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We identify four levels of structure in the bifurcation diagram of the two-well periodically driven
Duffing oscillator, plotted as a function of increasing control parameter 7, the period of the driving
term. The superstructure, or bifurcation peninsula, repeats periodically as T increases by ~ 21, begin-
ning and ending with symmetric period-one orbits whose local torsions differ by 2. Within each bifurca-
tion peninsula there is a systematic window structure. The primary window structure is due to New-
house and Newhouse-like orbits. Fine structure is due to a Farey sequence of well-ordered orbits be-
tween the primary windows. Hyperfine structure consists of very narrow windows associated with non-
well-ordered orbits. We construct a template for the Duffing oscillator, a two-dimensional return map,
and a one-dimensional return map which describes the systematics of orbit creation and annihilation.
All structures are identified by topological indices. Our predictions are based on, and compatible with,

numerical computations.

PACS number(s): 05.45.+b

I. INTRODUCTION

Extensive numerical simulations of nonlinear oscilla-
tors, including the Duffing, Morse, Toda, and bubble os-
cillators, have revealed striking similarities in their bifur-
cation diagrams [1-19]. As the period T of the driving
force is increased, the bifurcation diagrams of these non-
linear oscillators exhibit almost periodic behavior, with a
period approximately equal to the period 7 of the un-
pumped, undamped, linearized oscillator. Each distinct
region of the bifurcation diagram between T and T +7

can be identified by an integer which changes systemati-
cally by 1 (2 for Duffing) between adjacent regions
[9,12,18,19]. This superstructure [9,12] in the bifurcation
diagram is related to the creation and annihilation of
period-one orbits by direct and inverse saddle-node bifur-
cations and the integer which labels this region is the
linking number of the period-one orbits [14]. Figure 1
provides a schematic representation of regions in the
(A, T) control parameter space in which many bifurca-
tions take place for a typical nonlinear oscillator. Here A
is the positive Lyapunov exponent. These regions of the

T T T
n 2n 3rn

T T T
5n 6n n 8n

FIG. 1. Schematic representation of the superstructure in the bifurcation diagram of a typical nonlinear oscillator. The regions in
which many bifurcations occur are periodic in T, the period of the driving field. For sufficiently small values of A, the positive
Lyapunov exponent, these bifurcation peninsulas are separated by arid oceans in which only period-one orbits exist, while for larger
values of the Lyapunov exponent these peninsulas begin to overlap. Successive bifurcation peninsulas are labeled by integers which
increase by 1 (2 for the Duffing oscillator) with increasing ®=2#T /7. These peninsulas form the “superstructure” in the bifurcation
diagram of nonlinear oscillators. The boundaries of these regions of the superstructure indicate the control parameter values at
which the period-three saddle-node bifurcations occur in the one-dimensional return map presented in Eq. (5.4).
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superstructure, and the bifurcations which occur in them,
are roughly periodic in T.

Within each segment of the bifurcation superstructure
of length 7 bounded by period-one orbits with local tor-
sion N and N +1 (N +2 in the Duffing case) there exists
a series of windows containing periodic orbits and their
associated period-doubling cascades. The window struc-
ture is essentially the same within each region of the su-
perstructure. Corresponding windows in different bifur-

cation regions contain corresponding periodic orbits.
The most easily observed windows are associated with
Newhouse orbits [20]. Between each pair of windows in
this (primary) structure there is fine structure. This con-
sists of narrower windows associated with other well-
ordered orbits. There is also a hyperfine structure within
each region, consisting of very narrow windows associat-
ed with non-well-ordered orbits. In Fig. 2 we show the
bifurcation diagram for one of the regions of superstruc-

FIG. 2. Bifurcation diagram for the Duffing
oscillator (2.3) for b,=1.0, 8=¢/T, and
€=6.0 in the range 24 <T <31: (a) x vs T and
(b) y vs T. The range of the control parameter

values lies in the “resonance horn” R ;, using
the terminology of Ref. [17]. Within each pe-
ninsula the bifurcation diagram shows an al-

ternation between chaotic and periodic
behavior. Saddle-node bifurcations create
periodic windows. The organization of the
periodic windows is essentially the same within
each bifurcation peninsula.
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ture of the Duffing oscillator [19,21].

In this work we attempt to provide an understanding
of the regularities in these bifurcation diagrams and to
describe the regular features with a set of topological in-
dices. To do this we construct a template to describe
strange attractors which occur in general nonlinear oscil-
lators and the Duffing oscillator. We use these templates
[22-25] to account for the systematic variation of the
global torsion which identifies each segment of the super-
structure. We also use these templates to compute topo-
logical indices, such as the relative rotation rates, of the
periodic orbits in the strange attractor. We use the rela-
tive rotation rates of these orbits to determine their or-
ganization and to identify the windows in each region in
the superstructure.

We also construct a two-dimensional return map for
both the generic nonlinear oscillator and the Duffing os-
cillator. From this we construct one-dimensional return
maps. Although a caricature of the dynamics, the one-
dimensional return maps account very well for all
features encountered so far in the bifurcation diagrams of
nonlinear oscillators: superstructure (global torsion), pri-
mary structure (windows of Newhouse and dual orbits),
fine structure (windows of other well-ordered orbits), and
hyperfine structure (windows of non-well-ordered orbits).

One- and two-dimensional return maps have already
been discussed for nonlinear oscillators in general and the
Duffing oscillator in particular. Eilenberger and Schmidt
[26] presented an algorithm for associating a two-
dimensional map with the flow of a nonlinear oscillator.
Parlitz et al. [27] observed the regularities in the bifurca-
tion structure of a wide class of nonlinear oscillators and
the similarities among them. They derived two-
dimensional maps to simplify the study of these bifurca-
tions. They were also able to assign topological indices to
some of the bifurcation regions. Gilmore [28] and
McCallum and Gilmore [19] suggested that a global un-
derstanding of the mechanisms underlying the observed
regularities could be achieved at a topological level. In
this picture the appropriate topological indices are the
torsion, or flow around the direction of propagation of a
periodic orbit, and the topological organization of pairs
of periodic orbits. The torsion of a periodic orbit is a
sum of two terms. The first term is an integer (“global
torsion”) which changes by +1 (+2 for the Duffing oscil-
lator) on passing from one bifurcation peninsula to an ad-
jacent peninsula. The second is a rational fraction which
can be computed from the symbolic dynamics of the cor-
responding orbit in the zero global torsion region of the
bifurcation diagram. The topological organization of
periodic orbits is determined by their mutual linking
numbers and relative rotation rates. The purpose of the
present work is to show that this suggestion is correct
and show how it leads to a deeper understanding of the
mechanisms responsible for the regularities observed in
the bifurcation spectra of nonlinear oscillators in general
and the Duffing oscillator in particular.

II. RANGE OF CONTROL PARAMETER VALUES

In the absence of driving and damping forces the
Duffing oscillator is a conservative system obeying the

equations of motion

d*x /dt*=—93V /3x ,
2.1)
Vix;a,b)=1x*+1lax?+bx .

The potential V(x;a,b =0) is that of the symmetry re-
stricted cusp catastrophe [29,30]. Depending on the
value of the parameter a for b =0, three separate cases
are encountered. For a >0 this potential is a single-well
potential; for a =0 the well has a quartic shape with a
triply degenerate critical point at the origin; for a <0 this
is a double-well potential. If a0 the state variable can
be rescaled so that ¢ ==*1 and the symmetric potential
assumes the form x*/4+x2/2.

We will study the double-well potential. In the
conservative case, the energy E =(dx/dt)*/2
+V(x;a=—1,b=0) is a constant of the motion. If
E <V (x =0;a =—1,b =0)=0, the motion is confined ei-
ther to the left-hand well or the right-hand well. If E >0
the motion extends over both wells. For E =0 the trajec-
tory lies on one branch of a double homoclinic connec-
tion to the saddle at the origin (x,dx /dt)=(0,0) in phase
space.

We modify the motion in the usual way by introducing
a time-dependent symmetry-breaking term in the poten-
tial and a velocity-dependent damping term in the dy-
namics:

Vix;a=—1,b(t)=4ix*—1x2—xb (1),

(2.2)
b(t)=bysin(27t /T) .
The first-order equations of motion are
dx/dt=y ,
(2.3)

dy /dt=—8y —oV /dx
=—8y +x —x3+bysin(2wt /T) .

The phase space for this dynamical system is RZX S,

These equations are invariant under the transformation
(x,y,t)—(—x,—y,t +T/2). This means that if the point
(x,y,t) in phase space is on an orbit of period p, the point
(—x,—y,t +T/2) must also be on an orbit of period p
[12,31]. If the two points are on the same orbit, that or-
bit is called a symmetric orbit. If the two points are on
distinct orbits, the two orbits are asymmetric. They form
a symmetric (or symmetry-related pair) of asymmetric or-
bits. The projection of a symmetric orbit from the phase
space R2X S to the x-y plane R? is invariant under rota-
tions by 7 about the origin. This operation maps the pro-
jection of one asymmetric orbit into that of its partner.

We will develop a topological model for the behavior
of (2.3) for a particular range of control parameter values.

(i) The strength of the driving term b, is chosen so that
the potential (2.2) alternately becomes unimodel and bi-
modal during the drive cycle (Fig. 3). This requires
bk>22/3%.

(ii) The damping per driving period will be held con-
stant to emphasize the near periodicity of the bifurcation
behavior as the drive period T is increased. Since the
divergence of (2.2) is —8, the rate of volume contraction
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L
FIG. 3. The symmetry-breaking term —xb,sin(27t /T) alter-
nately destroys the right-hand well and the left-hand well in the

two-well Duffing potential. The shape of the potential is shown
at four points on acycle fora=—1and b= %

X

per period is e “3T. We will choose =g /T and hold €
constant, so that the volume contraction per period is
fixed at e %, Geometric models of the Duffing oscillator
have previously been considered for small [6] and inter-
mediate [32] values of the driving force.

III. DETERMINATION OF A TEMPLATE

A. Background

Roughly speaking, a template [22-25] is a two-
dimensional structure, a branched manifold, which serves
to model a flow which takes place in a strange attractor
whose Lyapunov dimension is between 2 and 3. The flow
can be projected to this two-dimensional manifold (for ex-
ample, by increasing the dissipation) without modifying
the topological organization of any of the periodic orbits
in the flow. Templates are useful for visualizing the topo-
logical structure of the flow and for determining the or-
ganization of periodic orbits in the flow. They are used
as an input for the computation of the topological indices
(relative rotation rates and local torsions) which we use to
identify the various windows in each region of the super-
structure. We have determined a template for the
Duffing oscillator, in the range of control parameter
values described above, using a combination of numerical
computation and intuitive insight [19,21].

Equations (2.3) were integrated to construct the bifur-
cation diagram shown in Fig. 2. For parameter values at
which chaotic behavior is observed, the values
x,y,¢=2m(t modT) were stored. The structure of the at-
tractor, in particular the stretching and squeezing mecha-
nisms responsible for creating the attractor, was deter-
mined by investigating the cross section of the strange at-
tractor on a Poincaré sectionr P, in the phase space
R2XS!. The cross section was animated by sweeping the
Poincaré section P, through 27 rad. The results are sum-
marized in Fig. 4 [19,21].

For fixed T the behavior of the animated cross section
is as follows. After entering the left-hand well, the
strange attractor has a roughly semicircular cross sec-

tion. During the first half period, while motion is
confined to the left-hand well, the arc rotates clockwise
about the center of the well and elongates as it rotates.
The number of rotations it makes while in the left-hand
well is roughly 17T/7, where 7 estimates the natural
period of the oscillator in the left-hand well. Since the
well is not quadratic and the depth and location of the
bottom vary over this half cycle, 7 is not precisely
defined. It is roughly 25% larger than 27. When the
left-hand well is destroyed by the time variation of the
symmetry-breaking term in the potential, the cross sec-
tion is ““poured” into the right-hand well. In this process,
the roughly circular shape of the cross section is
compressed along a diameter, and on entering the right-
hand well the cross section assumes the semicircular arc
shape it exhibited, half a period earlier and rotated by
half a turn, in the left-hand well. The rotation and
elongation processes which occurred in the left-hand well
are then repeated in the right-hand well, and at the end of
the second half period, the cross section is poured back
into the left-hand well. This process is repeated each
period.

A useful intuitive visualization of this mechanism is as
follows. Drip a semicircular arc of blue ink on the sur-
face of white paint in a bucket of paint. Now stir the
paint. The ink arc will rotate around the center of the
surface, elongate, and become thinner. Now pour the
paint into an empty bucket. If done carefully, during this
pouring procedure the roughly circular elongated ink arc
will be compressed as it flows out of the narrow channel
of the tipped bucket and will assume a roughly semicircu-
lar arc shape on the surface in the second bucket. The
process of stirring and pouring from bucket to bucket is
then repeated, building up a fractal structure in the pro-
cess.

B. Nonlinear oscillator template

In order to construct a template for the Duffing oscilla-
tor in this parameter regime, we first construct a template
for a typical single-well nonlinear oscillator which exhib-
its the same evolution properties: free evolution with
stretching and rotation, followed by squeezing along a di-
ameter. This process is illustrated in Fig. 5. In Fig. 5(a)
we show a schematic section of the strange attractor at
the beginning of the rotating and stretching phase. Fig-
ure 5(b) is a representation of this cross section at the end
of this phase. Figure 5(c) is a representation of the cross
section after compression along a diameter. We have in-
dicated only four branches of the template. The integer
labels (0,1,2,3,...) are the local torsions of these
branches, measured in units of 7. This is the local tor-
sion of the hyperbolic period-one orbit in that branch.
The location of the period-one orbit in each branch is in-
dicated by the symbol X.

The template matrix associated with this template is
obtained as follows [23]. The diagonal element 7T (i,i) is
the local torsion of the period-one orbit in branch i
(namely, i). The off-diagonal elements T (i, j)=T (j,i) are
twice the linking numbers of the period-one orbits in
branches i and j. T (i,i) and T (i,j) can be computed by
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counting the number of half rotations made by a small
vector at period-one orbit i, or a segment connecting
period-one orbits i and j, on cycling through the two pro-
cesses described in Fig. 5. The template matrix for the
four branches shown in Fig. 5(b) is shown in Fig. 5(d).
Below this matrix an array indicates the order in which
these branches are joined after the squeezing process. By
convention, clockwise rotations are negative. We will not
display the negative signs, as all rotations encountered
below are clockwise.

If the flow over the strange attractor is confined to
branches O and 1 we recover the template for the zero-
torsion horseshoe (“direct” horseshoe). If the motion is
confined to branches 1 and 2 we have another horseshoe
template (“reverse” horseshoe). If the motion is confined

to branches 2 and 3 (or 4 and 5, . . .) the corresponding
@ ) (b)
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dt o054 0.5
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1.5 154
. 1 1 1

template differs from the zero-torsion direct horseshoe
template by an additive global torsion N (=1 or 2,...).
The corresponding template matrix is obtained by the
substitutions 0—2, 1—3, and adding 2 to all template
matrix elements. A similar relation exists for the reverse
horseshoes on branches 1 and 2, 3 and 4, . . . [23].

To any periodic orbit on the zero-torsion direct
horseshoe on branches 0 and 1 there exists a unique cor-
responding orbit on the direct horseshoe with global tor-
sion N on branches 2N and 2N +1. The symbolic dy-
namics of the corresponding orbits is related by
0<2N,1<2N +1.

As the control parameter T increases we expect a flow
originally confined to branches 0 and 1 to be shifted over
to branches 1 and 2, then 2 and 3, and so on. During this
process we would expect the flow to extend over three

©
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® FIG. 4. This sequence of
154  z=8516 Poincaré sections shows the
1-04 stretching and squeezing pro-
0.5 cesses which combine to create
0.0+ the strange attractor of the
0.54 Duffing oscillator. Each picture
1.0 shows the strange attractor in a
154 Poincaré section as the value of
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2 4 0 1 2 The parameter values are
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FIG. 5. (a) A set of initial conditions is (b) stretched and ro-
tated around the bottom of the oscillator well and then (c)
squeezed back into its initial configuration. The locations of the
period-one orbits are indicated by X’s. The template matrix (d)
is determined by computing the number of half rotations in the
neighborhood of each period-one orbit, T'(i,i)=1i, and the num-
ber of rotations by 7 of the segment connecting orbits i and j.
This is twice the linking number of these two orbits
T(i,j)=T(j,i)=2L (i,j). The array (e) indicates the order in
which the branches are squeezed together at the end of the
stretching phase.

branches 0, 1, and 2, then 1, 2, and 3, . . . for some range
of T. We investigate the morphology of this transition in
more detail in Sec. VI.

C. Duffing template

The Duffing template, for the control parameter values
under consideration, is deduced in much the same way as
that of the generic nonlinear oscillator. The computation
is outlined in Fig. 6. In Fig. 6(a) we show an arc of initial
conditions in the left-hand well at the beginning of the
half cycle during which that well exists. This set is divid-
ed into four large segments (0,1,2,3), each of which is sub-
divided into four smaller ones. Each small segment will
become one branch of the final template.

As the dynamics evolves in the left-hand well, the arc
shown in Fig. 6(a) will stretch and rotate, and as
t —t+1 T will have the shape shown in Fig. 6(b). At the
end of this half period the left-hand well ceases to exist
and the attractor enters the right-hand well. As it does
so, the four large segments (0,1,2,3) are squeezed together
and rotated through 7 rad, where this process is repeated

another half period. Figure 6(c) shows the structure in
the right-hand well before the stretching process begins.
For ease of visualization, we have not included the clock-
wise rotation by 7 associated with the transition from the
left- to the right-hand well in Fig. 6(c). In Fig. 6(d) we
represent the structure of the attractor after stretching
toward the end of the second half period. Each branch in
this representation is described by two symbols, the first
describing the number of half rotations in the left-hand
well, the second the number of half rotations in the
right-hand well. On completion of the second half cycle,
the right-hand well is destroyed and the strange attractor
is forced back into the left-hand well, once again being
squeezed and rotated by 7 rad in the process. Once back
in the left-hand well, it has the structure shown at the be-
ginning of the cycle, Fig. 6(a).

The algebraic description of this template is deter-
mined as previously described. We indicate the period-
one orbit in each branch of the template with the symbol
X. Neglecting for a moment the two clockwise rotations
by 7 in passing back and forth between the wells, the di-
agonal template matrix elements 7T (ij,ij)=i +j are the
local torsions experienced in the two wells. The linking
numbers L (ij,kl) of the period-one orbits (ij) and (kl)
are determined by counting how many rotations a vector
connecting the two orbits makes during the sequence
shown in Fig. 6: @a—>b-—>c—>d—a. The off-diagonal
matrix elements of the template matrix are twice the link-
ing numbers of the corresponding  orbits:
T (ij,kl)=2L (ij,kl). This is the rotation of the difference
vector, measured in units of 7 during one full drive
period. The template matrix constructed in this way is
shown in Fig. 6(e). The array showing the order in which
the branches are squeezed together in the passage from
Fig. 6(d) —a is given below the template matrix [23]. To
obtain the template matrix for the Duffing oscillator, we
must also properly account for the two clockwise rota-
tions by 7 in passing between the wells by adding 2 to all
matrix elements. If more than four branches in each well
are traversed, this algebraic description can easily be ex-
tended.

In order to describe the properties of periodic orbits it
is useful to define the parity of each branch of a template
as positive or negative depending on whether it is orienta-
tion preserving or reversing. The parity is the parity of
the period-one orbit in that branch. This is +1 or —1
depending on whether its local torsion is even or odd.
For the generic nonlinear oscillator, the parity of branch
i is (—1)}; for the Duffing template the parity of branch
(ij) is (—1)'*J. In either case, the parity of a periodic or-
bit is the product of the parities of the symbols constitut-
ing its symbolic dynamics.

IV. RELATIVE ROTATION RATES
AND PERIODIC ORBITS

Relative rotation rates provide a useful tool for the
analysis of periodic orbits in low-dimensional (phase
space is three dimensional) dynamical systems [33]. They
are easy to compute once periodic orbits have been
identified in a dynamical system. They are also simple to
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compute from their symbolic dynamics once a template
describing a strange attractor, and all the periodic orbits
associated with it, has been identified. They are topologi-
cal invariants, independent of the dynamical stability of
the orbits. Relative rotation rates will be used to identify
the windows which appear in the bifurcation diagram of
the Duffing and other nonlinear oscillators.

A. Review of relative rotation rates

Relative rotation rates were initially defined for period-
ically driven dynamical systems [33]. Two periodic orbits
A and B of periods p 4 and pp intersect a Poincaré sec-

(a) (b)

To
3 ——; 3 |3 3|3
13
|3
2 ~—f 2 |2 2 | 2
Lo
1o
1 ~—; 1 1 1 1
_:3
13
0 -f o |o 010
Lo i 1
0 2 3 1
x| 30
31
i | 32
33
S( 23
22| X
201
(IO
1
12
13
( xo03
02 X
X )
0 3

tion at points 4; (1=i=<p,) and B; (1=j=<pp). If we
choose 4; and B; as initial conditions and propagate the
difference vector 4;—B; forward for p 4pp periods, this
difference vector will return to its initial orientation by
rotating through an integer number of full rotations in a
plane transverse to the direction of motion. This integer
multiple of 27 rad is the linking number of the two orbits
of period p 4pp with initial conditions 4; and B;. The
relative rotation rate 72;;( 4, B) for these initial conditions
is the average number of rotations, per period, made by
this difference vector. A relative rotation rate can be
computed for each of the p ,pp pairs of initial conditions.
The relative rotation rates of orbits 4 and B are the set of

(c)

FIG. 6. The Duffing template is the second
iterate of the template shown in Fig. 5. (a) A
set of initial conditions in one well is (b)
stretched and rotated around the bottom of
that well. This structure is (c) squeezed along
\_J a diameter when “poured” from one well to
another. After being stretched and rotated
around the bottom of the second well, it has
the structure shown in (d). The period-one or-
bit in each branch is shown (X ) and indicated
by the branch label. The template matrix (e) is
computed by determining the local torsion
T (ij,ij)=i+j in each branch and computing
the linking number of each pair of period-one
orbits (ij) and (kl). The integer 2 must be add-
ed to all matrix elements to properly account
for the rotation through 7 rad experienced on
passing from well to well. The array (f) indi-
cates the order in which the branches are
squeezed together.

21

) o1
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p 4Pp relative rotation rates computed for each pair of in-
itial conditions. The sum over all relative rotation rates
of orbits 4 and B is the linking number L ( 4, B) of orbits
A and B:

S 3 R ;(A4,B)=L(4,B).

1i<p, 15j<py

4.1)

The (self-)relative rotation rates of an orbit with itself
can also be computed. The self-relative rotation rates
R;j(A,4) (i7j) are well defined. We define
R;(A, A)=0 to preserve the property that the sum over
all (self-)relative rotation rates is the (self-)linking number
of the orbits involved.

Relative rotation rates are topological invariants: they
are unchanged under deformation of the dynamical sys-
tem as long as the orbits exist. This allows us to compute
their values in the hyperbolic limit, using a template, and
then deform the system into a nonhyperbolic regime
where saddle-node bifurcations and period-doubling cas-
cades occur. Relative rotation rates have been used to
identify the stretching and squeezing mechanisms respon-
sible for generating strange attractors [24,25] to describe
how a dynamical system evolves as control parameter
values are changed [34], test models of physical systems
[34,35], and to identify bifurcation peninsulas of the
Duffing oscillator [12,14].

Relative rotation rates provide the following three
pieces of information about periodic orbits on templates
of the type shown in Fig. 5.

1. Well-ordered orbits. If all the nonzero self-relative
rotation rates of an orbit are equal, the orbit is well or-
dered (a torus knot), and conversely [33]. For example,
the important period-three orbit 001 is well ordered,
since it has self-relative rotation rates (1/3)5,0%. Its
saddle-node partner 011 has the same set of relative rota-
tion rates. The largest windows in the bifurcation dia-
gram of the Duffing oscillator, as well as their systematic
organization, are due to stable well-ordered orbits. It is
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2 2 2 2 2

2 2 2 2 2
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therefore useful to have a simple means to identify these
orbits.

Non-well-ordered orbits [33,36,37] are not torus knots.
They have positive topological entropy and force the
presence of many other periodic orbits. Non-well-
ordered orbits are easily identified by the spectrum of
their nonzero self-relative rotation rates.

2. Local torsion [33,38—40]. When a periodic orbit 4
is created by saddle-node bifurcation, the intersections 4;
on a Poincaré section are not close to each other, so self-
relative rotation rates do not directly provide local infor-
mation. However, if B is the saddle-node partner of A,
the intersection B; is near 4;. The mutual relative rota-
tion rates of the saddle-node pair 4 and B then do pro-
vide local information. If A4 and its saddle-node partner
B are well ordered, all mutual relative rotation rates are
equal and their value is the local torsion of either orbit at
creation. If the orbits are not well ordered, the local tor-
sion is the mean value of their mutual relative rotation
rates.

In a period-doubling cascade based on the period-one
orbit (1, 01, 0111, 01110101, etc.) the local torsion of the
orbit of period 2% is the mean of the relative rotation
rates of the mother-daughter pair of orbits of periods 2%
and 2*L (172, 174, 3/8, 5/16, 11/32,
21/64, ... =[2%+(—1)¥"1]/3x2%) [33].

For a saddle-node pair of period p, the orbit of period
p2Xis (R)E[2K+(—1)k"11/3p2*, where (R ) is the lo-
cal torsion of the initial saddle-node pair and the sign is
+1 on direct horseshoes (branches 0 and 1, 2 and 3, etc.)
and —1 on reverse horseshoes (branches 1 and 2, 3 and 4,
etc.) [33,41-44].

3. Concentric organization. The organization of
periodic orbits can be determined by inspection of a table
of their relative rotation rates. For example, the period-
one orbit 1, the period-two orbit 01, and the period-three
orbit 001 all have the same relative rotation rates with
the period-four orbit 0001. This means that the period-
two and -three orbits can be deformed to the period-one



51 STRUCTURE IN THE BIFURCATION DIAGRAM OF THE . . . 943

orbit without intersecting the period-four orbit [33].
Another way to view this is that the period-one, -two,
and -three orbits lie “inside” the period-four orbit. We
find, by computation of relative rotation rates, that the
orbits responsible for the largest windows in the bifurca-
tion diagrams of the Duffing and other oscillators are
concentrically organized in a very particular way which
is model independent, depending only on their symbolic
dynamics [37].

B. Periodic orbits for nonlinear oscillators

Three types of orbits play a major role in understand-
ing the bifurcation diagram of the Duffing oscillator: the
initial period-doubling sequence; well-ordered saddle-
node pairs; and the period-doubling cascade based on the
well-ordered node. We describe these orbits first for the
generic nonlinear oscillator on the horseshoe consisting
of the branches (0,1) of the template shown in Fig. 5
(direct horseshoe). We then describe these orbits on the
horseshoe consisting of the branches (1,2) of this template
(reverse horseshoe). Finally, we describe these orbits on
higher horseshoes.

1. Direct horseshoe (0,1 template branches)

The initial period-doubling cascade consists of the sad-
dle 0 and the node 1, on which the cascade (1, 01, 0111,
01110101, etc.) is ©based with local torsions
[2¥+(—1)k"1]1/3% 2k, computed from their relative ro-
tation rates.

All well-ordered orbits in this horseshoe are identified
by an irreducible rational fraction Q /P, with P the period
and 0<Q/P <1/2. The symbol sequence $(Q/P) for
the saddle of this saddle-node pair is &(Q/P)
=W(WQ2)...W(P—Q),

.0 i [fjI-[f G —D]=0
P~ 11 i [f1-1fG—DI=1,

where f =Q /(P —Q), [x] is the greatest integer in x, and
j=12,...,P—Q[33,37]. The node of this saddle-node
pair is obtained by changing W (P —Q) from 11 to Ol.
For example, the saddle-node pair associated with the
fraction Q/P=3/7 is &(3/7)=(0111111) and the
saddle-node pair identified by 1/7 is £(1/7)=(0000011),
where 1 is 1 for the saddle and O for the node. All
nonzero relative rotation rates of the well-ordered orbits
identified by Q /P are Q /P. Further, all their mutual rel-
ative rotation rates are also Q /P, so that their local tor-
sion is Q /P when formed by saddle-node bifurcation.

In Table I we show the relative rotation rates for the
five well-ordered orbits with Q/P=3/7,2/5,1/3,
1/4,1/5 [45]. This table clearly shows that these well-
ordered orbits are concentrically organized, those with
larger Q /P inside those with smaller. More generally,
the relative rotation rates of well-ordered orbits with
fractions Q /P and Q'/P’ are

R;;(Q/P,Q'/P')=min(Q/P,Q'/P') .

4.2)

4.3)

This shows that all well-ordered orbits are concentrically
organized, those with smaller Q /P outside those with

TABLE I. Relative rotation rates of five well-ordered orbits.
The relative rotation rates of the distinct orbits with Q /P and
Q'/P’ are all equal and have multiplicity PP’'. The self-relative
rotation rates of an orbit with Q /P are (Q /P)?*~10f_ The un-
derlined symbol 1 is O for the node and 1 for the saddle of the
saddle-node pair. The structure of this table shows that these
orbits are concentrically organized, with local torsion decreas-
ing from inside to outside.

Q'/P’ 377 2/5 1/3 174 1/5

Q/P 0111111 01111 011 0011 00011
3/7 0111111 3/7 2/5 1/3 1/4 1/5
2/5 01111 2/5 2/5 1/3 1/4 1/5
173 011 1/3 1/3 1/3 1/4 1/5
1/4 0011 1/4 1/4 1/4 1/4 1/5
1/5 00011 1/5 1/5 1/5 1/5 1/5

larger [37].

If Q/P and Q'/P' are irreducible rational fractions
with QP'—Q'P ==+1, then there is a well-ordered orbit
of period P + P’ between the two well-ordered orbits with
Q/P and Q'/P’'. Its properties are obtained from those
of the two bounding orbits by “Farey construction.” Its
rational fractional value is obtained by “Farey addition”
of the rational fractions Q/P and Q'/P":
Q"/P"=Q/P+Q'/P'=(Q+Q')/(P+P'). The sym-
bol sequence for this Farey orbit is obtained from the
symbol sequence of the two bounding orbits

S(Q+Q")/(P+P"))

=8((min(Q /P,Q’'/P'))S((max(Q /P,Q'/P')) . (4.4)

For example, between the Newhouse orbits 1/3 (011) and
1/4 (0011) there is a well-ordered orbit with
Q"/P"=1/3+1/4=2/7 and symbol sequence
$(2/7)=8(1/4)$(1/3)=0011011.

A period-doubling cascade is built on the node of each
saddle-node pair (well ordered or not). As stated above,
the local torsion on this cascade reproduces that on the
fundamental period-doubling cascade:

(local torsion)=(R ) +[25+(—1)*~1]/3P2* | (4.5)

where P is the period of the basic saddle-node pair.

The largest windows in the bifurcation set are associat-
ed with the simplest well-ordered orbits. We identify the
primary series of orbits as follows.

(a) Primary series (first half). For these orbits
Q/P=n/(2n+1) (n=1,2,...) and the symbolic dy-
namics is 012" (saddle) and 012" 201 (node). These orbits
are anchored by the period-three orbit at one end and
have local torsion accumulating, as n — «, to 1/2.

(b) Primary series (second half). For these orbits
Q/P=1/n (n=3,4,...) and the symbolic dynamics is
0" !1 (node) and 0" 212 (saddle). These orbits are an-
chored by the period-three orbit at one end and have lo-
cal torsion accumulating, as n— o, to 0. These orbits
have been studied extensively by Newhouse [20]. These
orbits are dual under the transformation 0— 1% [e.g.,
1/5=0°1—3/7=(1*%0=012%3).

The five orbits shown in Table I belong to the first half
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of the primary series (3/7,2/5,1/3) and the second half of
the primary series (1/3,1/4,1/5). The local torsions Q /P
of both the first and the second half of the primary series
can be constructed by Farey addition from the local tor-
sion (1/3) of the period-three orbit which anchors both
halves and the two accumulation values on the left (1/2),
associated with symbol sequence §(1/2)=(11), and 0/1
on the right, associated with symbol sequence
$(0/1)=(0). This construction is shown in Fig. 7. In
the first half of the primary series the Farey orbit between
1/2 and 1/3 is 2/5 with &(2/5)=8(1/3)8(1/2)
=(011)(11); that between 1/2 and 2/5 is 3/7 with
$3/7)=8(2/5)8(1/2)=(01111)(11), etc. Thus the first
half of the primary series is dominated by the flip saddle
1 whose local torsion is 1/2. Similarly, in the second half
of the primary series the Farey orbit between 1/3 and 0/1
is 1/4 with §(1/4)=48(0/1)8(1/3)=(0)(011), etc. The
second half of the primary series is dominated by the reg-
ular saddle O, whose local torsion is O.

Between each adjacent pair of windows in the primary
structure there is a fine structure of windows associated
with well-ordered orbits. These orbits can be built up
sequentially by Farey construction. Figure 8 shows the
fine structure between windows 1/3 and 1/4 down to lev-
el 3. The orbit with Q /P =2 /7 is the well-ordered orbit
of lowest period which does not belong to the primary

LOCAL TORSION

=

1
2

=
A\ =

012x4 0412

FIG. 7. Each well-ordered orbit in the first half of the pri-
mary series can be constructed sequentially as the Farey sum of
the orbit 011 with Q/P =1/3 and the limit orbit 12. Likewise,
each Newhouse orbit in the second half of the primary series is
constructed sequentially as the Farey sum of the period-three
orbit 011 and the limit orbit 0. The two period-one orbits 1 and
0 dominate the first and second halves of the primary series of
orbits. At any level there is a duality between orbits: 0(1%)? is
dual to 0712,

LOCAL TORSION

Ry

1
4

4 4
13 15
BAAA BBBA
s s
17 18
BABAA BBABA

FIG. 8. Each well-ordered orbit between two adjacent win-
dows in the primary series can be obtained from the boundary
orbits by Farey construction. Some of the well-ordered orbits
between the windows 1/3 and 1/4 are shown. Here 4 =011
and B =0011.

series. The well-ordered orbits &(1/3)=011 and
§(1/4)=0011 dominate the behavior of all Farey orbits
between these windows in the same way the orbits
$1/2)=11 and &§(1/3)=011 [or $(1/3) and §(0/1)]
dominate the behavior of all primary orbits in the first
(second) half of the primary series.

Scattered throughout the bifurcation diagram between
primary windows and the fine structure, extending even
beyond the accumulation point of the first half of the pri-
mary series, is a set of very narrow windows associated
with non-well-ordered orbits. The non-well-ordered orbit
of lowest period in this horseshoe is the period-five orbit
with symbolic dynamics 00111, mutual relative rotation
rates (1/5)%(2/5)!°, and (R )=7/25. For highly dissi-
pative nonlinear oscillators, the very narrow window
created when this orbit is formed by saddle-node bifurca-
tion will occur in the neighborhood of the window of the
well-ordered orbit with Q /P =7/25, which is the Farey
sum of 2/7 and 5/18 (cf. Fig. 8). From Fig. 8 we easily
compute the symbolic dynamics of this well-ordered orbit
as §(7/25)=8(5/18)8(2/7)=(BBABA)NBA)=B(BA)*
=0011(0011011)>.

2. Reverse horseshoe (1,2 template branches)

Every orbit that exists on the horseshoe formed on
branches 0,1 of the template shown in Fig. 5 has a coun-
terpart on the reverse horseshoe formed on branches 1,2
of this template. The mapping between orbits on the
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direct horseshoe and the reverse horseshoe is as follows.
(a) Symbol mapping: 1—1,0—2.
(b) All relative rotation rates are complemented in 1:
R—-1—A.

(c) All local torsions are complemented in 1.

For example, the Newhouse orbits 0? "212,0° "!1 on the
direct horseshoe are identified with the Newhouse orbits
27=212 27 ~11 in the reverse horseshoe. Their self- and
mutual relative rotation rates are 1—1/p. These well-
ordered orbits are concentrically organized since

R;(1—Q/P,1—Q’/P')=max(1—Q/P,1—Q'/P’)
=min(Q/P,Q'/P') .  (4.6)

The local torsions on period-doubling cascades are
(R)—[2"+(—1)k"1]/3P2k,

3. Higher horseshoes (branches 2N, 2N+ 1, and 2N+ 2)

The direct horseshoe formed by branches 2N and
2N +1 is identical to that formed by the direct horseshoe
built on branches 0 and 1, except for an overall global
torsion of N. The following mapping takes the zero-
torsion horseshoe (on branches 0,1) and its orbits to the
corresponding direct horseshoe (2N, 2N +1) and its cor-
responding orbits.

(a) Symbol replacement: 0—2N, 1—-2N +1.

(b) Relative rotation rates: add N to each.

The reverse horseshoe formed on the branches 2N +1
and 2N +2 is identical to the reverse horseshoe built on
branches 1 and 2, except for an overall global torsion of
N. We have the following mapping between these two re-
verse horseshoes.

(a) Symbol replacement: 1—2N +1,2—2N +2.

(b) Relative rotation rates: add N to each.

To illustrate, the Newhouse orbits of period p on the re-
verse zero-torsion horseshoe are 1222 =2 and 127 ~! with
self- and mutual relative rotation rates 1—1/p. The cor-
responding orbits on the reverse horseshoe on branches 5
and 6 of the nonlinear oscillator template are 526° ~2 (sad-
dle) and 56° ~! (node) and their self- and mutual relative
rotation rates are 2+ (1—1/p).

C. Periodic orbits for the Duffing oscillator

Since the Duffing template (Fig. 6) is the second iterate
of the template for a nonlinear oscillator (Fig. 5), orbits of
period p of the Duffing oscillator may be repre-
sented as a sequence of 2p symbols in the form

(a1a;)azay). . .(a,y,_1a,,), where a; is a symbol for the

nonlinear oscillator template in either the left-
(j odd) or the right- (j even) hand well. An orbit
is symmetric if the symbol sequence

(@ +1p +2(ap 138, 1 4). . .a1G,. . .(a,_a,) is the same as
the sequence (a;a;)asay)...(ay,1a,5,). Only orbits
with negative parity can undergo period-doubling bifur-
cations.

If motion in each of the two wells of the Duffing oscil-
lator is confined to branches 0 and 1, orbits for the
Duffing oscillator are constructed from the four symbols

(00), (01), (10), and (11). The period-one orbits (00) and
(11) are symmetric with even parity. Therefore the node
(11) cannot initiate a period-doubling cascade. The two
period-one orbits (01) and (10) form a symmetric pair of
asymmetric orbits. Since they have odd parity, they can
initiate period-doubling cascades. The symmetric
period-one orbits (00) and (11) are formed in a saddle-
node bifurcation and then the stable node undergoes a
pitchfork bifurcation, losing its stability and creating the
asymmetric pair of orbits:

(11) —— (11) +
stable pitchfork  unstable
symmetric bifurcation symmetric

(01)+(10) .  (4.7)

stable symmetric pair
of asymmetric orbits

The two period-two orbits in this cascade are obtained
from the period-four orbit 0111 on the oscillator template
(01)(11) and (11)(01). The period-doubling bifurcations
are

(01)—(01)(11),
(10)—(11)(10) .

(4.8)

The symbolics for the two orbits of period 2% in the
Duffing cascade are obtained in this way from the sym-
bolics of the single orbit of period 2* ™! in the oscillator
cascade.

If motion is confined to N branches in each well of the
Duffing oscillator, the template has N 2 pranches. There
are many more orbits of period p on this template than
on the corresponding N-branched oscillator template.
However, there is only a small subset of orbits in the
Duffing system which are responsible for the primary and
fine structure, which is evident in the Duffing bifurcation
diagram (Fig. 2). These orbits are second iterates of the
well-ordered and period-doubled orbits of the generic
nonlinear oscillator with symbolic dynamics
(a,a,...q, )2, where a,a,.. .a, is a well-ordered or
period-doubled orbit for the nonlinear oscillator.

Two distinct cases arise when a Duffing orbit is the
second iterate of an oscillator orbit: (a;a,. . .q, 2. Ifpis
odd, the Duffing orbit is symmetric. It also has even par-
ity, so it cannot undergo a period-doubling bifurcation.
If p is even, then (a,a,. . .a,) is a Duffing orbit of period
p/2, as is the shifted orbit (a,a;...a,a;). These orbits
form a symmetric pair of asymmetric orbits. If their par-
ity is odd they can initiate period-doubling cascades. We
illustrate these two cases by using as examples second
iterates of Newhouse orbits on the branches 0,1 of the os-
cillator template.

Example 1 (p odd). The two Newhouse orbits of
period three on the oscillator template are 011 (saddle)
and 001 (node). The second iterates on the Duffing tem-
plate are (011)> =(01)(10)(11) (saddle) and (001)®
=(00)(10)(01) (node). Both are symmetric. The node
undergoes a symmetry-breaking bifurcation to a sym-
metric pair of asymmetric period-three orbits with sym-
bolic dynamics (00)(10)(11) and (01)(01)(10), derived from
the period-six daughter orbit 001011 on the oscillator
template. Both of these orbits initiate a period-doubling
cascade.

Example 2 (p even). The two Newhouse orbits of
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period four are 0011 (saddle) and 0001 (node). The
second iterate of the saddle gives two saddles of
period two:  (0011)*=(00)(11)(00)(11)=[(00)(11)]?
and (0110)*=(01)(10)(01)(10), while the second
iterate of the node gives two nodes of
period two: (0001)>=(00)(01)(00)(01) and (0010)?
=(00)(10)(00)(10).  The saddle-node pairs are
((00)(11),(00)(01)) and ((01)(10),(00)(10)). The node
in each pair then initiates a period-doubling cascade.

The second iterate of the well-ordered orbit on the
horseshoe on branches (0,1) defined by the rational frac-
tion Q /P is a well-ordered orbit on the Duffing template.
Its nonzero self- and mutual relative rotation rates are
1+2Q/P. The relative rotation rates of Duffing orbits
constructed from orbits with Q/P and Q'/P’ on this
horseshoe are

R, (Q/P,Q'/P')=min(1+2Q/P,1+2Q'/P’) . (4.9)
Thus these Duffing orbits are also concentrically organ-
ized.

A similar construction holds for the reverse horseshoe
on branches (1,2) of the oscillator template. The relative
rotation rates of the Duffing orbits are 1+2(1—Q /P)

and two such well-ordered orbits have relative rotation
rates given by

ﬁu(l_Q/P’I_‘Q‘/P,)

=max[1+2(1—Q/P),1+2(1—Q'/P")] . (4.10)

Similar results hold for second iterates of orbits on
branches 2N, 2N +1 and 2N +1, 2N +2 of the oscillator
template. The relative rotation rates are 1+2(N +Q /P)
and 1+2(N +1—Q /P), respectively.

D. Topological identification of the Duffing windows

We have identified the periodic orbits responsible for
the largest windows in the bifurcation diagram of the
Duffing oscillator. The symbolic dynamics of these orbits
were determined by locating the position of successive
iterates in Poincaré sections separated by half a period
and comparing these positions with branches of the
strange attractor at nearby control parameter values (i.e.,
just outside the window). This was done for orbits of
periods three, five, and seven and orbit pairs of periods
two and four in two separate regions of the bifurcation
superstructure [21].

TABLE II. Relative rotation rates in the largest windows of the Duffing oscillator in the bifurcation
diagram shown in Fig. 2. The largest windows are labeled by the integer p (3,4,. . .). For p odd there is
a saddle-node pair of orbits of period p. For p even there are two saddle-node pairs of period p /2. The
symbolic dynamics of these orbits are shown. The local torsions of the orbits are 7—2/p. All relative
rotation rates are the same for any pair of orbits. The nonzero self-relative rotation rates only are
shown. The multiplicities are as indicated in Table I. The structure of this table shows that these orbits

are concentrically organized.

'

P 3
Local torsion 7—2/3
p Symbolics

7—2/4

4 5 6 7 8
7=2/5 7-2/6 T7—=2/7 7—2/8

3 (56)(65)(66) 19/3
(55)(65)(66)

4 (55)(66)

(56)(66)
26/4

(56)(65)

(55)(65)

5 (55)(66)(65)(56)(66)
(56)(66)(65)(66)(66)

33/5

6 (55)(66)(66)

(56)(66)(66)
40/6

(56)(66)(65)

(66)(66)(65)

7 (55)(66)%)65)(56)(66)*
(56)(66)%(65)(66)(66)*

47/7

8 (55)(66)°
(56)(66)°
54/8
(56)(66)%(65)
(66)(66)%(65)

26/4 33/5 40/6 47/7 54/8

26/4 33/5 40/6 47/7 54/8

33/5 33/5 40/6 47/7 54/8

40/6 40/6 40/6 47/7 54/8

47/7 47/7 47/7 47/7 54/8

54/8 54/8 54/8 54/8 54/8
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In one region, orbits which we identified all had the
form (324?7%)2, p=3,4,...,8. In the adjacent region
the corresponding windows were associated with orbits
(5%6P72)2, 3<p <8. We computed all relative rotation
rates for the orbits in these two regions of the superstruc-
ture. The self-relative rotation rates of the orbits in these
two regions were 1+2(2—1/p)=5—2/p and
14+2(3—1/p)=7—2/p. Table II gives the relative rota-
tion rates for the orbits in the second region. These or-
bits are concentrically organized.

In the second region the local torsions are (19/3,26/4,
33/5,40/6,47/7,54/8) for p =3,4,5,6,7,8. This sequence
of local torsions has also been identified by Englisch and
Lauterborn [18]. However, these authors have not
identified the orbits by their type or symbolic dynamics.
The next two largest windows “on the other side” of the
period-three window have local torsion 31/5 and 43/7.

The major windows in the bifurcation diagram of the
Duffing oscillator are associated with well-ordered orbits,
which are second iterates of Newhouse orbits on reverse
horseshoe templates. Their symbolic dynamics are
(1227 72)2 (32472)2, (5%6°"2)%,... . Their self-relative
rotation rates and local torsions are 1+2(N +1—1/p)
and they are concentrically organized.

V. RETURN MAPS

The description of periodic orbits in terms of their
symbolic dynamics on the nonlinear oscillator and
Duffing templates has been extremely useful. So also has
the description of these orbits in terms of their relative
rotation rates, local torsions, and concentric organiza-
tion. However, these properties are all “static,” in the
sense that they do not tell us directly about how periodic
orbits are created and annihilated as control parameters
traverse a bifurcation peninsula. To resolve this problem
of “dynamics” we construct return maps for the non-
linear and Duffing oscillators. These maps are then used,
to the extent possible, to determine the order in which
periodic orbits are created and annihilated as a control
parameter is varied. We have used the one-dimensional
return map (5.4) to outline the bifurcation peninsulas
shown in Fig. 1 for a typical nonlinear oscillator. This
has been done by identifying the loci of saddle-node bifur-
cations of the period-three orbit in the (A,T) plane for
successively increasing values of the global torsion.

A. Two-dimensional return maps

The dynamical processes of stretching and squeezing
that occur in the Duffing oscillator can be summarized by
a two-dimensional return map. This map involves two
steps in each well. The first describes the result of rota-
tion and elongation in the left-hand well. The second de-
scribes the squeezing which occurs when the left-hand
well is destroyed and the attractor is poured into the
right-hand well. Steps 3 and 4 repeat steps 1 and 2 for
the right-hand well. The first two steps provide a return
map for typical nonlinear oscillators, such as the Morse
and Toda oscillators, in a comparable range of parameter
values. These four steps are summarized in Fig. 9.

Step 1. A point in the left-hand well with coordinates

r,0 slowly spirals down toward the bottom of the well
during the first half period. The angle 6 is measured
from the fiducial marker shown. The region of phase
space shown in the strip between 6=0 and 7 evolves to
the strip between 6=¢ and ¢ + A7 under the mapping

SL1: 6,—0,=¢+A6,,
—0,—0y) .1

Fo—ry=rpe

In order for the strips shown to be nonoverlapping, we
require b > ae ~2™7.

Step 2. A circle of radius a containing the spiraling
motion in the left-hand well is compressed along a diame-
ter, rotated clockwise through 7 rad, and injected into
the strip extending from O to 7 in the right-hand well.
The point with coordinates (x,y) in the left-hand well is
mapped to the point with coordinates (r,,0,) in the
right-hand well under the mapping

SL2: x=rcos6, ,
y=r;sinf, ,

0,=1(&+&)+ 1§ —E)x/a),

(5.2)

ry=[ia+b)+La—b)y/a)le .

Steps 3 and 4 repeat steps 1 and 2 in the right-hand well.
The two-dimensional map SR20SR10SL20SL1 (here o
denotes composition of maps) provides a reasonable ap-
proximation to the periodic orbit structure and strange
attractors of the Duffing oscillator. The first two steps

@ SL2 (b)

Ny SRI

SR2

FIG. 9. Two-dimensional return map for the Duffing oscilla-
tor. (a) SL1: A point in the left-hand well with coordinates
(r9,60) evolves to (r,,0,) under free evolution given by (5.1).
Points initially in the exponentially decaying strip in the region
0= 6, =7 evolve to points in the strip shown. Here b/a =0.89
and y=0.04. (b) SL2: Points with coordinates (r,,0,) or (x,y)
in the left-hand well are squeezed into the right-hand well,
where their coordinates (r,,68,) in the new local coordinate sys-
tem are given by (5.2). The image of the disk » <a in the left-
hand well is shown, in black, in the interior of the exponentially
decaying strip in the right-hand well. Here &,=0.17 and
£,=0.8m. The two maps SL20SL1 form the return map of a
generic  nonlinear  oscillator. The second iterate
SR20SR10SL20SL1 forms the return map of the Duffing oscil-
lator. The two rotations by 7 rad in passing between wells is
taken into account by the orientations of the local coordinate
systems.
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SL2oSL1 do the same for generic nonlinear oscillators.
However, this map has six “unfolding” parameters:
¢~1T/7, A (approximately equal to the square root of
the Lyapunov exponent) b /a and 7, related to the dissi-
pation, and the angular bounds on reinjection £,£,. We
have not studied this map thoroughly because of the
large number of parameters. Rather, we have developed
a one-dimensional return map which provides a very con-
venient basis for understanding almost all of the details
previously seen in the structure of the bifurcation dia-
gram of the Duffing oscillator.

B. One-dimensional return maps

This map is developed under the assumption that the
intersection of the strange attractor with a Poincaré sec-
tion is very “thin” (a =b), so that fractal structure is
neglected. We assume that the location of a point in a
cross section of the attractor is defined by an angle 6 dur-
ing each half period and neglect the slow spiral decay to-
ward the well bottom (y=0). We further assume that
the angle 0 ranges between 0 and 7 in each well at the be-

ginning of each half period (£;=0,£,=w). The one-
dimensional return map is then
6, —~0; =¢+A6, ,
07, —0g=m/2(1—cos6}) ,
(5.3)

0p — 0 =+A0g ,
6r — 07 =m/2(1—cosfy) .

From (5.3) we construct the first return map R ' for gen-
eric nonlinear oscillators and the return map R?>=R o R
for the Duffing oscillator:

RY: 0—60'=n/2[1—cos(¢+A0)],
R*=R'"R': 66"
=x/2(1—cos{d+Am/2[1—cos(¢+A0)]}) .

(5.4)

We first study the properties of the map R ! because many
of the features exhibited by R? for the highly dissipative
Duffing system first become apparent in R !. Then we de-
scribe how to construct R ? as the second iterate of R ..

C. Properties of R

We observe that for the map R! for generic nonlinear
oscillators, ¢(=27T /7) is essentially the ratio of the
driving period to the natural period of the linearized os-
cillator and A is essentially the Lyapunov exponent of the
map, or the unstable Lyapunov exponent of the flow.
The return map is a trigonometric function with minima
at 8'=0 and maxima at 8’ =w. Between adjacent maxima
and minima the map is monotonic. It is convenient to la-
bel each branch of this return map between adjacent
maxima and minima with an integer: i =[(¢+A0)/7].
Then if 0 <¢$+ A6 <7, 0 lies under the i =0 branch of the
return map, which is monotonic increasing from 0 to .
The next branch 1 descends from 6’=1 to 0 and maps 6
in the interval m<¢+A0<27m to its image 6’. The
branch index is the local torsion of the period-one orbit

in the flow for which R! is the return map. As ¢ in-
creases, the flow is directed toward branches with succes-
sively larger local torsion.

The return map R ! has two important symmetries.

1. Translation invariance. The map R is invariant un-
der translation ¢ —¢+ 27

0’ =m/2[1—cos(¢p+2m+A8)]=m/2[1—cos(¢+18)] .
(5.5)

Under translation, all branch indices are increased by 2.
This simply reflects the fact that the free rotation in-
volves one more rotation about the bottom of the well for
period T +7 than for period T. The periodicity in ¢
reflects the superstructure in the bifurcation diagram of
the generic nonlinear oscillator. Each island in the super-
structure is labeled by an integer i, which is half the
branch index of the return map. This invariance is re-
sponsible for the symmetries (Sec. IVB) of direct
horseshoe to direct horseshoe and reverse horseshoe to
reverse horseshoe.

2. Rotation invariance. The map R ! is invariant under
rotation about the center of any branch. The 6’ coordi-
nate of the center of a branch is 7/2. The 6 coordinate
at the center of branch N must obey cos(¢+A6,)=0.
Under these conditions

O=7/2+A0"=7/2[1—cos(¢+AO,+AAO)],

(5.6)
AG’'=(—1)"7/2s5in(AA0) .
The rotation invariance is
(AG,A0")—(—AH,—AF") . (5.7)

Under this invariance, the branch indices map to N —N,
N +1—N —1, and more generally N +k —N —k.

There is a related symmetry that is useful if we plot
fixed points of this map (or any of its iterates) as a func-
tion of ¢. By fixing 6'=6 and writing ¢=¢_+Ad, we
find, following the arguments above,

A9'=(—1)"r/2sin(Ad) , (5.8)
so the related rotation symmetry is
(Ap,A0')—(— AP, —AEG") . (5.9)

These rotation symmetries map direct horseshoes to re-
verse horseshoes and are responsible for the symmetries
described in Sec. IV B.

D. Construction of R? from R!

Figure 10 shows R'!' and R? for A=1.8 and
#=0.1+40.1X27. The map R! has an interior maximum
and minimum at M and m and boundary maxima and
minima on the left and right boundaries (6=0,7) at L
and R. These maxima and minima define the locations of
all critical points of R 2.

For the parameter values used, R ! has three branches
in the interval 0< 6 <7 labeled 0, 1, and 2. Therefore R?
can have at most nine branches labeled
00,01,02,12,11,10,20,21,22 in this interval (cf. Fig. 6).
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MM d

FIG. 10. The return map
6 = RY0) = (7/2)[1 — cos(¢
21 +A0)] and R?*=R'R!' for
bR A=1.8 and ¢=0.1+0.1X2m.

6 LL

The map R? can be constructed
from R! by following the pro-
cedure outlined in the text. The
2 fixed point on branch 11
identifies a symmetric period-
one orbit of the Duffing oscilla-
tor while the fixed points on
branches 12 and 21 identify a

g pair of asymmetric period-one
RR orbits.

Branches 0* of R? occur to the left of M (at 6,); branches
1* occur between M and m at 6, and 64 branches 2*
occur to the right of m at 8. Distinct branches of R % are
separated by critical points. Therefore, by continuity the
branches of R? for the parameters used are
02,12,11,10,20,21.

The critical points of R? are determined from the
boundary and interior maxima and minima of R! as fol-
lows. The critical point M on R! separating branches 0
and 1 is the first iterate of 6, and the critical point MM
on R? separating branches 0* from 1* is the second
iterate of 0;. This can be found by the usual construction
following the diagonal (path M a R MM). In the same
way the minimum m at 64 separates branches 1 and 2 on
R! and the second iterate at mm (follow path m b L mm)
separates branches 1* and 2* on R2. Three branches 12,
11, and 10 of R? exist between MM and mm. They are
separated by the critical points mm1 and MM1. The crit-
ical points at 8’=0, 7 are the inverse images of m and M,
respectively. That is, mm] is located by following the
path (m cd mml) and MM1 is obtained by following
path (M e f MM1). This construction also produces
MM?2 (M e g MM?2), which separates branches 20 and 21.
The values LL and RR are second iterates of =0 and 7.

We observe that mm on R ? over 6 is a local minimum
because L on R' is a boundary minimum. If L were a
boundary maximum, mm would be a local maximum.
Similarly, MM on R? over 6, is a local maximum because
RonR'isa boundary maximum. Finally, we observe
that the fixed point at 6, on R is also a fixed point for
R2. This lifts to the symmetric period-one orbit (11) in
the Duffing system. The two fixed points of R? at 6, and
0 are not fixed points of R! and therefore describe a
symmetric pair of asymmetric period-one orbits (12) and
(21) in the Duffing system.

VI. MORPHOLOGY OF MAPS

A periodic orbit of either a nonlinear oscillator or the
Duffing oscillator with symbol sequence (a,a,...a,),

which exists when the drive period is 7, is replaced by a
corresponding periodic orbit with symbol sequence
(ajaj...a,) when the drive period is T +7. Here
aj=a;+2. For this to occur, periodic orbits must be
created and annihilated as T is increased. This creation
and annihilation process is systematic and is in turn
determined by the systematic creation and annihilation of
branches in the return maps R' and R2 The branches
are created and annihilated in boundary catastrophes
[29,30].

A. Creation and annihilation of branches in R !

We illustrate the morphology of R! by fixing A=1.8
and increasing ¢ by 2. The maps R' and R? are shown
in Fig. 10 for ¢=0.1+0.1X27. For this value of ¢ the
return map R Thas only three branches labeled 0, 1, and 2
in the interval 0<6=<s. The return map R? has seven
branches (02,12,11,10,20,21,22) in this interval. As ¢ is
increased, the map R ! moves rigidly to the left. Branch 0
disappears in a boundary catastrophe as the maximum M
moves to the left of 6=0 and branch 1 begins to decrease
in measure. While this occurs at the left-hand boundary
6=0, branch 2 increases in measure until it completely
spans the range from 6’ =0 to 7 when a maximum of R !
reaches 6=m. Thereafter, branch 3 (which is to the right
of the interval 6€[0,7] for ¢=0.14+0.1X27 and is
therefore not shown in Fig. 10) begins to grow at the
right-hand edge 6=, branch 1 continues to shrink at the
left-hand edge, and branch 2 remains unchanged in mea-
sure until the minimum at 64 crosses 6 =0, at which point
branch 2 begins to shrink. As ¢ increases, new branches
appear at 6= and grow, while old branches shrink and
finally disappear at 6=0.

We might therefore expect that orbits are created by
saddle-node bifurcations near 6= and are annihilated
by inverse saddle-node bifurations near 6=0. This is the
case and can readily be seen for the period-one orbits
which exist in each branch. In Fig. 10, as the maximum
which separates branches 2 and 3 (to the right of 6=1)
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approaches 6=, a tangency occurs between the map R
and the diagonal 6’=0 near 6=1. This tangency marks
the saddle-node bifurcation of two period-one orbits. As
¢ continues to increase, the two fixed points move apart.
One remains on branch 2. The other moves over the
maximum separating branches 2 and 3 and then exists on
branch 3. This fixed point is a node and may become a
flip saddle if it undergoes a period-doubling bifurcation.
As ¢ continues to increase, the period-one orbit on
branch 3 moves toward the minimum which separates
branches 3 and 4. As this minimum approaches 6=0,
the fixed point on branch 3 moves through the minimum
onto branch 4, where it is annihilated in an inverse
saddle-node bifurcation with the fixed point on branch 4.
For this value of ¢ all periodic orbits that involve the
symbol 3 no longer exist, since branch 3 is no longer
present in the return map.

When ¢ has increased by 2m: ¢=0.1+0.1X27+27,
the maps R' and R? are identical to those shown in Fig.
10, except that all branch labels have increased by 2
(0—2, 13, 2—4). To each periodic orbit which exists
for $=0.14+0.1X27 there is a corresponding orbit at
¢=0.1+1.1X27.

B. Creation and annihilation of branches on R 2

Changes in the number of branches of the return map
R? are associated with boundary catastrophes, as is the
case for R!. Boundary catastrophes occur when a
minimum or maximum of R ! occurs at §=0 or 7 as ¢ in-
creases. The boundary catastrophes associated with a
maximum at 6=0 or a minimum at 6= are similar to
each other. The boundary catastrophes associated with a
minimum at 6=0 or a maximum at 0 =1 are also similar.

We illustrate this branch morphology for the map R?
shown in Fig. 10 and consider the changes which occur
as ¢ is increased by 27. We first consider processes
which annihilate branches, that is, which occur at the
left-hand boundary 6=0. Then we treat processes which
create branches, which occur at 6=1.

As ¢ is increased, the map R ! moves rigidly to the left.
As the boundary minimum L approaches M (e.g., 6=0,
6'=1r) the local minimum at mm approaches 6'=m. The
three critical points MM1, mm, and MM?2, which bound
branches 10 and 20, approach each other. At the bound-
ary catastrophe of the critical point M at 6=0, the criti-
cal points MM1, mm, and MM2 become triply degen-
erate. As M moves below 6=0, branch O ceases to exist
for the map R ! and branches 10 and 20 cease to exist for
R?2. The three critical points MM1, mm, and MM?2 are
now replaced by a single critical point mm over m (or
0¢). This is a local minimum which separates branches
11 and 21. As ¢ continues to increase, the minimum at
mm approaches the minima at mml and mm2. These
three critical points separate branches 11 and 21. As the
minimum separating branches 1 and 2 of R ! approaches
60=0, the three critical points mml, mm, and mm2 an-
nihilate in a symmetry restricted cusp catastrophe.
When m moves below 6=0, branch 1 ceases to exist for
the map R ! and branches 11 and 21 cease to exist for R 2.

Branch creation morphology is similar to branch an-
nihilation morphology. Beginning again with the return
map shown in Fig. 10 we consider what happens as ¢ is
increased. The maximum R at 6= approaches 6' =1
and branch 22 for R? begins to grow. When the max-
imum separating branches 2 and 3 (to the right of 6=1 in
Fig. 10) on R ! occurs at 6= there is a triply degenerate
critical point bounding branch 22 at 8= for R2. When
this maximum moves below 6=1, the triply degenerate
critical point on R? splits into three isolated critical
points. These three critical points and 7 bound the three
new branches 23, 33, and 32. As ¢ continues to increase,
the minimum separating 23 and 33 approaches 6'=0.
This minimum reaches 6’=0 when the minimum on R,
which separates branches 3 and 4, occurs at =7. This
initiates another boundary catastrophe. The minimum
separating branches 23 and 33 becomes triply degenerate
and as the minimum on R! separating branches 3 and 4
moves below 0=, the three critical points on R?
separate, bounding new branches 24 and 34 between
branches 23 and 33.

Throughout this process a series of period-one orbits is
created and annihilated in a sequence of direct and in-
verse saddle-node bifurcations. These occur whenever a
tangency occurs between R? and the diagonal 6'=6.
Fixed points of R? (e.g., ii, i =1,2,3), which are also fixed
points of R! (e.g., i), are symmetric orbits. Others (e.g.,
ij,ji with i%j) occur as symmetric pairs of asymmetric
period-one orbits. Once again, after ¢ has increased by
27 to 0.14+1.1X27, the return map R? is identical to
that shown in Fig. 10 for ¢=0.1+0.1X27, except that
all branch labels have increased by 2 (e.g., branch
12— branch 34).

VII. SYSTEMATICS OF ORBIT CREATION
AND ANNIHILATION

In the preceding section we investigated the systemat-
ics of branch creation and annihilation as a function of
increasing control parameter ¢ for the return maps R’
and R2. In this section we investigate the systematics of
orbit creation and annihilation as ¢ increases. First, we
investigate the creation and annihilation of period-one or-
bits and show how the local torsion of the nodes changes
systematically with ¢. Then we investigate the properties
of period-doubling cascades and the mechanisms in-
volved in saddle-node bifurcations of higher-period or-
bits.

A. Period-one backbone of R!

In Fig. 11 we plot the fixed point argument ¢ +A6 as a
function of ¢, for the range 0 <¢ <5X27. The computa-
tion is carried out for A=1.8. We see that a number of
saddle-node bifurcations occur at points of vertical
tangency. Branch labels (local torsion) are used to identi-
fy each branch. The branch which exists between
¢+A0=nm and (n +1)7 has branch label n.

From Fig. 11 we see that direct
bifurcations occur at values of (¢,¢+A0)
~(m,3m),(3m,57),(5m,77), ... . Inverse saddle-node
bifurcations occur at (2w,2w),(4m,417),(6m,67), ... .

saddle-node
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D+A0

FIG. 11. Period-one snake for
the map R!. Saddle-node bi-
furcations which occur at
(¢, +A0) ~ [(2n +1 — A)m,
(2n +1)m] create branches 2n
and 2n +1. Inverse saddle-
node bifurcations which occur
at ~(2nm,2nmw)  annihilate
branches 2n and 2n — 1.

The bifurcation which occurs at (,37) creates branches
2 and 3. Branch 2 exists between (7,37) and (27,27),
where it is annihilated in an inverse saddle-node bifurca-
tion with branch 1. Branch 3 exists between (7,37) and
(47,47), where it is annihilated in an inverse saddle-node
bifurcation with branch 4.

Even branches are created as regular saddles and
change neither their stability properties nor local torsion
while they exist. Odd branches are more interesting. For
example, when branch 3 is created in a saddle-node bifur-
cation with branch 2, the two orbits have local torsion 2.
As ¢ increases, the stable node on branch 3 becomes a
stable focus and its local torsion smoothly increases from
2 to 3. When the local torsion reaches 3, the node be-
comes a stable flip (or alternating) node and then a flip
saddle as it loses its stability and initiates a period-
doubling cascade. As ¢ is further increased, branch 3 ap-
proaches branch 4 and an inverse saddle-node bifurcation
becomes imminent. The period-doubling cascade re-
verses itself and the flip saddle becomes a flip node and
then a stable focus. The local torsion of this focus in-

D/t

creases smoothly from 3 to 4, the focus becomes a stable
node, and this node then undergoes an inverse saddle-
node bifurcation with the regular saddle on branch 4
whose local torsion is 4.

The curve of period-one fixed points shown in Fig. 11
is called a period-one snake [5,12,46]. This snake shows
how the local torsion systematically “winds up” as the
control parameter ¢ =27T /7 increases. The snake is re-
sponsible for the superstructure in the bifurcation dia-
grams of the typical nonlinear oscillator and the Duffing
oscillator. Bifurcation peninsulas are built on the odd
branches of this snake. These branches are bounded by
direct and inverse saddle-node bifurcations with the adja-
cent even branches.

As the Lyapunov exponent A changes, the shape of the
snake changes slightly. Inverse saddle-node bifurcations
still occur at (¢,¢+A6)~(2mwn,2wn). Branches 2n —1
and 2n are annihilated at these points. Direct saddle-
node bifurcations occur at ~((2n +1—A)mr,(2n +1)7).
Branches 2n and 2n +1 are created at these points.

D+A0

—

=
10.

FIG. 12. Fixed points of R?
describe period-one orbits (the
snake) and period-two orbits of
R'. Equivalently, they describe
period-one orbits of R? which
are symmetric (snake) and which
form an asymmetric pair (the
rest).

8 9 10
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B. Period-doubling cascade

Figure 12 shows the fixed points of the map R2 The
orbits defined by these fixed points can be regarded either
as period-one (the snake) and period-two (the rest) orbits
of R ! or the symmetric and asymmetric period-one orbits
of R% The branches identifying these additional fixed
points exist only on the odd branches of the period-one
snake and have a peculiar shape.

In Fig. 13 we show the period-one orbits and the
period-two orbits of R! surrounding branch 3. We plot
the fixed points & =6 of R? over a range of ¢ extending
47. In addition, we do not show the period-two orbits
along branches 1 and 5 in order to reduce visual clutter.
The symbolic dynamics is shown for all branches.

After the period-one orbit on branch 3 is created, it un-
dergoes a period-doubling bifurcation, becoming unstable
and creating the orbit 23, which is initially stable. This
becomes unstable in a period-doubling bifurcation, not
shown. As ¢ increases, branch 2 is annihilated (with 1)
and subsequently branch 4 is created (with 5). We might
therefore expect that some mechanism exists to replace
the symbol 2 in periodic orbits in the cascade with the
symbol 4 as ¢ is increased. The mechanism is shown for
the period-two orbit; it is the same for all higher-period
orbits. A saddle-node bifurcation creates the period-two
orbit pair 24 and 34. The three period-two orbits 23, 24,
and 34 coexist for some range of ¢ and then the orbit pair
23 and 24 undergoes an inverse saddle-node bifurcation,
leaving only the orbit 34 to undergo an inverse period-

doubling bifurcation with the period-one orbit 3 before
orbits 3 and 4 undergo their inverse saddle-node bifurca-
tion. We note that only three period-two orbits based on
the symbols 2, 3, and 4 can be constructed, all coexist for
some range of values of ¢, and the saddle 24 undergoes
saddle-node bifurcations with nodes 23 and 34 as a mech-
anism for exchanging orbit symbolics as the local torsion
increases and branch 2 is annihilated and branch 4 is
created.

C. Saddle-node bifurcations

We describe here saddle-node bifurcations on branch 3
which create period-three orbits. All other saddle-node
bifurcations follow the same pattern, but their fixed point
diagrams are much more congested. The fixed point dia-
gram of R3 is shown in Fig. 14. Once again, we have
plotted branches over a range of ¢ of 47 and suppressed
period-three orbits built on branches 1 and 5.

In this bifurcation peninsula, the period-one orbits are
first created. Subsequently, a saddle-node bifurcation
occurs creating a pair of period-three orbits. The sym-
bolic dynamics of these orbits is M32, M =(2,3), so that
orbits 232 (node) and 332 (saddle) are created. The
identification of each branch in Fig. 14 is accomplished as
follows. The branch containing the node has a tangency
with @' =1 (also 8’ =0), for reasons outlined above for the
period-one orbits. When we plot the return map
6'=R3(0), the intersections of this function with the di-
agonal 6'=0 alternately have slope less than one (node)

T

91

¢ 4n

FIG. 13. The fixed points of 8’=R?(0) are shown in the range 0<¢ <4m. Period-two orbits on the branches 1 and 5 are not
shown. As ¢ is increased, a snake creates the orbit pair (2,3). The saddle 2 annihilates the node 1. The orbit 3 moves over the max-
imum of the return map, producing the tangency at 6’ =, then undergoes a period-doubling bifurcation, creating the period-two or-
bit 23. This orbit undergoes a period-doubling bifurcation (not shown). A saddle-node bifurcation creates the orbit pair (24,34). The
node 34 may initiate a period-doubling cascade. The saddle 24 then undergoes an inverse saddle-node bifurcation with the orbit 23,
leaving 34 as the only period-two orbit. The orbit 34 is then “absorbed” by the orbit 3 in an inverse period-doubling bifurcation and
then the node 3 and saddle 4 are annihilated in an inverse saddle-node bifurcation. Before the period-two orbits 23 and 34 undergo
inverse period-doubling bifurcations, the cascades built on them must first reverse themselves.
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FIG. 14. Fixed points of the return map 6'=R3(9) are shown for A=2.2 in the range 0= ¢ <4sx. The period-one snake is shown
and all branches (1-5) on it are labeled. Orbits based on the branches 1 and 5 have been suppressed. A saddle-node bifurcation at
¢=a creates the orbit pair M32, where M =(2,3). The branches containing the node are tangent to 8'=0,7. The stability properties
(saddle or node) alternate, because of the geometry of the return map. A second saddle-node bifurcation at b creates the orbit pair
Ma42. This is followed by two inverse saddle-node bifurcations at ¢ between 2m2 and then at d between 3m 2, which annihilate these
four orbits, where m =(3,4). A second pair of direct and inverse saddle-node bifurcations creates (at e, f) and annihilates (at g,4) or-
bits mM4. The eight period-three branches are labeled and related to each other by rotation symmetry.

and greater than one (saddle). This observation is
sufficient to identify all branches in Fig. 14 as saddle or
node branches.

A second saddle-node bifurcation occurs which creates
period-three orbits M42=242 (saddle) and 342 (node).
The node 232 from the first bifurcation and saddle 242
from the second then undergo an inverse saddle-node bi-
furcation. Then the saddle 332 from the first bifurcation
and the node 342 from the second undergo a second in-
verse saddle-node bifurcation.

For higher-period orbits, a first saddle-node bifurcation
creates orbits M 3* and a second creates orbits M4*. The
first node and second saddle undergo a first inverse
saddle-node bifurcation and subsequently the first saddle
and second node undergo the second inverse saddle-node
bifurcation, as shown by the following table.

Inverse saddle-node

bifurcation
First Second
direct saddle First node saddle
node bifurcation Second saddle node

(7.1)

The rotation symmetry of R! has been used to identify
the symbolic dynamics of the remaining four period-three

branches. All branches are labeled in Fig. 14. Eight
period-three orbits based on the three symbols 2, 3, and 4
exist and all are present on branch 3.

D. How far does the bifurcation sequence go?

After branches 2 and 3 are created in a direct saddle-
node bifurcation, periodic orbits on the direct horseshoe
(branches 2 and 3) are created in the same order as for
the logistic and other unimodal maps [47]. We neglect
here those saddle-node bifurcations (e.g., M42) which in-
volve branches other than 2 and 3. We now ask how far
into the bifurcation sequence we proceed before the bifur-
cation sequence is reversed.

Roughly speaking, we expect the termination of the bi-
furcation sequence to be associated with the annihilation
of branch 2 in an inverse saddle-node bifurcation. We
therefore consider the nongeneric return map R' for
¢=0.80X27 and A=1.83. This map is nongeneric due
to a threefold degeneracy. The two period-one orbits 1
and 2 are doubly degenerate (6, =0,) at the tangency that
marks their annihilation in an inverse saddle-node bifur-
cation (local bifurcation) and they are degenerate with
the value of R! at the boundary
[RY6=m)=R =6,=6,].. In this nongeneric case all
possible orbits on the direct (2 and 3) horseshoe are
present.

If A is smaller than 1.83, then R >6,=6, at the
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saddle-node bifurcation. The bifurcation sequence on the
(2,3) horseshoe does not go to completion. The last orbit
created follows the itinerary beginning with the max-
imum which separates branches 2 and 3. Immediately
after the inverse saddle-node bifurcation, the reversal of
period-doubling and saddle-node bifurcations begins.

If A is larger than 1.83, then R <6,=0, at the saddle-
node bifurcation. In this case the bifurcation also fails to
go to completion. When orbits are created in saddle-
node bifurcations, the first two steps in their itinerary are
the maximum separating 2 and 3 and the boundary value
at R. As long as R > 0, (fixed point of period-one saddle
orbit 2) as the inverse saddle-node bifurcation is ap-
proached, all orbits remain bounded in the interval
0,<6=w. However, as soon as R <0, the itinerary
enters the domain 6<86,, is confined to the interval
0=<6<86,, and is attracted to the period-one orbit 1,
which is stable for A slightly larger than 1.83. The
boundary crisis terminates the unimodal sequence of bi-

furcations in the interval 6, <6 < and creates a large
window on the period-one orbit in the complementary in-
terval 0< 0 <6,.

VIII. SYSTEMATICS OF LOCAL TORSION

Within any bifurcation peninsula the local torsion of
the stable periodic orbits in the windows evolves in a sys-
tematic way with increasing ¢. The evolution of the local
torsion is shown in Fig. 15 for the generic nonlinear oscil-
lator. We show the nongeneric case in which the bifurca-
tion sequence goes to completion. The organization has
six parts:

I A AR A€ ARC JRC (8.1)

The sequence of local torsions described in (8.1) is de-
scribed along branch 1 of the generic nonlinear oscillator.
Extensions to other branches of this oscillator are
straightforward by previously given symmetries.
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FIG. 15. Behavior of the local torsion on traversing branch 1 of the superstructure of a typical nonlinear oscillator. We show the
nongeneric case in which the unimodal bifurcation sequence goes exactly to completion. The local torsion is easily visualized as con-
sisting of six parts. The introduction (I) and conclusion (IX€) describe the period-doubling sequence on the direct (0,1) and inverse
(1,2) horseshoes. The local torsion is given by (4.5). The sequence A is the set of local torsions associated with windows created by
saddle-node bifurcations in the unimodal sequence (and their associated period-doubling cascades). The local torsion rises from 1/3,
the value at the accumulation point of the period-doubling cascade, to 1/2, the value signaling the beginning of the primary series of
windows. The largest windows, of the primary series, have local torsions which descend from 1/2 through p/(2p +1) to 1/3, the
value of the largest window, and then through values of 1/n to O as the first and second halves of the primary series are traversed. In-
terspersed among the primary windows are narrower windows due to the fine structure of well-ordered orbits and extremely narrow
windows associated with non-well-ordered orbits. This bifurcation sequence reverses itself, with orbits created last annihilated first.
The local torsion sequence is reversed 4®. This direct and reverse bifurcation series is repeated on the reverse horseshoe (1,2), lead-
ing to the local torsion sequence A4S, AR, This nongeneric structure is masked by saddle-node bifurcations, which occur to ex-
change orbit symbols, and by a large period-one window if the bifurcation sequence goes beyond completion. For the Duffing oscilla-
tor the same relation between the local torsion and ¢ is valid, except that the local torsion ranges from 1 to 3.
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I. After the saddle O and node 1 are created, a period-
doubling cascade occurs on branch 1. The sequence of
local torsions in this cascade is given by (4.5). The local
torsion accumulates at 1/3.

A. This is the sequence of local torsions associated
with creation of periodic orbits in unimodal maps. As ¢
increases beyond the accumulation point, a sequence of
non-well-ordered orbits is created whose local torsion in-
creases from 1/3 to 1/2. At this point orbits in the pri-
mary series of the form 01% with local torsion p /(2p +1)
are created. The local torsion descends from 1/2, the ac-
cumulation value of the first half of the primary series as
p—> 0, to 1/3, the local torsion of the period-three orbit
001. Beyond the period-three window, which is the larg-
est in the primary series, there is a series of windows of
decreasing width associated with Newhouse orbits 0" ~!1
with local torsion 1/n. These accumulate to local torsion
Oasn— oo,

Interspersed among the primary windows of the pri-
mary structure there are narrower windows associated
with the fine structure of well-ordered orbits and very
narrow windows associated with the hyperfine structure
of non-well-ordered windows. We further note that the
local torsion within each window changes systematically
as given in (4.5), due to the period-doubling cascade
based on each node.

AR In the nongeneric case described in Sec. VIID,
immediately following the accumulation of the local tor-
sion to 0, periodic orbits are annihilated by inverse
saddle-node and period-doubling bifurcations. The
periodic orbits are annihilated in the reverse order of
their creation. In this region of orbit annihilation the
plot of local torsion as a function of ¢ is the mirror
(reflected) image of the plot ( 4) in the previous region.

IRC ARC and 4 € On entering a bifurcation peninsu-
la from the other side, that is, by decreasing the value of
¢, one undergoes the same sequence of bifurcations as en-
countered by increasing ¢. The principal difference is
that the bifurcation sequences take place on the reverse
(1,2) horseshoe rather than on the direct (0,1) horseshoe.
Thus the local torsions are complements (7 —1—%) of
those encountered in the first sequence of bifurcations
and the local torsions in the second half of the bifurcation
peninsula occur in reverse order to those in the first half.
The saddle-node bifurcations that occur to exchange
symbols (0—2) mask the discontinuity in the local tor-
sion (1/3—2/3) between A% and A€

The basic behavior of the local torsion in each bifurca-
tion peninsula outlined in (8.1) is an idealization which is
nongeneric. For a typical oscillator the actual bifurca-
tion diagram is a variation on this theme. If the bifurca-
tion does not go to completion (A <1.83), the fold be-
tween 4 and 4R will not occur at LT =0. In the com-
plementary case that A > 1.83, a wide period-one window
will appear between A4 and AR and these two sequences
will not be mirror images of each other. In addition to
this, the return map has coexisting basins of attraction,
some belonging to the saddle-node pairs created as a
mechanism for transferring symbols from one bounding
branch (0) to another (2). These nodes may serve to mask
some of the regularities displayed in Fig. 15, including

that between AR and 4°€.

The relation between the local torsion and ¢ for the
Duffing oscillator is also given in Fig. 15 (which has been
constructed for nonlinear oscillators). The only
difference between the two cases is in the vertical scale.
For the nonlinear oscillator the local torsion ranges from
0 to 1 on the direct and inverse horseshoe (zero torsion
lift). For the Duffing oscillator on the iterates of these
branches the local torsion ranges from 1 to 3 [cf. Egs.
(4.9) and (4.10)].

IX. SUMMARY

Nonlinear oscillators have been studied extensively in
the past. The bifurcation diagrams of these oscillators
exhibit similarities and regularities over a broad range of
control parameter values. In the control parameter plane
[driving amplitude, driving frequency or (A, T)] there are
“resonance horns” or bifurcation peninsulas. These are
regions in the control parameter space in which many bi-
furcations occur (Fig. 1). These regions in control pa-
rameter space are separated from each other (for
sufficiently small A) by arid oceans which contain only
period-one orbits. The bifurcation peninsulas are labeled
by an integer N, which changes by £1 (2 for the
Duffing oscillator) between adjacent peninsulas. This in-
teger is a topological index: it is essentially the relative
rotation rate of the period-one orbit on which the bifur-
cation peninsula is built.

The objective of this work has been to determine why
the regularities in the bifurcation spectrum for a non-
linear oscillator exist and why the bifurcation spectra of
many different oscillators exhibit such striking similari-
ties. We have identified the principal features of the bi-
furcation diagrams with topological indices: global tor-
sion and relative rotation rates. These indices are robust
under perturbation and can be identified in bifurcation
diagrams of a broad range of nonlinear oscillators. We
have determined the systematic behavior of these topo-
logical indices and related these indices to the local tor-
sion of periodic orbits. We have developed methods for
predicting and verifying the symbolic dynamics of these
periodic orbits. In addition, we have determined the
mechanisms responsible for periodic orbit creation and
annihilation as the control parameter values (principally
T) are varied.

The tools we have used in this effort include numerical
simulations of the Duffing equation and construction of
one- and two-dimensional return maps. We have also re-
lied on topological tools, including the computation of
relative rotation rates and the construction of templates.
Though a template is a caricature of the flow on a strange
attractor, it accurately reflects the topological organiza-
tion of all periodic orbits embedded in the strange attrac-
tor.

Through the use of one- and two-dimensional return
maps we have determined how the flow is “pushed” over
the template as the control parameter T is varied. This in
turn has allowed us to predict the order in which orbits
are created and annihilated as a resonance horn is



956 R. GILMORE AND J. W. L. McCALLUM s1

traversed. The variation in the local torsion of the stable
periodic orbit responsible for the windows in each bifur-
cation region is complicated and summarized in Fig. 15.
This figure applies to the typical nonlinear oscillator
operating at nongeneric control parameter values.
Modifications in this diagram caused by the bifurcation
sequence either not going to completion, or proceeding
beyond completion, have been described.

The variation of the local torsion with the period of the

external drive exhibited by the Duffing oscillator is simi-
lar to that shown in Fig. 15 for the generic nonlinear os-
cillator. The only difference is that the local torsion for
the Duffing oscillator (on branches 0, 1, and 2) extends
from 1 to 3, whereas that for other nonlinear oscillators
(on the same branches) extends from O to 1. This is sim-
ply a reflection of the fact that in the Duffing oscillator
the rotation occurs in two wells alternatively and there is
half a rotation in moving from well to well.
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