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Many statistical mechanical models lend themselves to a geometrical description in terms of diagrams
built out of elemental units such as bonds, plaquettes, etc. In some cases, these diagrams represent phys-
ical systems such as polymers, surfaces, etc., and can be identified occasionally with certain unphysical
limits of some spin models. These diagrams exhibit additional transitions, such as percolation, which
may not be easily detectable in the original spin model they correspond to. Thus a system of diagrams
forms an important statistical mechanical model in its own right, requiring a direct study. We introduce
an entropy function S for such a system, which possesses all the thermodynamic properties of an entro-
py. This entropy function is not the same as the usual entropy of the original statistical model to which
the diagram system is related. In particular, the equation of state can be recast in a form so that it can
be easily integrated to yield the entropy function, something that may not be easily done for the original
model. A knowledge of S allows us to obtain the free energy w by a Legendre transform. Using this ap-
proach, we calculate S and o for various geometrical objects on a Bethe or a Bethe-like lattice. This
then yields a “mean-field”” approximation for S and o for realistic lattices. These include branched poly-
mers and random surfaces among others. The entropy function o per elemental unit from which dia-
grams are built gives rise to the growth function u=exp(o), which plays an important role in locating
the singularities in the force energy and, hence, the phase transition. We also discuss the relevance of u
for the dilute limit. We illustrate our results by various examples.
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I. INTRODUCTION

The diagrammatic expansion for a variety of physical
models which, in general, include high- or low-
temperature expansion, strong coupling expansion, or
Feynman diagram expansion in continuous field theory,
is widely recognized as a powerful tool within the context
of statistical mechanics and quantum field theory [1,2].
The cluster theory of Ursell as developed by Mayer to in-
vestigate the problem of condensation of a classical gas
[3] provides an elegant and compact description of the
problem. The high-temperature diagrammatic expansion
[1,2] of the Ising model in a field and its careful investiga-
tion [4] has recently proved to be quite useful, especially
in uncovering percolation transitions which determine
the radius of convergence of the diagrammatic expansion.
These diagrams are linear in nature as they are made up
of edges of the lattice. In general, these diagrams can be
identified as representing branched polymers [5,6]. Such
identification is, indeed, quite useful, as shown recently
[4].

The Feynman diagrammatic expansion [2] in quantum
field theory is another elegant example of the power of a
geometric description of a physical model. Again, these
diagrams are linear, random paths as they are made up of
linear segments described by the propagator. The linear
nature of the diagrams is a feature of a theory with point-
like interactions.

The situation changes when we wish to describe a
theory of strings [7]. Because the interaction between
strings is no longer localized, one needs to use random
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surfaces to represent the theory of strings in terms of dia-
grams. The diagrams now are random surfaces and not
random paths. Random surface representation of lattice
gauge theories [2,8] has been very useful. In particular,
the representation enables us to draw a subtle but impor-
tant distinction between the confined and the Higgs phase
in a Z, lattice gauge theory coupled to matter [9].

The diagrammatic expansion for a physical system in-
volves diagrams which may be “one dimensional,” i.e.,
linear, or “two dimensional,” i.e., areal. Linear diagrams
are made up of basic units that are one dimensional
(D =1) while areal (or surface) diagrams are made up of
units that are two dimensional (D =2). On a lattice, a
D =1 unit is an edge or a bond of the lattice; a D =2 unit
is a plaquette. For a continuum theory, a D =1 unit is an
elemental path and a D =2 unit is an elemental surface.
The diagrams are obtained by “‘gluing” together these
elemental units according to a set of specific rules. For
example, a self-avoiding walk (SAW), also called a linear
polymer, is obtained by gluing or joining together bonds
(D =1) of a lattice, such hat no more than two bonds
share a given site of a lattice, and no loops are formed. If
the last constraint is relaxed, we get self-avoiding walks
and loops. If we relax the constraint on the valency of a
site and allow for more than two bonds to share a given
site, we get self-avoiding branched polymers. Similarly,
random surfaces are generated by gluing together pla-
quettes following some rules. If the rule enforces every
bond of the lattice to be shared by either two plaquettes
or no plaquettes, then we obtain closed planar surfaces.
If we allow a bond to have no more than two plaquettes,
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we obtain closed and open surfaces. Thus the topology of
the geometrical objects is determined by the dimension of
the basic unit and by the set of rules used to generate
them.

There are cases [7,10] where one must study geometri-
cal objects obtained from gluing basic units of dimension
D >2. Therefore it becomes obvious that a study of
geometrical objects (D = 1) is central to our understand-
ing of a variety of physical systems. In particular, since
different systems give rise to a different set of rules
governing the formation of these geometrical objects, it is
important to investigate the effect of changing rules on
the behavior of the geometrical objects which, in turn,
will provide us with insights into the behavior of corre-
sponding physical systems. This is our central goal here.

One of the important characteristics of the geometrical
picture is the growth function, to be defined more pre-
cisely in the next section. Roughly speaking, the growth
function describes how the number of configurations in-
creases as the size of the configuration increases, and is
related to the entropy function. Because of the latter
connection, the growth function plays a very useful role
in our investigation. One of the important classes of
problems is to understand the behavior of a single geome-
trical object as it grows. An understanding of a single ob-
ject is quite useful in understanding the behavior of a
large number of objects together. The former case is usu-
ally treated as a special limit called the dilute limit of the
latter case—the limit in which one probes the behavior
of a single object since objects are far apart in the limit.
The latter case, in which the number of objects is fluc-
tuating with its average controlled by an activity, corre-
sponds to a grand canonical ensemble. In contrast, the
former case is called a canonical ensemble, since the
number of objects is fixed (and is equal to unity).

In the (single-object) canonical ensemble, the growth
function characterizes the growth of a single object and is
an important quantity of physical interest as it deter-
mines the singularity of the partition function (see Sec.
II). However, even the study of a single object is not
trivial and various approximate techniques and exact
enumerations have been used to understand the nature of
the singularity.

Major progress was made when certain “unphysical”
spin systems [11-15] were identified as providing a
description of a canonical ensemble of the geometrical
objects. The “unphysical” nature of the identification is
due to an unphysical limit that must be taken in the
prescription. However, in some cases, as discussed re-
cently [16—24], such an unphysical limit violates thermo-
dynamic stability in a certain sense and the implication of
this is not well understood. Therefore it is necessary to
investigate the canonical ensemble directly without any
recourse to the so-called unphysical limit. Indeed, it is
this desire that has motivated this investigation.

One of the main reasons for considering graphical
description is that geometrical objects can exhibit two
kinds of phase transitions [25]. A transition due to a
singular free energy is usually called a thermal transition.
This transition must be distinguished from percolation
[5,6,26], known as a geometrical phase transition, which

is not accompanied by any singularity in the free energy.
However, it should be stressed at the outset that the ab-
sence of any singularity in percolation is due to a limited
parameter space for the model. By extending the param-
eter space properly, one finds that the extended free ener-
gy also exhibits singularities at percolation. Therefore
the above distinction between the two kinds of phase
transitions becomes blurred. The distinction can be made
only when considering the limited parameter space. The
occurrence of percolation in the model indicates singular-
ities in an enlarged parameter space. The percolation
transition has been studied extensively [5,6,25,26] else-
where. Therefore we focus our attention here on thermal
transitions that are associated with singularities in the
free energy.

Our approach here is to study a generic model of
geometric objects, obtained by gluing together basic units
of any D. However, for the sake of clarity, we will mostly
cite, as examples, branched polymers. But the results ob-
tained are true for any D. We do not explicitly specify
whether we deal with a canonical or a grand canonical
ensemble. Our results are, therefore, valid for both cases.
In particular, they are valid for a single-object canonical
ensemble.

A configuration I of the geometrical objects is charac-
terized by a set X (I')={x,,x,,. ..} of fixed number p of
topological quantities. Associated with each topological
quantity x; is an activity K;. The statistical weight of I"
is Wy(I') =0 on a lattice of size N. The partition func-
tion Zy is obtained by summing Wy(I') over all distinct
configurations and the free energy wy=InZy /N con-
verges to @ as N— . In the thermodynamic limit,
configurations are characterized by the set of p densities
¢=(,,,,-. . .), where ¢; represents the density corre-
sponding to x;, and we associate a free energy function
(@) with such configurations. We show that the max-
imum of w(¢) gives the free energy w in the thermo-
dynamic limit. This is our central and most important
result, showing that there is a maximization principle for
the free energy of a system of geometrical objects, wheth-
er we have a canonical ensemble or a grand canonical en-
semble. The entropy function S(¢) is obtained from w by
the usual Legendre transform: o==S(¢)+§-¢ where { is
the set of chemical potentials {InK,InK,,...} and
(-d=¢InK;+¢,InK,+ ---. This is a customary rela-
tion between the free energy @ and the entropy S. Hence
principles of traditional thermodynamics are observed in
their entirety. In particular, the entropy function satisfies
all the thermodynamic requirements including the con-
vexity conditions [27]. The maximum of the entropy
function occurs when every chemical potential vanishes:
£;=0 or K;=1. This result is universal and should not
be surprising. The entropy S of any system in traditional
thermodynamics is a function S(E ) of the internal energy
E and the entropy achieves its maximum value at infinite
temperatures, which corresponds to B=1/T =0.
Remember that (—p) is the chemical potential control-
ling E.

Since the entropy function obeys the usual thermo-
dynamic conditions, it is sufficient to yield the entire ther-
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modynamics of the system. In particular, a knowledge of
S(¢) gives the equilibrium values of ¢ for a given set
k={K;} according to {;=—03S/d¢;. Thus singularities
in S'(¢) give rise to phase transitions, and the slope at the
point of singularity determines the location of the transi-
tion. One of our aims here is to look for such singulari-
ties in S (¢) when they occur at $=0. Consider, for ex-
ample, the case of a single density ¢. A transition at
¢=0 may occur in a grand canonical ensemble. Howev-
er, it surely must occur in a canonical ensemble contain-
ing a single object as we will demonstrate. Hence the
study near ¢=0 is pertinent for a single-object system
that is of vital interest to us. The slope of S(¢) at the ori-
gin ¢=0 is given by the growth function u at the origin.
Hence the value of the activity K at the transition which
occurs at ¢=0 is determined by the growth function
©(0). This is an important result and generalizes the re-
sult, which is known to hold for a single object, to a
grand canonical ensemble in which the transition occurs
at $=0.

If the entropy function has a linear behavior in a re-
gion between ¢, and ¢;, then this corresponds to a first-
order transition with a jump discontinuity in ¢ from ¢, to
¢,. If =0, then the growth function must be a constant
over the range (0,4, ).

We discuss various examples. In some examples, a
spin model is reformulated in terms of diagrams. The
model can be solved either exactly or using some approxi-
mation. We first discuss the model using the spin
language and determine its phase diagram. Then we
show that the same phase diagram is obtained by consid-
ering the diagram picture. From these examples, we be-
gin to get an understanding of the behavior of the growth
function u(¢#). This is useful information as p can be
easily computed on a finite lattice by exact enumeration
[28]. From such enumerations, one can deduce the
behavior of p in the thermodynamic limit, from which
one can deduce the nature and the location of the transi-
tion.

We also consider some diagram models directly. They
include linear and branched polymers and random sur-
faces. From their solutions on Bethe and Bethe-like lat-
tices, we calculate the entropy function S (¢) and the free
energy . These quantities, then, yield the ‘“mean-field”
approximation for S and o for regular lattices and are
very useful.

The layout of the paper is as follows. We introduce the
generic model in the next section. The thermodynamic
considerations are contained in Sec. III. Here, we derive
the following four theorems and a corollary.

Theorem 1. The equilibrium state ¢,, of the system
corresponds to the maximization of the free energy func-
tion w(¢); ¢=¢,, gives the location of the global max-
imum.

Theorem 2. The free energy is a non-negative function
such that it vanishes in the vacuum state (¢=0):
o(¢=0)=0. Furthermore, o is a nondecreasing function
of each of the activities in the model.

Theorem 3. The entropy is continuous and vanishes in
the vacuum state ¢=0.

Corollary. The maximum of the entropy function

occurs at k= 1.

Theorem 4. The growth function is a monotone nonde-
creasing function of ¢.

Section III is the central part of the paper and contains
proofs for all the results derived in the paper. We discuss
various possible forms of S(¢) and show how to derive
the phase diagram from it. We also introduce and dis-
cuss the growth function p.

After a thermodynamic discussion of the generic mod-
el, we restrict ourselves to considering the simplest possi-
ble case—the case of a single density ¢ controlled by an
activity K. This is also the case for all applications that
are contained in Secs. IV-IX. The last section contains a
short discussion of the results derived here.

II. GENERIC MODEL AND EXAMPLES

Consider a finite lattice of size N. The size is deter-
mined by the number of elemental units from which
geometrical objects of interest are constructed according
to a certain set /2 of rules. Let I" denote a configuration
of geometrical objects. Each configuration is character-
ized by a set X (I') of topological quantities, the number
P (T") of objects being one of them. Other quantities may
be the number B(I') of elemental units, the number
V() of k-functional branches of type 1, where k D-
dimensional elemental units meet at a (D-1)-dimensional
elemental unit, the number V,((Z)(F) of k-functional
branches of type 2, where k D-dimensional elemental
units meet at a (D-2)-dimensional elemental unit, . . . the
number L (I") of loops, the number / (T") of holes, etc.
Thus X(I) is a set with elements
P,B, V,‘(”, V,((Z), ...,L,h,.... We require that these ele-
ments be topologically independent.

There exists a statistical weight WN(FW%) for each
configuration I'. The partition function for the problem
is given by

Zyg= 3 Wy(IR),
(TIR)

(2.1

where the sum is over all distinct configurations generat-
ed according to 2. In most cases of interest, the statisti-
cal weight is determined only by X(I"). In that case, let
Qy(X) denote the number of distinct configurations, all
of which being characterized by the same set X. Then the
partition function can be rewritten as

Zyz= 3 QXIR)Wy(X|R) . (2.2)
(X|R)

Let us illustrate by a few examples.

Example 1. Consider branched polymers with R indi-
cating that no more than trifunctional branches are al-
lowed. Thus linear chains are allowed in any
configuration. Let X =(P,B, Vi,V3) where V,; are end
points and V; are trifunctional branches. Let the statisti-
cal weight be given by #’K2H 'w’®. Note that
P,B,V,V,,V3,L are not all topologicallly independent:
only four out of six are independent because of the fol-
lowing two topological identities:

S Q—kWV,=2P—L),
k21

(2.3)
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S kV,=2B . (2.4)
k=1

The partition function is given by
Zyg=3 Qy(P,B,V,,Vi|R)r’KEH "3 . (2.5

Example 2. Consider the previous example but impose
the additional requirement in 7 that only one polymer is
allowed, i.e., P =1. The choice of 7 is now superfluous
and can be deleted:

Zyz=3 Qy(1,B,V,, V| R)KPH " . (2.6)

Note that (2.5) does not reduce to (2.6) for #=1 since
A is different in the two examples. Indeed, for 7=1, we
do not care about the number of polymers. Hence we can
introduce

Qn(B,V,V3|R)= Qun(P,B,V,V;|R), (2.7

where the sum is over all possible P consistent with given
B, V,, V5, and #&. The partition function for 7=1 can be
rewritten now as

Vi Vs

Zyz=3 Qn(B,V,V3|R)KPH 'w ? (2.8)

which differs from (2.6) in that the two Q,’s are different.

Example 3. Consider a model of linear polymers with
or without wings. Then R includes the additional re-
quirement that ¥;=0. Thus w becomes superfluous and
can be discarded. The set X =(P, B, V) and the partition
function becomes

Zyg=3 Qu(P,B,V,|R)n’KEH"" . (2.9)

It should be noted that, instead of enlarging 7 to disal-
low trifunctional branches in example 1, we may leave R
unchanged, but take the limit w —0-+ in (2.5). For any
finite N, there is obviously no difference. But this may
not remain true in the thermodynamic limit N — .
Since ¥;=0 identically in the example here, its average
(V) also remains zero. On the other hand, (V5 ) in the
limit w—0+ need not be zero in example 1; one may
only say that the density ¢; of trifunctional branches
must be zero. Therefore, thermodynamically, the two
models are equivalent.

Example 4. One may enlarge 7 further by not allow-
ing any rings. Now P and V, are related: V|, =2P; see
(2.3). Hence X=(P,B) and the partition function be-
comes

Zyz=3 Qu(P,B|R)rK® . (2.10)
Again, one can obtain this example by rewriting (2.9) as
follows:

Zyz=3 Qu(P,B,LIR)wH)KE1/HHE, (2.11)
and taking the limit H — o, keeping wH?=1'=fixed.
This limit ensures that the loop-forming activity vanishes
and that the density of loops, i.e., rings must be zero.
This does not ensure that there are no rings present. On
the other hand, the form (2.10) ensures that no rings are
ever allowed.

If we ignore such a subtle, but thermodynamically ir-
relevant, difference between the two approaches, then the
two descriptions are thermodynamically equivalent.

A word of caution should be given. The limit con-
sidered above should not be such that no polymers are al-
lowed. For example, if 7=0, no polymers are allowed
and the partition function reduces to unity corresponding
to the vacuum state (where no polymers are present). On
the other hand, m—0+ may still allow some polymers,
even though their number density will be identically zero.
However, such a state can be, indeed, very different from
the vacuum state in many respects. In particular, the
latter limit can give rise to a nonzero bond density. This
density must be identically zero in the case m7=0.

Example 5. Consider a model of self-avoiding closed
surfaces. The set /R ensures that two and only two occu-
pied plaquettes touch each other. The set X includes B,
the total number of plaquettes, and A, the total number of
handles. There is no restriction on the allowed number of
surfaces. The statistical weight is given by K ®5" and the
partition function is given by

Zyz=3 QB,h|R)KEn" . (2.12)

Since 72 imposes no restriction on the number of surfaces,
this is equivalent to m=1. This does not mean that only
a single surface is allowed [see discussion following (2.6)].
To obtain that one must enlarge 72 to disallow more than
one surface.

Example 6. We can allow open surfaces in example 5
by introducing an additional activity H for a perimeter
bond (at which only a single occupied plaquette appears).
Let v denote the total perimeter of all surfaces. The par-
tition function is now given by

Zyz=3 Q(B,h,y|R)KEn"H ; (2.13)

if we do not care about the number of handles, we can set
7n=1 and introduce

QB,y|R)=3 QUB,hyIR),
(h)

(2.14)

where the sum is over all possible / consistent with B and
v and with the set & of rules [see discussion following
(2.6)]. Then the partition function becomes

Zyz=3 QB,y|R)KEHT . (2.15)

III. THERMODYNAMICS

Let us turn back to (2.2) and let X,, denote the set X at
which the summand Qy(X|R)Wy(X|R) attains its max-
imum value. The set X, obviously depends explicitly on
k. However, we do not exhibit this dependence explicitly
in the following. For the sake of brevity, we will also
suppress 7 in the following. It is clear that

an(X)=Qu(X)Wy(X)/Qu(Xp ) Wy( Xy ) <1 . (3.1)

Let p denote the fixed number of elements x,,x,,x3,. . .
of X. (The number p must not change as N changes.)
Since each x, takes integer values which are bounded
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above by C; N, where C; is a constant independent of N,
the possible number of terms in the sum (2.2) is bounded
above by CN”?, where C=C,C,C; - - - C,. Thus

S ay(X)SCNP .
(X)

(3.2)

Let us rewrite (2.2) as follows:
ZN:QN(XM)WN(XM) 2 aN(X) .
(x)

The “free energy per elemental unit” is given by

2 ay(X)

=L 1@y (X, ) Wy(X,y) +1n
N (X)

] . 33

The last term is evidently bounded above; see (3.2).
Hence, as N — oo, this term converges to zero. Therefore
the thermodynamic limit N— o of wy is determined
only by the first term, i.e., by the set X;,. In order to fa-
cilitate taking the thermodynamic limit, we introduce the
set of thermodynamic densities

¢=Nlim (X/N)=A}im [x,/N,x,/N,x3/N,...]

=(¢1, 203 --) (3.4)

where

¢ = lim (x, /N) . (3.5)

The density set corresponding to X, is denoted by ¢,,:

Sr=(1a0>Ponrsbangs- - - ) - (3.6)
Let

o bpg)= Ji{nwjb—ln[QN(XM)WN(XM)] . (3.7)
Since ¢,, is an explicit function of parameters determin-
ing Wy, o(¢,,) is an implicit function of these parame-
ters. If these parameters are the activities K,K,,. ..,
etc. [see (3.10) below], then w(¢,,) is an implicit function
of these activities. Now, as N — «, we have

oy—o0=o(d,), (3.8)

which is our central result. In order to fully appreciate
this result, let us introduce the free energy function
o($)= lim —~In[Qy(X)Wy(X)], (3.9
N—ow N
where the limit is taken at a fixed ¢. Then the content of
(3.7) can be stated as the following.

Theorem 1. The equilibrium state ¢,, of the system
corresponds to the maximization of the free energy func-
tion w(¢); ¢=¢,, gives the location of the global max-
imum.

This is our fundamental result. The triviality of the
proof should not lessen the importance and significance
of the result. Note that ¢ corresponds to densities per-

taining to the geometrical objects and not to the original
(spin) degrees of freedom of the model this geometrical
description applies to. What we have demonstrated here
is the following: there is an equivalent maximization
principle of the “free energy function” w(¢) in terms of
diagrams. Note that our free energy definition (3.3) lacks
the conventional minus sign; hence our free energy is
maximized rather than minimized.

The actual free energy o for a given « is given by the
maximum of the function w(¢). In the following, we will
use the term free energy function for w(¢) and reserve the
term free energy for w, which is the equilibrium value of
the free energy for a given «.

It is worth noting that Z, is a sum of non-negative
terms. Therefore it is an increasing function of its activi-
ties K;. Furthermore, since the statistical weight Wy for
the ‘““vacuum” state (x; =0 for all i) is identically equal to
unit, Zy=>1. Hence the free energy is always non-
negative. Furthermore, ¢; =0 when «; =0. Hence the
free energy vanishes at k=0: w(k=0)=0. Thus we have
the following theorem.

Theorem 2. The free energy is a non-negative function
such that it vanishes in the vacuum state (¢=0), i.e.,
when k=0. Furthermore, @ is a nondecreasing function
of each of its activities.

Since the free energy must be maximized, all required
thermodynamic stability requirements must be met by
the free energy w. In particular, since we did not specify
R, the thermodynamic stability must be enjoyed by w
even when we consider a single object. As we will see
later, this has not always been appreciated.

So far, no special forms of Qy(X) and Wy(X) have
been taken. Therefore the above theorem is a general
thermodynamic principle. Let us now specialize to a sim-
ple form of Wy such as has been used in various exam-
ples in Sec. II. Let « denote the set of activities corre-
sponding to the set X and let

Wy (X)=k"= [ K", (3.10)

where K; are various elements of «. For example,

k=(mK,H,W) and X=(P,B,V,,V;) in (2.5). From
(3.9), we have
o(p)=S($)+{-¢, (3.11)
where £ denotes the set of “‘chemical potentials®
E=(p&y...), E=IK, . (3.12)
and {-¢ stands for §;¢,+8,4,+C343+ - . The new
function S (¢) is the “entropy function” defined by
S(¢)= lim ~InQy(X) , (3.13)

N—ow

where the limit is taken at a fixed ¢. The entropy func-
tion S (¢) denotes the entropy per elementary unit in the
lattice in our geometrical description and should not be
confused with the entropy of the original (spin) model
this geometrical description pertains to.

From (3.13), we observe that the entropy is an explicit
function only of ¢ but not of k. On the other hand, the
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free energy must be an explicit function only of k as is
evident from (3.3) since the partition function is a func-
tion only of k. Therefore, in equilibrium, (3.11) becomes
a Legendre transform

o(k)=S(¢)+E5-¢ .

In other words, one can use ¢ in our thermodynamic
description by considering the entropy or use « in our
thermodynamic description by considering the free ener-
gy; the relation between the two is given by the Legendre
transform.

For every finite N, the free energy wy is a continuous
and a convex [27] function of . Thus its limit w(k) also
retains these properties. From (3.14), this implies that
S (@) is a continuous function.

From (3.14), we note that

(3.14)

So _
a¢g;

as it should be. On the other hand, dw /3¢; =0 in equilib-
rium and gives
as
g 3¢,

Whether we are considering the equilibrium state or
not will be evident from the discussion. Therefore, from
now on, we will not explicitly use the subscript M to
denote equilibrium states unless it is needed for clarity.

From the vanishing of @ in the vacuum state, we find
that S(¢)=0 at $=0. Thus we obtain the following
theorem.

Theorem 3. The entropy is continuous over the al-
lowed range of ¢ and vanishes in the vacuum state ¢ =0.

From (3.16), we note that the maximum of the entropy
corresponds to K; =1 for all i, thus giving us the follow-
ing corollary.

Corollary. The maximum of the entropy function
occurs at k= 1.

Let us now introduce the concept of the growth func-
tion. Consider a single object and imagine characterizing
it by only one topological quantity which is its size B, the
number of elemental units which make up the object. Let
Qx(B) denote the number of distinct configurations the
object possesses on the lattice. It is usually the case that
in the thermodynamic limit N — oo, such that =B /N is
kept fixed, the ratio

é; » (3.15)

(3.16)

Qu(B+1)
Qy(B)

approaches a limit u(¢) which depends on ¢. Therefore
one can introduce the quantity

un(B)=[Qx(B)]VE, (3.17)

such that it approaches the same limit u(¢) as N— oo,
keeping B /N =¢ fixed. It is evident that u(¢) is related
to the entropy according to

S(¢)=¢Inu(d) .
The quantity u(0) at ¢ =0 corresponds to the “growth

(3.18)

rate” for the geometrical object as it becomes infinitely
large, while covering a zero fraction of the lattice. In this
regard, it also represents the “growth rate” for the object
as it grows on an infinite lattice. There is one complica-
tion. On an infinite lattice, the number of distinct
configurations is always infinitely large as the object can
be placed anywhere on the lattice by simple translation.
To avoid this problem, we must “root” the object.

The growth function u(¢) can be introduced in the
same fashion as above even when there is more than one
object.

We also know from (3.14) that

InKu(¢)=w/¢$=0, (3.19)

where o is the (equilibrium) free energy per elementary
unit and where X is the activity controlling the elementa-
ry unit. The use of (3.16) shows that

S'=Inu(¢)+du'(¢)/u(¢)=—Ink .
Hence,
=_ e 5
InKp u(6) >0,

because of (3.19). Therefore we conclude that
u'(¢)=0,

and that
0=—¢u'(¢)/u($)=0 .

This yields the following important theorem.

Theorem 4. The growth function is a monotone nonin-
creasing function of ¢.

We can also introduce a set of growth functions
1i(d1, P2, ¢3,...) as follows in the case X contains more
than one quantity x,x,,.... We consider the ratio

Qnlxy, oo, x;+L,x4005-04)
QN(xl"" .) ’

as N — oo, such that x; /N =¢; is kept fixed. The ratio is
expected to reach a limit u,;(¢,,4,,¢;, . . .) describing the
growth of the object with respect to its ith topological
quantity x;. We can construct the quantity

(3.20)

(3.21

,x,-,x,-+1, .

1/x;

sy =[Qy(xy, .01 7. (3.22)
As N— o, such that x;/N=¢; is kept fixed, the se-
quence u; 5 converges to u;(¢;, ¢, ¢3,...) introduced
above. Furthermore,

S(¢p)=¢;Inu;(¢) (no summation) , (3.23)

which represents a generalization of (3.18).
We can get a better feeling for u by rewriting (3.18).
Let us introduce entropy per basic unit on the diagram

o=S(¢)/¢ . (3.24)
In terms of o,
u=exp(o) . (3.25)

Thus u represents the ratio of the number of new
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configurations generated and the number of old
configurations when an additional basic unit is added to
the diagram. This quantity can be defined for all ¢, and
need not be restricted to ¢—0, i.e., the dilute limit.

From the above, it is obvious that 4 must vanish as ¢
takes its maximum possible value. Further, it is not hard
to understand why u must be a nonincreasing function of
¢: Because of excluded-volume effects, it becomes harder
and harder to generate new configurations from old ones
as ¢ increases.

IV. PHASE TRANSITIONS

The presence of a singularity in the free energy w(x)
determines the existence and the nature of a phase transi-
tion in the model. Since the entropy is related to the free
energy through a Legendre transform and since the trans-
form does not alter the singularity, the singularity of w
must also be present in S. However, these are exceptions.
In some cases, the singularity in S may be at the bound-
ary of the ¢ space. In that case, the singularity in S may
remain hidden and may require careful analysis. With
this warning, we may focus our attention on S rather
than on w. This is what we wish to do in the following.

To simplify our discussion further, we restrict our-
selves to X containing only one topological characteristic,
to be denoted by B, in the following. The corresponding
activity is denoted by K. The activity space corresponds
to 0K <. We will assume that the singularity in
o(K), if there is one, occurs at a nonzero and finite K.
We will assume that the density set ¢ also contains only
one element, viz., the density corresponding to B, and
will be simply denoted by ¢. The density space corre-
sponds to 0<¢ =¢, ., where ¢, is the maximum al-
lowed value of ¢, which is usually finite. However, it is
easy to extend the entire discussion to more than one ele-
ment in X and ¢.

The partition function is given by

Zy=3 Qy(B)XK?%. 4.1
B=0
The average (B ) is given by
(B)y=3 BQy(B)K®2/Z\y=(3/3()nZy >0, 4.2)

where {=InK. In the thermodynamic limit, the density ¢
is given by
.1 dw
= lim —(B)y=—-20.
= Jim N (BIv= 5
Here, we are assuming that the derivative d/0£ and the
thermodynamic limit N — o can be interchanged.
It is easy to see that d%w, /d¢? is related to the average
of the square of the fluctuation B — (B ) y; hence it must
be non-negative. Therefore we have

4.3)

¥ _ o, 4.4
& gt “a
On the other hand, since {= —9S /3¢, we have
2
s <0. 4.5)

3¢ =

Therefore the equilibrium entropy must have a nonpos-
itive curvature. This is the required stability or convexity
criterion for the equilibrium entropy ; see Fig. 1(a). How-
ever, there are examples, where the convexity rule is
violated [see Fig. 2(a)], as we will see later. Therefore the
region of ¢ over which the convexity condition is violated
is unphysical. To construct a convex hull [27] [Fig. 2(a)]
for such an entropy function is a standard technique in
thermodynamics and, as we will see below, corresponds

S 1]
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FIG. 1. (a) Analytic and convex entropy function with a pos-
sible phase transition near ¢=0 and ¢=¢,,,; the schematic
form of density ¢ near (b) $=0 and (c) ¢ =¢,,ax.
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to a first-order transition. The convex hull is called the
entropy in the following and corresponds to the entropy
hull in equilibrium. In contrast, the entropy function
may give rise to a convexity violation.

A characteristic property of a convex hull formed out
of an entropy function (which violates convexity) is that
there is a range of ¢ over which the entropy has the same
slope. This is seen easily from Fig. 2(a).

It should be noted that the entropy function may be
analytic even when it contains a region over which con-
vexity is violated. However, the convex hull is a singular
function, the singularity describing a first-order transi-
tion. In the following, we will always mean the convex
hull when talking about the entropy. As said above, the
hull represents the equilibrium entropy.

Let us consider the Legendre transform (3.14) from S
to w. The geometrical content of the transform is the fol-
lowing. Draw a straight line OL through the origin [see
Figs. 1(a) and 2(a)] of slope m =—¢. The difference
S —m¢ of the entropy and the straight line OL at ¢ gives
the free energy w. Since w =20 (Theorem 2), the segment
of the entropy above OL determines the physical state P.
The free energy for this state is the maximum.

To determine P graphically, we move OL parallel to it
until it touches the entropy function at P [see O'L’ in
Figs. 1(a) and 2(a)]. The free energy at P is given by the
intercept OO’. This free energy is the maximum possible
value of w at the given KX i.e., §.

In Fig. 2(a), O'L’ touches S at two points, P and P’,

s L
| L
Sy F—————————— <
B |
7 !
/ | ‘
-z \
Pe=> | | |
o : | |
d, & b, D e
(a)
o)
|
(bo _____ /
|
® oo |
' -—K
Ko

()

FIG. 2. (a) Entropy function with a region of nonconvexity
shown by broken segment PP’ and associated first-order phase
transition at which (b) the density is discontinuous at K.

both having the same free energy OO’. Therefore both
represent equilibrium states. This situation corresponds
to a first-order transition at K =K,, where {,=—InK,
= —m, m being the slope of O'L’. For K <K, the phys-
ical states belong to the segment OP of S. For K > K|,
the physical states belong to the segment past P’. Thus
we have that there must be a first-order transition if the
entropy function gives rise to the violation of convexity
over a finite range. The convex hull is given by the seg-
ment OP, the straight line PP’, and the segment of .S past
P’, and represents a singular function.

Let us now consider various possible forms of equilibri-
um S which, as said earlier, must be convex, and discuss
the nature of the transition they represent. Since ¢ is a
monotone increasing function of K [see (4.4)], it is obvi-
ous that ¢ =¢,,, as K— . Similarly, $—0 at K —0.

(a) The entropy function is analytic and convex over
the entire range (0, ¢,,,,), as shown in Fig. 1(a). This does
not mean that there can be no phase transition. The
phase transition can still occur but only at the end points
¢=0 or ¢=6.,,. The existence of the phase transition
depends upon the slopes at the two end points.

First consider =0 and let S’'(0) be finite. Since S
achieves its maximum at K =1 (see the corollary), the
slope at the origin must be positive. The transition
occurs at K =K, given by

‘= —g=—Ink, . (4.6)
S
A
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FIG. 3. (a) Entropy function with a discontinuous slope at
¢=¢o and (b) schematic density profile with two continuous
phase transitions at K; and K.
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Since S'(0)=S /¢ as $—0, we also have
(@/¢)4=0=S8"(0)+£,=0,
from (3.14). From (3.19), we have

InKou(0)=(e0/¢)y—o=0 4.7)
for the transition at ¢=0. Hence
Ky=1/u(0) . 4.8)

The relation clearly shows the importance of the growth
function u(¢), and, in particular, of u(0).

The transition at ¢=0 is always continuous. For
K =K,, ¢=0 is the physical state. For K >K,, ¢>0
with ¢ changing continuously. The behavior of ¢ is
shown schematically in Fig. 1(b).

Now consider the possibility of a transition at ¢ =¢,,,.
Let S'(¢.,) be finite. Again, the transition occurs at
K =K, given by (4.6), except that the derivative is evalu-
ated at ¢=¢,,. The behavior of ¢ near K is shown in
Fig. 1(c).

We can combine both cases and express K, in terms of
u as follows:

_ ' (go)
K, #(%)exp o o) | 4.9)
S
)
_{O

|

|

| |

| |

I |

| [ &

@O (I)max

(a)

)

(b)

FIG. 4. (a) Entropy function with a singularity at ¢ =¢, and
(b) density singularity at a continuous phase transition at
K =K.

where ¢ =¢, is the value of ¢ at the transition.

(b) The entropy is nonanalytic in that there is a finite
range over which it is linear as shown in Fig. 2(a). In this
case, there is a first-order transition from ¢ =4¢, to ¢ =4,
at K =K, given by the slope of O’L’ which touches S at
P and P’. At the transition, we have

PolnK ou1(dg) = @, = $olnK oul( bp)

according to (3.19). The behavior of ¢ is shown schemat-
ically in Fig. 2(b).

(c) There exists a point ¢=¢, at which the left and
right derivatives of S are different:

AS'(¢o)=S"(¢—¢g ) —S"(¢—¢¢ ) >0,

(4.10)

as shown in Fig. 3(a). The two slopes determine K; and
K, respectively.

For K; <K <Ky, $=¢, remains constant. Thus there
are two continuous transitions at K; and at K, respec-
tively. The behavior of ¢ near the range (K;,Kg) is
shown schematically in Fig. 3(b).

(d) At ¢=¢,, S’ exists but S is singular. This gives rise
to a continuous transition as shown in Fig. 4.

One can construct various combinations out of these
cases to construct all possible forms. We will not pause
here to do that.

The entropy possesses a singularity inside the domain
(0,¢,.x) Over which it is defined in all cases, except the
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FIG. 5. (a) Entropy function with a linear segment near the
origin and (b) associated growth function constant over this
range (0, ).
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case (a). In that case, the singularity may occur at the
boundary of the domain (¢=0 or ¢=¢_,,) and is hidden.
The possibility of a phase transition is restricted, there-
fore, either at ¢ =0 or at ¢=¢,,. The existence of the
transition depends on the slope at the two end points.

In the following, we will consider numerous examples
to illustrate various results obtained above. One of the
most important results deals with a single-object partition
function. If the slope S’(0) is finite at the origin, then the
transition occurs at K =K, given by (4.8). However,
whether the transition is first order or second order is
determined not by the magnitude of ©(0), but by whether
the entropy has a straight portion over a finite range. If
the entropy has a linear portion [see Fig. 5(a)], over a
finite range A¢=(0, ¢,) then

S(¢)=méd=¢Inu(s)
ensures that

Inu(¢)=m=—1nkK, . (4.11)

Therefore, whether the transition is first order or second
order is determined not by the value u(0) but by whether
u(¢d) is a constant over a finite range A¢. This is shown
in Fig. 5(b). The transition point is given by (4.8) for both
cases.

V. RANDOM BOND PERCOLATION

Our first example is the simplest possible example
where computations can be done exactly in any dimen-
sion on any lattice. The problem is that of random bond
percolation [5,6,26]. The problem is to study [25] the
partition function (4.1) with no restriction on how the
bonds are occupied (or unoccupied): One randomly occu-
pies or unoccupies bonds in equilibrium with ‘“a priori
equal probability.” The computation of Q,(B) is trivial:

N

Qy(B)= |

, (5.1

where N is the number of bonds on the lattice, out of
which B are occupied. Thus, as N, such that
B /N =¢ is a constant, we have

S(@)=—[¢Ing+(1—¢)In(1—¢)], (5.2)
and
_ 1—-1/¢
u((ﬁ):(l—ﬁ— >0, (5.3)

with ¢ lying in the range (0,1).

The entropy is an analytic and convex function, as is
evident from the simple form (5.1). Therefore there can
be no phase transition except possibly at ¢=0 or ¢=1,
where the entropy vanishes. However, as we will see
below, the slopes at the end points are not finite. Hence
there is no phase transition in the model (except percola-
tion which is a geometric transition with no singularity in
the free energy). The entropy has its maximum at ¢=1.
As we will see below, this will correspond to K =1. This
is consistent with our corollary.

Let us evaluate S'(¢) and u'(¢):

_¢
1—¢

w(d)=[u(d)/$*In(1—¢) <0 . (5.5)

We observe that u’'(¢) <0, as it should be (see Theorem
4). From (5.4) and (3.16) we find

S'(¢)=—1In , (5.4)

¢=K/(1+K) . (5.6

Since ¢ denotes the density of occupied bonds, it also
represents the probability with which bonds are occupied
on the lattice. At K =1, ¢=1, at which the entropy is a
maximum, as said above. The bond density is an analytic
function of K. The equilibrium free energy

o=S+¢InK=In(1+K) , (5.7

and is analytic. Therefore there is no phase transition.
This implies that the slope of S at $=0 and ¢=1 must
not be finite, as can be easily seen from (5.4).

The behavior of u near $=0 and ¢=1 is interesting.
Near ¢ =0,

el™?

u(g)~

— o0 as ¢—0;

the slope also diverges:
el 9

pe
At ¢=1,u(¢)=1and p'(¢)— — .

The following discussion is intended to show how per-
colation is different from thermal transitions. As is well
known, the percolation threshold p, depends on the
geometry of the lattice. On the other hand, there is no
such dependence in the entropy S(¢) in (5.2). Therefore
the onset of percolation is not determined by any proper-
ty of S(¢) alone, whereas we know that S(¢) alone is

sufficient to determine all thermodynamic properties of
the system.

’

'~

——ow as ¢—0.

VI. SELF-AVOIDING WALKS

This is somewhat more complicated than the problem
of random bond percolation and cannot be solved exactly
except in one dimension. We are interested in the parti-
tion function (2.10); thus no rings are allowed. We
rewrite the partition function in the following form:

Zy=3 Qu(B,PKB(H?? (6.1)
where we have used the fact that V', =2P denotes the end
points of P SAW’s which model polymers and K and H
represent the activities for a bond formation and an end
point respectively. The self-avoiding constraint ensures
that no more than two bonds of a walk meet at a given
site. Note that the bonds of walks are the occupied bonds
on the lattice.

It has been known for quite some time [5,29-31] that
one can obtain (6.1) by considering the n =0 limit of an
n-component spin model: K is related to the nearest-
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neighbor coupling BJ and H is related to the external
magnetic field Bh, where 3 is the inverse temperature. As
usual, the critical behavior in the spin model occurs at a
critical point K =K_,, H =0. As H—0, the model (6.1)
describes a polymer system with a vanishing number den-
sity ¢,. This corresponds to the dilute limit. In this lim-
it, there is only one density, the bond density ¢, charac-
terizing the polymer system. Therefore the study of poly-
mer systems with a given ¢, with ¢,—0, can be accom-
plished by studying the spin model as H—0. In particu-
lar, we wish to determine S (¢) and u(¢) by considering
the spin model first. We will demonstrate, later on, that
the same conclusions are obtained by considering the
equivalent polymer picture.

To begin with, we first consider a single polymer of size
B on a one-dimensional lattice of size N with a periodic
boundary. The computation of Qy(B) is trivial:

Qpn(B)=N . (6.2)
Therefore it is evident that
S($)=0, ul¢)=1, 0=¢=1. (6.3)

Since the entropy is linear, it gives rise to a first-order
transition from ¢=0 to ¢=1 at K =1. Since the transi-
tion occurs at ¢ =0, the growth function is a constant, as
expected.

We now turn to our model (6.1) in the limit H—O0.
The mean-field calculation of the free energy of the spin
model in terms of the magnetization M has been derived
elsewhere [30]. The free energy per bond is given by

o=—KM?*+(2/¢)In[1+K?*q’M?*/2] , (6.4)

where g is the coordination number of the lattice. The
equilibrium value of M is obtained by maximizing w.
This yields

M=kM/(1+k’M?), (6.5)
where
k=Kgq . (6.6)
The solutions for M are
0, k<1,
(6.7)

M=\ ak=D/k, k>1,

where only non-negative M is chosen since H —-0+. We
see that M is continuous but singular at k =1; hence
there is a continuous phase transition at k =1. Let us
consider (6.4) carefully. The free energy w can be ex-
pressed in terms of the usual entropy S(E) and the ener-
gy E of the spin model. [Note that the free energy w
differs from the usual free energy in that our definition
lacks the customary factor of —T; see (3.3).] The first
term in (6.4) gives —BE and the second term gives the en-
tropy S:

BE=KM?; (6.8)
S=(2/q)In[1+K?q’M?*/2]
=(2/¢q)In[1+BKq%E /2], (6.9)

where B is the inverse temperature of the spin system and
o=S—BE. Note that the role of the “chemical poten-
tial” for the spin system is played by —f3 since

dS/RE=p.

It is easy to see that for (6.10) to be fulfilled, we must
have

1+BKq*E /2=1+K?*q*M?/2=Kq for E#0 ,

which is identical to (6.5). As E —0, §—0 and we have
95 /0E =8 /E =Bk. Comparison with (6.10) shows that
k =1. For k <1, (6.10) has no meaning and the equilibri-
um state is given by =0, ie., E=5=0. Thus we
reconfirm the phase transition at k =1.

We now turn to the polymer picture. We express every
quantity in terms of ¢. From ¢ =k 0w /dk, we find that
¢=KM2. Hence,

(6.10)

0, k<1,

$= 12k —1)/kq , k=>1. (6.11)

Since ¢ is continuous but singular at k =1, there is a
continuous phase transition at K =1/¢g <1, as discussed
above. The computations of S=w—_{¢ and p is straight
forward. We find

S(d)=¢1In(g/e)—(2/9)(1—qd/2)In(1—q¢/2),

(6.12)
w(d)=(q/e)1—qd/2)!72/9%

It should be noted that S(¢)#S(E), even though the
free energy w=S+§¢p=S —BE. Indeed, it is easy to see
from (6.9) that

S(E)=—(2/q)In(1—q¢/2) .

Thus the polymer picture gives rise to the entropy func-
tion S (¢), which is not identical to the entropy S(E) of
the original spin model.

We now use the polymer picture to discuss the
behavior of the system. The entropy is an analytic and
convex function, and u(¢) is a decreasing function of ¢.
Hence the phase transition must occur only at ¢ =0 or at
d=0 .- As we will see below, the transition occurs at
¢=0. Near ¢=0,

S(¢)~¢(Inl—q¢/2) ,
(@) ~ge 997>

(6.13)

Therefore S(0)=0, u(0)=gq. Furthermore, S'(0)=Ing;
therefore the transition occurs only at K =1/g, as we saw
above using the spin language. The maximum value of ¢
is given by ¢..,=2/q and occurs as K — o [see (6.11)].
At brnaw S(Pmax) =(2/¢)In(g/e) and p(dp,,)=(g/e).
Thus u(¢) decreases by a factor of e as ¢ changes from O
to ¢max‘

The maximum entropy occurs at K =1, at which ¢
takes the value 2(¢ —1)/g% The maximum entropy is,
therefore,

Smax =S (Pmax) +2/4% .
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The slope diverges to — o as ¢—¢_ .. and therefore
there is no transition at ¢=¢,,,. All these conclusions
are consistent with those derived from the spin language.
Thus the diagram picture and the spin picture are
equivalent. It can be shown that this remains true even
when HO0.

VII. SELF-AVOIDING SURFACES

A model of a self-avoiding surface has been identified
as an n =0 limit of a gauge model [15]. Again, we will be
interested in the limit of a vanishing magnetic field of the
gauge model. This limit corresponds to considering only
closed self-avoiding surfaces. The self-avoiding constraint
ensures that no more than two occupied plaquettes meet
at a given bond of the lattice. Let N denote the total
number of plaquettes and g the number of distinct pla-
quettes at each bond. The number of edges in the lattice
is given by 4N /g, since each plaquette has four bonds.
The free energy per plaquette of the gauge model in the
mean-field approximation is given by [15]

0=—3KM*+(4/q)In(1+1K*q’M¢) , (7.1)

where M is the “spontaneous magnetization” per spin.
The first term in (7.1) denotes the energy —BE and the
second term represents the entropy S(E) of the spin
model, as was the case in the previous section. Again,
the entropy S(¢) of the surface model, which will be cal-
culated below, is not identical to S(E) of the correspond-
ing spin model.

Let us consider the spin model. The equilibrium value
of M is obtained by maximizing w: 0w/0M =0. This
yields M =0 as one of the solutions. The other solutions
are given by

x=1+x3/2k , (7.2)
where
x=kM?>0, k=Kg>0. (7.3)

We have arbitrarily chosen M = 0 since we take H —0+.
The first solution corresponds to

x=0, (7.4)

and yields ®=0. There are either no real solutions or
two positive solutions of (7.2). Only the larger of the two
yields a physical solution. The other solution does not
maximize the free energy. The phase transition occurs at
some K =K at which the free energy of the new solution
equals the free energy =0 of the x =0 solution. As we
will see, the transition is first order.

Let us now turn to the surface picture. Since
dw /M =0 for the equilibrium solution, we have
dw x?
=K_—=KM*= . 7.5
¢ 3K Kq? (7.5)

For x =0, we have ¢ =0 and ®=0 as said above. The en-
tropy is also zero. For solutions of (7.2) we have

x=1/(1—gq$/2) . (7.6)

Evidently, x > 1, i.e., ¢ >0. For these solutions, we can

reexpress o in terms of ¢. We get
o=—3¢+(2/9)nKq’p=—3¢6—(4/q)In(1—q/2) ,
(7.7)
with ¢ given by
Kq’p(1—qp/2)*=1. (7.8)
We can now evaluate S(¢)=w—¢{=w—¢ InK:

2
S(¢)=¢1n %¢(1~q¢/2>—2‘2ﬂ1¢—“ ) 7.9)

from which we obtain

2
w(@)="4-4(1—q¢ /27220470, (7.10)
e
for ¢ given by the solutions of (7.8). Near ¢=0,
w(d)=(q?/e)pe "9/%. Therefore u=0 at $=0 and rises,
thus violating Theorem 4. The physical solution cannot
correspond to the region where this theorem is violated.
Let us carefully investigate the problem. The max-
imum allowed ¢ is ¢,,,=2/g. This situation corresponds
to x—> o [see (7.6)]. From (7.2), this happens when
K — . From (7.10), we have u—2q/e3 as ¢—2/q.
Therefore S(¢)—(2/q)In(2q /e*) as ¢— ., and is non-
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FIG. 6. (a) Growth function OMO’ violating nonincreasing
condition over the broken line segment OM and (b) correspond-
ing entropy function violating convexity over the broken seg-
ment OM.
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negative provided g > e3/2. For g <e?/2, the entropy
must be set equal to zero as the mean-field approximation
becomes highly inaccurate.

Let us evaluate u'(¢):

w/u=3/¢+4/9¢*In(1—q¢/2) .

We observe that u’ >0 whenever o <0; see (3.21). Hence
the region over which u’ >0, i.e., the region over which
Theorem 4 is violated, also violates Theorem 2. In other
words, the range (0,¢,) over which u'>0 [see Fig. 6(a)],
is also where @ <0.

At some ¢=¢,, o=p'=0. This determines ¢:

In(1—g¢y/2)+3q¢,=0 .

The phases with ¢ =0 and ¢ =¢ are in thermodynamic
equilibrium as they have identical free energies. The en-
tropy S (¢) must qualitatively appear as in Fig. 6(b). The
tangent at ¢, must pass through the origin since
@(¢y)=0. Thus there is a first-order transition from ¢=0
to ¢=¢, at some K =K, such that S’(¢,)= —InK,. Fur-
thermore, the equilibrium form of p must be such that
u'=0 over the range (0,¢,). This form is shown by the
solid line in Fig. 6(a). This choice corresponds to the
convex hull formed in Fig. 6(b).

It is evident that ¢y <¢,, [Fig. 6(b)], so that K,<1.
The solution of (7.8) valid over (¢, ¢,,,,) is given by

do=(1/q)[1+VI=2/k].
Thus ¢, =(1/¢)[1+V'1—2/q ] and ¢,,,,=2/4.

VIII. THE AXIS MODEL

The axis model, described below, is interesting because
it exhibits both first-order and second-order transitions as
the parameter n, the number of components of spins S, is
varied [32,33]. In the axis model, the spins, which are lo-
cated at each site of the lattice, point along the 2n axes of
the n-dimensional spin space:

$:{(0,0,...,+Vn,0,...,0)} . (8.1)

The only nonzero component is in the jth place where
j=1,2,...,n. Hence there are 2n different orientations.
Only nearest-neighbor spins interact via a ferromagnetic
coupling K =pBJ>0. The external magnetic field
H=(H/V'n )1,1,...,1) couples to each spin. The re-
duced Hamiltonian of the model is given by

H,=K 3 S;'S;+H-3'S,, (8.2)
(i,j) i
where (ij) denotes various nearest-neighbor pairs and i
denotes various sites.

There is a diagrammatic expansion of the model in
terms of ‘“branched polymers” with multiple bonds, as
shown in Ref. [14]. The partition function for the model
(8.2) can be related to the following partition function:

Z="3 nin"KES(D)W(L,B,V,) , 8.3)
r

where n=tanhH, S(I') is a symmetry number for the

configuration I', and ¥V, denotes the number of odd ver-
tices of valency 1,3,5,.... In the limit 7n—0+
(H—0+), odd vertices have a vanishing density. There-
fore let us suppress V', above. If we introduce

W(B)= 3 ntw(L,B), (8.4)
L

where the sum is over all possible L consistent with a
given B (and a vanishing density of odd vertices), we can
rewrite (8.3) as follows:

Z=3 K®w(B). (8.5)
(B)

Note that, because of the presence of nlin (8.4), W(B) is
a weighted sum of the number of configurations.

The model can be solved in a mean-field approximation
[14]. In this approximation, the model exhibits a transi-
tion at a nonzero K. For n <3, the transition is second
order and occurs at K =K_ =1/q. For n >3, the model
exhibits a first-order transition at K =K,<K_ =1/q.
However, as we will see below, there is a spinodal singu-
larity at K =K, in the case of a first-order transition.
The spinodal singularity is a feature of the mean-field ap-
proximation.

The free energy w,, per bond as H—0+ is given by

0, =—Km?+(2/¢)In °°Sh(Kq'"‘n/” J¥n=l 1 g6

with the spontaneous magnetization m given by the equa-
tion of state
o — _V/n sinh(KgmV/n )
cosh(KgmV'n )+n—1

8.7

The above choice of w, corresponds to choosing v=1 in
Ref. [14], since the average magnetization must be along
one of the n axes at H =0. This is certainly the case for
n 21 which we consider below. The first term in (8.6) is
—BE and the second term is S(E). This is the spin
language picture. We now investigate the model using
the polymer picture below.

We note that m =0 is always a solution, for which
o, =0. Hence, §=0.

Let us now turn to possible nonzero solutions of (8.7).
Since

¢=K (3w, /3K)=Km?, (8.8)
we have
©,=—¢+(2/¢)n[C(y)], (8.9)
where
y=KgmV'n ,
(8.10)

C(y)=[coshy+n—11/n .
We can express ¢ in terms of y alone:
¢=y sinh(y)/nqC(y) . (8.11)

Since d¢/3dy >0 for all y >0, ¢ is a monotone nonde-
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creasing function of y provided » is finite. In particular,
near y =0,

¢~y*/nq .

Comparing (8.9) with w,=¢In[Ku(é)], we easily
deduce that

-1 2/q4
w(ed) eK[C(y)] ,

(8.12)

where K can be expressed in terms of y by the use of (8.7):
K=yC(y)/qsinh(y)=f(y), (8.13)

which introduces f (y) defined by the quantity in the mid-
dle. Finally, we get

u(¢)=g%h—z[C(y)]2/"¢_l , (8.14)
with ¢ given by (8.11).
Let us consider u near ¢ =0. From (8.12) we have

wd)~qexplgd(n —3)/6]. (8.15)

For n >3, u is a decreasing function at least near ¢=0.
Indeed, it can be easily checked that u(¢) is a monotone
decreasing function for n < 3.

For n <3, the situation is different. We note from
(8.15) that u(¢) is initially increasing, in direct violation
of Theorem 4. Indeed u(¢) possesses a maximum at
some ¢ =¢,, as shown schematically in Fig. 6(a). Accord-
ing to the arguments given earlier in Sec. VII, we con-
clude that the rising branch of u is unphysical. The phys-
ical branch is obtained from the convex hull of the entro-
py function and is given by the broken line of zero slope
shown in Fig. 6(a). At the first-order transition at
K =K, ¢ jumps from ¢=0 to ¢ =¢,. At the transition,
®,=0. The transition point K is given by (4.8), with
u(0) replaced by u(gg), since u(d,) is the value of the
convex hull at $=0. Since u(¢,y)>pu(0)=gq, K is strictly
less than K, =1/g.

The meaning of K,=1/q can be deduced as follows.
Consider (8.13), which we rewrite as follows:

y/Kq=f(y)=nsinh(p)/C(y) .

It is easy to see that f'(0)=1 and f"(0) <0. Therefore
f(y) crosses the straight line y /Kq an even number of
times for Kg > 1, but an odd number of times for Kg <1.
Therefore, at Kg=1, i.e., at K=K, =1/q, two of the
crossings merge into one. In other words, K =K, is a
spinodal point given by

K.=1/u(0) . (8.16)
The entropy function S (¢) is given by
S(¢)=(2/q —¢)lnC(y)+¢ln(q/e)+¢lnLI;h—“i . @17

Near ¢ =0, we find that
S=(n—3)q¢?/6+¢Ing ,

which has 325 /342> 0 for n >3, implying that the con-
vexity condition on S is violated. This violation implies a

first-order transition as discussed above. At the transi-
tion, the straight line through the origin touches S at
¢ =d¢,; the slope of the line gives K =K.

For n =3, we have a tricritical point at ¢=0.

Note that y— o as K — oo; see (8.13). Hence ¢—
as K — o0; see (8.11). This is because of multiple bonds in
the diagrammatic expansion as discussed at the beginning
of the section. Most importantly, each multiple bond of
multiplicity o contributes a symmetry factor 1/0!; see
(8.3). This eventually forces u—0or S— — o as ¢— .

IX. BRANCHED POLYMERS

In previous examples, the free energies of the models
were known. Therefore extracting the entropy function
S (@) was straightforward. As it happens sometimes, the
free energy is not easy to find. Rather, one only has the
equation of state. This is the case, for example, when a
model is solved on a Bethe lattice. In this case, one cal-
culates the equation of state in a self-consistent manner,
but the free energy cannot be evaluated. The last two ex-
amples that we consider here correspond to this situation.
Only the equation of state is known and we wish to deter-
mine S (¢) in order to establish phase transitions. Note
that one must compare free energies in different phases,
since the free energy must be continuous at the transi-
tion. As we will demonstrate, the determination of the
free energy from the equation of state is not always trivial
and care must be exercised in the evaluation.

Our first example is of a model of branched polymers
containing at most trifunctional branches. Let K, H, and
w denote the activities of a bond, an end point, and a tri-
functional branch, respectively. No loops are allowed.
From (2.3) and (2.4), we observe that B, ¥V, and V; are
the only independent quantities characterizing a
configuration. In other words, P is no longer indepen-
dent. Thus the partition function is given by (2.5) with
7=1:

- BV, Vs
Zy=3 Qn(B,V,V3)K°H 'w °, 9.1)
where the sum is over all possible values of B, V', and V;
on a finite lattice of size N. The polymers are self-
avoiding.

Since V| —V;=2P, we can rewrite (9.1) as follows:

Zy= Qy(P,B, V) H)PK BwH)" . 9.2)
This form is suitable in the study of the dilute limit
¢,—0 and corresponds to a zero density of polymers.
From (9.2), it is evident that the limit is obtained by con-
sidering

T=H?>-0, (9.3)

keeping wH =w' fixed and finite. As we will see below,
the dilute limit turns out to be very singular.

The model (9.1) has been studied [25] on a Bethe lattice
of coordination number g =3, by relating the partition
function Zy, N — «, to that of an Ising model which in-
cludes two-body and three-body interactions along with
an external magnetic field. The identification results in
the following equation of state:
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VEx3+QH —wK)x2+(1—2K)x /VK =H , (9.4)

where
x=exp(2H')=0,

with H' denoting the self-consistent field experienced by
each Ising spin in the self-consistent solution. Because of
the physical nature of the effective field H’, negative
values of x are not allowed. The magnetization m of the
Ising model is given by

m=(x—1)/(x+1).

Since —1<m <1, we have x -0 for m =—1 and x — o
for m =1. Let h be the external magnetic field in the Is-
ing model. Then the equation of state in the form
h =f(m) can be easily integrated to give the free energy
wo=g(m)—hm up to a constant where g'(m)=f(m).
However, h of the Ising model is not identical to H in
(9.1), and obtaining A =f(m) from (9.4) is not trivial.
Therefore we have to determine w differently.

We now demonstrate the use of the diagrammatic ex-
pansion technique in the following.

Let us consider the limiting case H—0. In this limit
(9.4) reduces to

VK x3—wKx?*+(1—2K)x /VK =0 , (9.5)

and has x =0 as a possible solution. The remaining two
solutions either form a complex pair or are real. At
K =1, the smaller of the two real solutions merges with
x =0 [see (9.6) below], and becomes negative, hence un-
physical, for K >K_,=1. Thus K, also represents a spi-
nodal point. At K =K/, to be determined below, the
above two real solutions annihilate each other. For
K <K/, they form a complex pair. Hence, for K <K/,
x =0 is the only solution.

It appears from the above discussion that a phase tran-
sition must occur at some intermediate K =K lying be-
tween K, and K.. To locate K requires calculating the
free energies or, equivalently, the entropies for various
solutions. We will, therefore, calculate the entropy func-
tion S (¢) below.

For K > K/, the two additional solutions of (9.5) are
given by

1

= K+Vw?K2—4(1—2K)] . 9.6

X1, VR [w w ( )] (9.6)
The two solutions merge at K given by

K2/(1—2K!)=4/w?. 9.7)

For w—0+, K,—L1—=K,. For w— o, K, —0. At
K.,
x1=x2=xc’=w\/?c'/2 .
AtK =K,
x1=xc=w\/7(—c » X,=0.
The first-order phase transition at H =0 survives even

when H >0. For some large H = H_, the first-order tran-
sition terminates in a critical point in the H-K plane for a

fixed w. For H > H_, there is no phase transition. For
details, see Ref. [25].

We now proceed with the calculation of the entropy.
We will no longer restrict ourselves to only H =0. For
arbitrary K, H, and w, the corresponding densities are
given by

¢=y*/(K +y?),
¢, =2Hy*/(K +y2)Q, ,
¢3=2Wy*/3(K +y3)Q, ;

(9.8)

see Ref. [25] for details. (The densities here are normal-
ized by the total number of bonds, rather than the total
number of sites as was the case in Ref. 25. Thus, densi-
ties in (9.8) differ from those in Ref. [25] by a factor of 2.)
The function Q, is given by

Qo(y)=H+2y +wy?, (9.9)

and
y=VKx .

To determine the entropy, we must express the activi-
ties K, H, and w in terms of densities ¢,¢,,¢; and use
(3.16) and integrate to obtain S. Here the chemical po-
tentials {; are InK, InH, and Inw, with corresponding den-
sities ¢, ¢, and ¢, respectively. We first observe from
(9.8) that

(9.10)

yz:_liﬂ , 9.11)
1—¢
and that
$1=2H¢/Qy , ¢3=2wy’$/3Q, . 9.12)

Expressing H and w in terms of ¥, =¢,/¢ and 3 =¢;/¢
from (9.12) into (9.9), we find that

2y /Qo=1—3(¢;+3¢3) .

The equation of state (9.4) is written in a more con-
venient form

(9.13)

K=y0Q,/Q » (9.14)
where
Q,=1+2Hy+y?. (9.15)

Reexpressing H in terms of 3, from (9.12) and using
(9.13), we find, after some algebra,

InK =In(1—¢)—1In¢+In4 —InB ,
where
A=20—¢,— 3¢5,
B=4—64—3¢,+3¢; .
Similarly, we find that
InH =In2¢,—1ln4 —1InB ,
Inw =In6¢;—3In4 +1InB .
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Incidentally, we note in passing that
Qo/y=4¢/4, Q;=4(1—¢)/B .
Integrating
9S /9¢=—InK ,
0S /d¢,=—InH ,
9S /3¢;=—Inw ,
we find that
S=8o+¢Ing+(1—¢)In(1—¢)—¢In2¢,
—¢3In6p;—1AInd—L1BInB ,

where S, is a constant of integration that must be chosen
so that S =0 in vacuum: ¢=¢,;=¢;=0. This yields
So=2In4.

Now, the determination of the free energy is trivial.
Using {¢=¢ InK +¢,InH + ¢;Inw in (3.14), we find that

o=In(1—¢)/(1—=3¢/2—¢,/4+3d5/4)*> .  (9.16)
It is easy to see that w can also be written [34] as
©=2n[Q,/V1+x?], (9.17)

where Q, is given in (9.15). From (9.15) and (9.17), we
observe that w does not depend on w explicitly. Howev-
er, it does depend on w implicitly since x depends on w
(and other activities). The explicit dependence on various
densities is given in the equivalent expression (9.16).

With the knowledge of S and w, the entire thermo-
dynamics of the system can be studied. Here, we will
focus only on H—0. From (9.14), we find that

K=y(1+y?%) /2y +wy?) .

Therefore, either y =0 or y >0. For nonzero y, K is
given by
K=(1+p2)/(2+uwy) (9.18)

and corresponds to a nonzero K for any y > 0, provided w
is finite. Thus, for very small K, y =0 is the only solution
for which the free energy @ must be identically zero; see
(9.17). Therefore, at the transition at some K, » must
also be zero. This K =K, is given by (9.17)

0, =1+Kx?=V1+x? .
For nonzero x, this gives us

x*=(1—-2K)/K?, (9.19)
ie.,

K=1/(2+y?). (9.20)

Equating the two K’s given in (9.18) and (9.20), we find
that at the transition y =y, is given by
2+wyy)=(1+y2)2+y3) . 9.21)

For w >0, yy>0. Thus, there is a first-order transition at
K =K, fromy =0toy =y, with '

y2=(1—2K,)/K, (9.22)

from (9.19). Obviously, K, <1 for w > 0.

For w—0, there are no trifunctional branches (¢;=0).
Hence we must recover the solution for linear polymers.
From (9.21), we observe that y,=0 at the transition.
Hence the transition is continuous. Moreover, at the
transition, K =1 from (9.22). This is consistent with our
discussion of linear polymers (SAW’s) in Sec. VI.

For w very small, we can estimate K, and y,. Since y,
is also small, we find from (9.21) that

242wy, =2+2y3,
i.e.,

yo=2w, w—O0.

Since K, must also be close to K,=1 for w =0, we find
from (9.22)

Ko=1—-w?/9, w—0.

For w— o, we note from (9.21) that y3~w. Hence,
Ko~1/w?’® and goes to zero.

Let us now compare the prediction of a first-order
transition at K =K, w >0, with the behavior of S near
the vacuum state. In the vacuum state, y =0. For sim-
plicity, consider the behavior of S along ¢. Near ¢=0,
S ~¢@¢1n2. Thus the slope of S is smaller than —InK, (see
above) for w > 0.

Near ¢=0, S(¢)=~( ¢, with . =In2. Thus, K, =1,
which is also the point where the transition occurs for
SAW’s (w =0). Therefore u(0)=1/K_, showing that the
spinodal point K. is given by the inverse of u(0); see
(8.16).

The study of the dilute limit corresponds to studying
H—0, w— o [see (9.3)]. It should be evident from (9.4)
that this limit is not different from w— o« considered
above. Hence we conclude that the dilute limit on the
Bethe lattice is very singular, as claimed earlier, and gives
rise to a first-order transition at K,—0 [35].

X. SELF-AVOIDING MANIFOLDS

As a final example, we consider a model of self-
avoiding manifolds discussed in Ref. [10]. The model is
solved recursively on a Bethe simplex lattice of coordina-
tion 3 described there. As usual, we obtain only the
equation of state and not the free energy. The model for
the manifolds is described by the partition function (2.11)
and we are interested here in the limit H —0.

In the limit H — 0, the equation of state is given by

K3 Xx3—2)+x/K3=0, (10.1)

where the elementary unit density ¢ for the manifolds is
related to x via

o=x3/(1+x3), (10.2)
as shown in Ref. [10]. Hence,
x3=¢/(1—¢) . (10.3)

In terms of ¢, (10.1) can be rewritten as
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K=¢(1—¢)*/[$(2—36)]*"> .
Therefore
S'(¢)=—InK=—2In(1—¢)+1lng+3In(2—34) .
Integrating, we obtain
S(@)=So+2(1—¢)In[(1—¢)]+ 14 In(¢)
—1(2—3¢)n[(2—3¢)] ,

where the constant S, of integration is determined by the
condition S(¢=0)=0. This yields S;=In2. Finally, we
have

. 2¢¢/2(1_¢)2(1—¢)
S(¢)=In @—3g) 7|’ (10.4)
and
u(p)=8¢2(1—¢)* 174V /(1 -3¢ /2)/¢73/2 (10.5)

Near ¢ =0,
172

u~8 e 94,

e

Since u’(0) is not negative, it violates our Theorem 4. As
was the case in the previous section, this gives rise to a
first-order phase transition.

Since wu(0)=0, the spinodal singularity occurs at
K_.— oo. That this is, indeed, the case can be seen as fol-
lows. For large enough K, there are three real and posi-
tive solutions of (10.1). The spinodal occurs when the
middle root merges with the one at the origin. This
occurs only when K— . Thus we note that the spino-
dal singularity is again determined by u(0), i.e., by (8.16).

The free energy is easily calculated. We have

©=S+¢InK=In %ﬁf— (10.6)
If we introduce

Q,(»)=1+2Hy2+y*, (10.7)
where

y=K"% , (10.8)
we can rewrite (10.6) for H =0 as [34]

o=In[Q,(y)/(14+x3)]. (10.9)

In fact, the free energy for H >0 is also given by (10.9),
with y or x determined by the equation of state (see Ref.
[10])

y=K*7Q,/0Q, ,

when Q,=H +2y2% We will not pause here to show this.

We now turn back to the H =0 case and locate the
transition point. Since for small enough K, x =0 is the
only solution, the free energy is zero. Hence, at the phase
transition, the free energy must remain zero. Therefore
Q,=1+x3. This yields K?/3x=1. From (10.1), we find

that x =1. Therefore at the transition K =K,=1. The
transition is from x =0 to x=1, i.e., from ¢=0 to
#=¢o=5. The maximum possible value of ¢ is Z and
corresponds to x>=2; see (10.1) and (10.4). At ¢=4d,
S(¢g)=0. Moreover, S(¢,) is maximum since K =1.
Hence the transition is given by the slope of the tangent
through the origin, i.e., by K =1.

The fact that S(¢) <O for all ¢ > ¢, is due to the fact
that we were considering self-avoiding manifolds on a
g =3 coordinated Bethe simplex lattice. For large enough
g, the entropy would be positive in the physically relevant
range of ¢. We can see this for self-avoiding surfaces
considered in Sec. VII. From the discussion following
(7.10), we know that the entropy at ¢=d¢_, 1is
(2/¢)In(2q /e*). Thus it is non-negative provided g > e>.
Thus, for ¢ =3, this entropy is negative. Indeed, from
(7.10), it is easy to see that u(¢)<1 for ¢ <¢_ ... Thus
S(¢$) is always negative for ¢ =3. We must choose ¢
large enough to obtain a non-negative entropy.

XI. DISCUSSION AND SUMMARY

We have considered a general model of diagrams
which can be a grand canonical ensemble or a canonical
ensemble containing a fixed number of diagrams. There-
fore the results obtained here are also valid for a system
containing a single diagram. For simplicity, no interac-
tion between diagrams except excluded-volume effects is
allowed. However, the discussion can be easily extended
to incorporate interacting diagrams with other than
excluded-volume interactions, without altering any of the
results obtained here. Thus the results obtained are very
general.

Our central result is the following. A thermodynamic
system of diagrams obeys the usual thermodynamic prin-
ciples. In particular, the free energy o (without the con-
ventional —f= —1/T) must be maximized in equilibri-
um. This is true whether the diagrams form a physical
system by themselves, as was the case in Secs. V-VII, IX,
and X, or appear as a consequence of some expansions as
in Secs. VI-VIII. In some cases, diagrams appear in
some unrealistic limit of an otherwise physical model, as
in Secs. VI and VII. In these two models, the partition
function of the diagrammatic system is identical with
that of the original spin model in the unphysical limit.
Therefore the free energy of the diagrammatic system
and of the original spin model must be maximized even in
the unphysical limit since the free energy of the corre-
sponding diagram system must be maximized. This must
remain true even in the dilute limit.

The arguments for @ maximization do not depend on
the number of objects in the ensemble. Therefore the ar-
guments are applicable to the single-object canonical en-
semble as well, with the same conclusion. In other
words, the corresponding single-object free energy must
also be maximized.

A single-object system can also be identified as a
derivative of the free energy of the grand canonical en-
semble at 7=0; see, for example (2.5) and (2.6). Since
Zy 7 in (2.5) reduced to unity for 7=0, we notice that
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Zy 7 in (2.6) is equal to the derivative of the logarithm of
Zy 7 in (2.5) with respect to m, evaluated at 7=0. The
free energy corresponding to (2.6) must be maximized.

The above result, which is our most important result,
has not been appreciated in the past, as is evident from
various calculations in which the stability of the free en-
ergy has been violated. Failure to invoke the maximiza-
tion principle leads to an incorrect phase diagram as has
been discussed elsewhere [35]. We refer the reader to this
reference and other references cited therein.

Given the equation of sate for a geometrical model, we
show explicitly, by various examples, how to calculate
the entropy and, hence, the free energy. The knowledge
of these function is essential in locating phase transitions,
especially when we are dealing with first-order transi-
tions.

As a by-product, we have calculated the entropy and
the free energy for a collection of branched polymers
with given densities ¢, ¢;, and ¢; on a Bethe lattice of
coordination number 3. The method presented here can
be extended to any Bethe lattice of coordination number
g. Such a solution, then, can be thought of as a mean-
field approximation for branched polymers on a regular
lattice of coordination number g. This will be reported
elsewhere [36]. Similarly, we have obtained the entropy

and the free energy of self-avoiding surfaces and mani-
folds. Again, these results can be extended to any coordi-
nation number gq.

An important property of the growth function was
discovered: It is a nonincreasing function. In particular,
the behavior of u allows first-order or second-order tran-
sitions. The situation is very simple if the transition
occurs at ¢ =0. In this case, the behavior of yu near the
origin determines the nature of the transition.

(1) If u is a constant over a finite range near the origin,
the transition is first order in nature.

(2) If p is decreasing near ¢ =0, we have a continuous
transition.

In mean field, it happens sometimes that p is not a
nonincreasing function. In this case, the branch over
which p is increasing is unphysical and must be replaced
by a straight segment of zero slope. In this case, the
value (0) of the original function at ¢ =0 locates the spi-
nodal point. The growth function, thus, is a useful quan-
tity that provides us with important information about
the behavior of the model.

In summary, we have demonstrated that the diagram-
matic approach is an alternative important approach
that, in some cases, may be very simple in order to under-
stand the model of interest.
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