regime in which the system evolves nearly on the
manifold of synchronized motions, but leaves it for short
periods of time during unsynchronized outbursts. In this
case, P(n, d„,dz) will be of order unity at almost all
points but will become large at a small number of points
corresponding to these outbursts. Thus, it is very in-
structive to study the histograms of a set of MFNN pa-
rameters to obtain the maximum information about the
system.

However, as we shall demonstrate in the following sec-
tions, one can distinguish between synchronized and un-
synchronized behaviors by studying the average value
P(d„,d& ) of the MFNN parameter alone.

Testing mutual false nearest neighbors

To check the effectiveness of the mutual false nearest
neighbor method, we apply it to the systems (6) and (10),
and (6) and (22). In each of the calculations discussed in
this section, we used a total of 60000 data points. We
employed a fourth-order Runge-Kutta integrator with
time step 0.02 to generate the data, and the data was sam-
pled with time step 0.8. The time delays T, and T& were
each taken to be five. The embedding dimension d„=4
was selected, according to the method described in
[21,25], and only dz was varied in our calculations. We
computed P(n, d„,dz) at 10000 different locations on the
attractor and used them to evaluate the average values
P(d„,dz) of the MFNN parameter. Figures 2 and 5

display the dependence of drive versus response time
series for systems and (6) and (10), and (6) and (22), re-
spectively, for the case when the synchronization mani-
fold is stable and for the case when it is not. In the latter
situation, the synchronization is disrupted with outbursts
away from the synchronization manifold. These out-
bursts, which have an intermittent character, are fre-
quently observed close to the onset of synchronization of
chaotic motions [26,27]. For comparison we refer to
similar plots for two identical coupled Rossler attractors
(6) and (7), as shown in Fig. l. One can see that plots in
Figs. 2(a) and 5(a) look very fuzzy, making it hard to
identify synchronization by traditional subjective
methods.

Figure 6 shows P(d„=4,dz ) =P(dz ) as a function—of
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and response circuits were collected with a sampling rate
50 ps.

The chaotic attractor generated by the drive circuit is
shown in Fig. 9 as a projection onto the (xl, x3) plane.
When the parameters of the response circuit are tuned to
be the same as those of the driving circuit (R2 =R I ), and
the coupling is strong enough, the circuits produce iden-
tical synchronized chaotic oscillations. This synchron-
ized behavior can be easily detected by the analysis of
projection of the trajectory onto the plane of the variables
(x „yl ), as one can see in Fig. 10(a). This plot shows a
straight line, which is a projection of the manifold of syn-
chronized motions. When the coupling becomes less
than some critical value (R =0.35 kQ) the manifold loses
stability and the chaotic oscillations in the response cir-
cuit become unsynchronized. The projection onto the
(x &,yl ) plane for R =1.0 kQ is shown in Fig. 10(b) for
the unsynchronized oscillations.

It was shown in Sec. II and in [28] that the circuits can
display generalized synchronization. To investigate the
transition from this generalized synchronization to un-
synchronized oscillations, we detune the parameter R 2 in
the response circuit to the value R2 =2.71 kQ and study
chaotic motions generated by the circuits for different
values of coupling parameters. The chaotic attractors
corresponding to synchronized and unsynchronized oscil-
lations, which occur for two different values of coupling
parameter, are shown in Fig. 11.

In order to test for the existence of the functional rela-
tion between driving and response trajectories, which in-
dicates synchronized chaotic behavior of the circuits with
different parameters, we employ the MFNN analysis just
described. We used 17000 data points in each time series
for phase space reconstruction, which was done with
T„=Td =5 and d„=5. Various P(d&) calculated from
the data generated by the circuits for different values of
the coupling parameter are presented in Fig. 12. When R
equals zero and 0.15 kQ, P(dd ) remains close to unity for
large dd, and clearly indicates synchronization between

the driving and the response circuits. For data with R
equal to 1.0 and 0.5 kQ, large values of P(dd ) at high dd
means that the motions in the circuits are unsynchron-
Ized.

Figure 13 depicts (P )
' for dd = 10 as a function of the

resistance R of the coupling. One can see that this pa-
rameter is small for R =0.5 —1.0 kQ, which corresponds
to completely unsynchronized motion, and saturates at
about 0.6—0.7 when the coupling is strong O.O~R ~0.2
kQ indicating the onset of synchronization. The transi-
tion interval 0.2 kQ &R &0.5 kQ corresponds to inter-
mittent behavior.

V. PREDICTABILITY TESTS FOR GENERALIZED
SYNCHRONIZATION

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0
-3.0

I

-2.0
I

-1.0
I

0.0
x, (t)

1.0 2.0 3.0

The fact that a functional relationship between the sig-
nals from the driving system and the signals from the
response system exists suggests that this function P can
be found and used for prediction purposes. Indeed, if two

3.0

3.0

2,0

2.0

1.0

1.0

0.0

0.0—
)C

-1.0

-2.0

-2.0

-3.0
-3.0 -2.0

I

-1.0
I

0.0
x, (t)

I

1.0
I

2.0 3.0

FICi. 9. The projection of the chaotic attractor onto the
plane (x&,x3). These are measurements from the driving cir-
cuit.

-3.0
-3.0

I

-2.0
I

-1.0
I

0.0
x, (t)

I

1.0
I

2.0 3.0

FIG. 10. The projection of the chaotic attractor on the plane
(xl,y&) measured from the circuits with identical parameters:
(a) synchronized motions (R =0.2 kQ) and (b) unsynchronized
motions (R =1.0 k 0).



51990 RULKOV, SUSHCHIK, TSIMRING, AND ABARBANEL

3.0 1.0

2.0
0.8

1.0
0.6

0.0

-1.0

-2.0
0.2

-3.0
-3.0

I

-2.0 -1.0
I

0.0
x, (t)

I

1.0
I

2.0 3.0
0.0

0 00 020 0.40 0.60
R

0.80
BL

1.00

3.0

2.0

b
FIG. 13. P compute a

——1
t d =10 as a function of the cou-

~ ~

pling resistor or e eR f th experiment with coupled electronic cir-
cuits.

1.0

0.0

-1.0

-2.0

-3.0
-3.0

I

-2.0
I

-1.0 0.0
x, (t)

p ')

1

l, ,

1.0
I

2.0 3.0

h
'

d then the state of the responses stems are sync ronize,
d' d solely by knowing the state of asystem can be pre icte so e

es is ratherif the relation between two variables is rat er
comp icate an un
in ,'22, where it was demonstrated that twotwo different vari-

haotic s stem can bebles from one low-dimensiona c a
'

ya es ro
constr uctin theirpre ic e ind' t d

'
terms of one another by rec

in s ace.1 lation in an appropriate embedding p
For the reconstruction, one needs a segmen o
t neous measurements of oth variables.

here. We will be oo-The same approach can be use e
ing for a connection

FIG. 11. The projection of the chaototic attractor on the plane
) measured from e cif th ircuits with different parameters;

(R =0.15 kQ) and (b) unsynchronized(a) synchronized motions R =
motions (R =0.5 kQ).

1000

r(n) =G(d(n )), (32)

hich we can deduce working in the embedding space of

f ld the attractor of the driver. Here d n isenough to un o e a
a vector orme rf d from a scalar time series d(n ) in
dance with

d(m ) =(d(m ),d(m —Tz),

Xd(m 2T„), . . . , d(m——(d~ —I T~ (33)

100

iCL

10

9.08.07.06.0 10.05.0

d

FIG. 12. P(dz ) as a function of dz for tfor the data collected from
'ts: circles, R =0.00 kQ; squares,the coupled electronic circui s: ci

R =0.10 kQ; diamonds, R =0.15 kQ; triangles up,
kQ; stars, R ==0.3 kQ triangles left, R =0.50 kQ; triangles
right, R =1.00 kQ.

ave some simultaneousTo find this connection we must ave
r n). If such a reconstructioneasurements of d(n) and

is indeed possi e, i'bl t signals that the driver an t e
n

'
d If the errors in the predictionres onse are sync ronize .respo

ns that there is no synchroniza-

functional reconstruction
gorithm as ing

' '
L22]—local polynomial mappings. n ac,

r . In this ap-ded onl local linear maps in our work.
'

p-
6 ( ) is represented as aproach, the nononlinear function x is
a s different for differentco ec'11 tion of local polynomial maps, i eren o

T e arameters onei hborhoods in the phase space. The p
b a least squares fit usingeach map are determined y a

easurements of d (n) and r n .known simultaneous measu

those vectors that are neighbors of a given vector n in
the embedding space.



51 GENERALIZED SYNCHRONIZATION OF CHAOS IN. . . 991

In order to test the predictive ability of our model, we
divide our data into two segments. The first segment of
NT pairs [d(n ), r(n ) I we use for model "training. " At
the remaining Xz =N —XT pairs, we compare the pre-
dicted values r (n) with the measured values r(n) point
by point. The difference

where

((r(n ) —rp(n ) ) ) (~(n )&)

2((r(n) —(r(n)) )')

R

N

(35)

(36)

r)(n)=(r(n) —r (n))/b, (r) (34)

is a useful measure of the quality of prediction. We nor-
malize here by the standard deviation b,(r) of the
response signal. In the present case, for a properly
chosen time delay and high enough embedding dimen-
sion, it characterizes primarily the presence of synchroni-
zation. In Fig. 14, we show this difference for the experi-
mental data from the electronic circuit for two values of
the coupling parameter. One can see that at R =0.20 kQ
the magnitude of the variations is significantly reduced as
compared to the case R =0.30 kQ. Intermittent bursts
of fluctuations are also clearly seen here. An analogous
intermittent picture is observed for numerically generat-
ed data from the coupled Rossler systems. For R ~0. 15
kQ, the prediction error t)(n) decreases sharply and does
not exceed 0.2.

It is convenient to characterize the average quality of
prediction by

Q should be very small for complete synchronization and
will be 0 (1) if the quality of prediction is very poor; that
is, r(n) and r (n) are not correlated. In Figs. 15(a) and
15(b) we present this parameter Q as a function of the
coupling parameter for coupled Rossler systems [Fig.
15(a)] and resistance for coupled electronic circuits [Fig.
15(b)]. In agreement with the MFNN test, we observe a
sharp transition from the synchronized state to unsyn-
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FIG. 14. Prediction error g(n ) as a function of n for the ex-
perimental data from two coupled electronic circuits. Local
linear predictor in the four-dimensional embedding space were
built using a learning set of 10000 pairs [d(n ), r(n ) I, time delay
T=5: (a) R =0.3 and (b) R =0.2. Sporadic bursts of large er-
rors associated with regions of desynchronization on the attrac-
tor, are seen in both cases; however in (b) case they are weaker
and sparser.

FIR. 15. Averaged relative prediction error Q computed by
formula (35) for the coupled Rossler systems (a) and coupled
electronic circuits (b) vs control parameter: g for the Rossler
systems and resistance 8 for the electronic circuits. Local
linear predictors in the four-dimensional embedding space were
built using a learning set of 10000 pairs [d(n ), r(n ) I, and a time
delay T=5 in both cases. Transition to a synchronized state is
associated with a sharp decrease of Q.
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chronized state at the same values of coupling; g =0.18
for Rossler systems and R =0.30 kQ for electronic cir-
cuits.

VI. CONCLUSION

When one couples two chaotic systems, the natural ex-
pectation is that the whole system wi11 perform oscilla-
tions, perhaps themselves chaotic, in the full phase space
of the two systems. If the two systems are coupled in
such a fashion that their variables act synchronously,
then clearly only a submanifold of the full joint phase
space is being occupied, and this synchronization
represents a collapse of evolution in a larger phase space
down to this submanifold. We see this in the emergence,
for example, of a limit cycle in any individual chaotic sys-
tem, for the behavior in a phase space of dimension three
or larger collapses at some parameter settings to motion
on a one-dimensional submanifold: the limit cycle itself.
In the case of two coupled chaotic oscillators, the col-
lapse onto the submanifold need not be accompanied by
the variables from one oscillator acting in an identical
fashion to the variables from the second oscillator. This
has been a comfortable and often realized version of the
signature of synchronization of coupled systems, but it
rests on having both identical systems coupled together
and on viewing these identical systems in precisely the
same coordinate system. A change of coordinate system
by a smooth change of variables, sampling the system
through one or a few variables and building up the phase
space through time delay embedding, or coupling two
nonidentical systems will almost surely result in synch-
ronization that does not manifest itself in the identical
temporal evolution of variables from each of the coupled
systems.

In this paper we began the exploration, using both
simulated and experimental data from nonlinear electri-
cal circuits, of a form of generalized synchronization in
which dynamical variables r(t) from one system, called
the response, were determined in terms of the dynamics
d(t) of another, called the drive. We studied here
methods for exposing the existence of relationships of the
form r(t)=g(d(t)), which collapse the evolution of the
full dynamics in r(t), d(t) to a submanifold. Collapse of
this form we call generalized synchronization as it en-
larges our considerations from the most explored case
when @( ) is the identity. We provided a statistical test
called mutual false nearest neighbors, which rests on the
geometrical idea that when r(t) =@(d(t)) then neighbors
in r(t) space are naturally connected with neighbors in
d(t) space. We were able to show in several examples
that this test clearly distinguishes synchronized from
nonsynchronized motions in the full d(t)er(t) evolution
even when we did not know the function g( ) and,
indeed, when we only observed one component of the
drive or response dynamics and then built the phase
spaces by time delay reconstruction.

We also demonstrated, under the same circumstances
of ignorance of the synchronization function or of the full
dynamical phase space, that the existence of the function-
al connection r(t) =f(d(t)) implies that the response dy-
namics is predictable in terms of the drive dynamics

alone. This is the essence of synchronization in our view,
and certainly underlies any applications one would wish
to make of the synchronization phenomenon. Our
method for establishing this predictability rested on mak-
ing local polynomial models connecting a variable r(t)
from the response system to the drive dynamics as
r(t)=G(d(t)). These models were "learned" from joint
observations of the response and drive variables and then
shown to hold for further observations of the coupled sys-
tems. When the systems are synchronized, the errors in
learning G( ) are consistently small, and as one changes
parameters to desynchronize the coupled oscillators,
these errors rise substantially.

In this paper we focused our attention on drive and
response systems, which were coupled unidirectionally.
No feedback from the response system back to the drive
was considered. Clearly this is only a subset of the possi-
ble settings where synchronization can occur. Our
geometric and predictability tests for synchronization
will be valid and useful in the much larger class of possi-
ble couplings and mutual feedbacks, which may occur
among dynamical oscillators. Our choice of unidirection-
al coupling was made to allow us to establish clearly syn-
chronized systems, which we could then examine in
changed coordinate systems and which we could then an-
alyze using time delay embedding, and do all this in cir-
cumstances where we knew the parameter regimes where
synchronization occurs and regimes where it does not.

The methods developed here will have wide appli-
cability to other situations where we do not know before-
hand the kind of behavior —synchronized or
unsynchronized —and we shall utilize our tools for the
analysis of such systems in our work to follow this article.
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APPENDIX

In the main body of the paper we discussed several ex-
amples of pairs of coupled systems that exhibit general-
ized synchronization of chaos. These pairs were pro-
duced by applying a transformation to identical systems
that had synchronized in the sense that the dynamical
variables in the driving system and in the response system
demonstrated identical oscillations. Here we give a gen-
eral context to those changes of variable that illustrate
the details of this procedure.
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1. Response systems transformed by an algebraic relation where I has the form

A particularly simple case occurs when we change
response variables using a local algebraic vector function.
Suppose we change the variables in (4) from y to

Ck 0
0 0 (A7)

z=P(y), (Al)

where 4 is a continuous invertible vector function.
Differentiating (Al) with respect to time and using (4),
the evolution of the z(t) is

dt
=J F{$ '(z)) —J G [Q '(z) —x(t)], (A2)

where

(A3)

If the coupled driving and response systems exhibited
simple synchronization with y(t) =x(t), then the relation-
ship in (z(t), x(t)) space will not be so clean. Nonethe-
less, we would agree that the driver and the response are
synchronized even though we were not so fortunate as to
choose the "best" coordinates. This is more than just a
semantic issue arising from a self-imposed change of
coordinates since, in dealing with observed data, the
coordinates we end up working with are the time delays
of the observed dynamical variables, and these may not
be best —except that we have no other.

2. Integral-algebraic variable changes

The new response system z is given by

=J Q(y '(z)) —J I (y '(X)—x(t)),
dt

(A9)

There are some limitations imposed on the choice of
systems which describe time evolution of the vectors of
the variables x (t) and y (t). These limitations come
from the condition that this system does not introduce
new active degrees of freedom. To satisfy this, the dy-
namics of x (t) can be selected so there is an attractor in
x space, and as t +o—o, x (t) becomes independent of its
initial value x (0). In this case, the behavior of system
(A5) is completely determined by the dynamics generated
by F(x). The role of the x (t) variables is to provide a
simple filtering of the x(t) dynamics of the driving system
and to introduce time delays in the response of X( t) alone.
A similar situation occurs in the problem of synchroniza-
iton and communications using filtered signals [29].

Now we consider a new response system X produced by
a change of variables

The method that we used to produce system (22) can be
given in a general form. To do so we start with driving
and response systems (3) and (4) which, under appropri-
ate choice of Cx exhibit identical chaotic motions (5). To
introduce the effects of short-tenn memory into the sys-
tem, we supplement the driving and response systems
with dynamical variables x and y, correspondingly,
which evolve according to

where

(A10)

dx (t)
=H(x (t),x(t)),

dt

dy (t)
=H(y (t),y(t)),

dt

to form the augmented driving system

=F(x(t))
d X(t) =Q{X(t))—: d (t)

=H(x (t),x(t))
dt

and the augmented response system for variable y

dy(t)
dt

=Q(y(t)) —I (y(t) —X(t))

dy(t)
dt

=F(y(t) ) —O(y(t) —x(t) )

dy (t)
=H(y (t),y(t)),dt

(A4)

(A5)

(A6)

As was pointed out in the preceding section, the system
(A6) can be synchronized by driving x and, therefore, the
system z can also be synchronized by the same driving.
The equation governing the evolution of x (t) decouples
from the rest of equations in systems (A5) and (A9).
Thus, we constructed a response system X, whose space of
actual variables has a dimension higher than that of the
phase space of the driving system X, but which still can be
synchronized by system x.

When systems (A5) and (A6) [or, equivalently, systems
(A5) and (A9)] are synchronized y (t)=x (t). On the
other hand, the fact that the equations for x decouple
from the rest of equations and the restrictions that we ap-
plied on the choice of x imply that x can be obtained
from x by means of some integral transformation T
which is, in general, nonlinear. Thus, when the systems
are synchronized we have y (t)—:x (t)= f(x(t)) and,
naturally, f(t) =x(t). Therefore, relation (AS) means that
systems (3) and (A9) are synchronized in the sense that
z(t)=O(x(t)) where O" is some integral transformation
which is, in general, nonlinear. Relation (23), which was
derived above for synchronization of Rossler-like sys-
tems, is an example of the transformation e.
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