
PHYSICAL REVIEW E VOLUME 51, NUMBER 2 FEBRUARY 1995

Continued fraction formalism of linear dynamic conductivity by a combined projection technique

Joung Young Sug, ' Nam Lyong Kang, ' Jai Yon Ryu, and Sang Don Choi'
'Department ofPhysics, Kyungpook National University, Taegu, Korea

Department ofPhysics, Cheju National University, Chej u, Korea
(Received 15 February 1994; revised manuscript received 19 September 1994)

Starting with the Liouville equation and with use of the combined projection technique presented ear-
lier [J. Y. Sug, C. H. Choi, and S. D. Choi, Nuovo Cimento B 109, 177 (1994)], we obtain the ensemble
average of current of many-electron systems in the presence of oscillatory electric fields. For quite weak
fields the dynamic conductivity is given in a continued fraction form. The present form contains the
first- and second-order correction parts, while the Mori type contains only the first-order part.

PACS number(s): 02.50.—r, 05.40.+j

I. INTRODUCTION

Studies of dynamic conductivity are of great impor-
tance in investigating the electronic transport phenomena
in many-electron systems. Among them the study for os-
cillatory weak electric fields has received special attention
in recent years [1]. One of the related topics is optical
transition in solids in the presence of a high static mag-
netic field, which includes intersubband and interband
transitions [2]. It is well known that the absorption
coefficient for the transition is proportional to the real
part of the optical conductivity and the linear part of the
conductivity is the most dominant. Thus it suffices to
study the linear part only in this case.

On the other hand, the present group introduced a
combined projection technique (CPT) by combining the
two types of projection techniques; the first one is that of
Kenkre and co-workers [3] and the second one is that of
Argyres and Sigel [4].Hereafter the first and second tech-
niques shall be called the "PT-1"and the "PT-2," respec-
tively. The PT-1 contains the equilibrium density opera-
tor while the PT-2 contains the electron state index.
Kenkre and others, by utilizing the PT-1, succeeded in
formulating a response theory, which includes the Kubo
theory as the lowest-order approximation [5]. Argyres
and Sigel, by applying the PT-2, succeeded in presenting
a conductivity formalism and a theory of cyclotron reso-
nance absorption [6]. Choi and Chung also applied the
PT-2 to obtain a theory of cyclotron resonance line
shapes for electron-phonon systems [7]. Furthermore,
our group applied the CPT to the same problem and the
derived line-shape function is similar to those obtained by
the other techniques [8]. It was shown, however, that the
amount of calculation is much smaller in the CPT, corn-
pared with that in the other techniques. More recently
our group formulated theories of interband transition [9]
and of nonlinear conductivity [10] based on the CPT.
Thus we may claim that the CPT is quite good.

In this paper we will generalize the CPT to be applica-
ble to the linear conductivity in the continued fraction
representation scheme. In Sec. II, by starting with the
Liouville equation, the current will be obtained in terms
of weak oscillatory electric fields. The form given in a

Fourier-Laplace space will be expressed in a linear form
in the lowest-order approximation. In Sec. III, we will

apply the present formalism to a special case and will see
how it wi11 be reduced and compared to others in the
same approximations. Section IV shall be devoted to
concluding remarks.

II. ELECTRICAL CONDUCTIVITY

%e consider a system of many electrons which is sub-
ject to an oscillatory electric field E=e&E&(0) exp( i rot)—,
where eI is the unit vector in the electric field direction
l (l =x,y, z, etc.) and co is the angular frequency. Then the
Hamiltonian H (t) and the corresponding Liouville opera-
tor L (t), respectively, are given by

and

H(t) =H, +H'(t),
H'(t) = P&EI exp( iso—t),—

(2.1)

(2.2)

L (t) =L, +L'(t),
L'(t) =L&' exp( i rot), —

(2.3)

(2.4)

where H, and L, are the time-independent part and I.I'

corresponds to —P&EI, P being the polarization vector,
which implies that L'(t)X = —[P&,X]E&(t) for an arbi-
trary operator X. The expectation value of the current
operator Jk is defined as

~~k(t) ~ Tii[~kp(t)] g~k(t) (2.5)

~k(t) [Jkp(t)] (2.6)

where k is the direction index (k =x,y, z, etc.), a is the
state index, the density operator for the system p(t) can
be written as p(t)=p, +p (t), p, being the equilibrium
part, and Tz denotes the many-body trace. In order to
get a useful form of (Jk(t) ) we should have the explicit
form of p(t). For that purpose we define the priinary pro-
jection operator Pk and its Abelian inverse Pk as [8,10]
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(JkX)
(2.7)

Pk =1—Pk (2.8)

for an arbitrary operator X. It is to be noted that the
direction of this projection is that of Li'p, and the projec-
tion is time independent. We see from Eqs. (2.7) and (2.8)
that this projection is a combination of the PT-1 and PT-
2.

Here we have neglected the nonlinear part since we are
interested in the case of quite weak electric fields. The
Fourier-Laplace transform ('TFL) of a time-dependent
function X(t) can be defined as

X(z)='T+L [X(t)]=I exp( i—zt)X(t)dt . (2.20)
0

Note that the parameter z will disappear in the final stage
when the inverse transformation 'TFL' is performed [see
Eq. (2.47)]. Then the Tzt of Eq. (2.13) turns out to be

We assume that the perturbation of the system may be
expanded as [10]

i A k—l El (z)
J„(z)=

iz —Akl +Qki(z)
(2.21)

[JkLl p (t))
LlP (t) LIP, +~iILip (t)] .

(JkLIP. )
(2.9) where

1
Qki(z)='TFL[Qkl( )]= ~ [JkL,Ji(z)]«,

+kI

f, (z)='TFL [fi(t)]=(iz+iLi) 'LiLl'p, .

Then from the Liouville equation iBP(t)/Bt =L(t)p(t),
where we use the unit system in which %=1,we have

(2.22)

(2.23)
BPk~'(t)

l =P«L, Pk~'(t)+ P«L, (1 P«)p'(t)—

+ [Pk~Ll p'(t)+Pk~Ll'p, )El(t), (2.10)

In order to calculate the Qkl(z) in the denominator of
Eq. (2.21) further, we introduce the secondary projection
operator P, k and its abelian inverse P', k as

(2.11)

where

where Pka is either Pka ka' For Pka ka& we obtain

Pk p'(t)= i dsGk (t —s)Pk L,P—k~'(s),
0

(JkL,X)
ik (J L L f )

if 1

Plk =1—Plk

(2.24)

(2.25)

Gk (t)=exp( itPk L, ) —. (2.12)
Now we assume that the f, (t) in Eq. (2.23) can be ex-

panded as

On the other hand, if we put P«=Pk in Eq. (2.10)
and consider Eq. (2.11),we obtain

fi(t)=fi+f', (t) . (2.26)

BJk(t)
Bt o

= Akl Jk (t)— Qkl(t s)Jk (s)ds —i AklEl (t—)

(2.13)

in the lowest-order approximation, where jk(0)=0 for
the initial condition and

Note that if the direction of projection is chosen as f, in-
stead of L if„we will have an unsatisfactory result. This
does not mean, however, that Eq. (2.24) is the only
choice. From Eqs. (2.24) and (2.26) we have

~Pi fki(t)
iPik Lifi —iPik LiPi—k f', (t)

at

l
A ki

= —
~ (Jk L,Ll'p, )«,

+kl

Qkl(t) = [JkL,f, (t)]1

+kl

(2.14)

(2.15)

—iPik L, (1—Pik )f i(t), (2.27)

where P 1 ka 1s either P l ka or P 1ka' For P 1ka 1ka &

obtain
t

P'ikQ'lit)= —i Eik~(t —h)PIk~LiP, k~f i(h)dh,
0

Akl (Jk Ips )« ~

f, ( t) =exp( i tL, )f, , —

f i =L,L!'p

(2.16)

(2.17) where

(2.18) Kik (t) =exp( itP', k L i ) . —

(2.28)

(2.29)

From Eqs. (2.24), (2.25), and (2.27) we haveL, =(1 Pk )L, . — (2.19)
I

i (JkL,L—,f, )
[Jk L,f i (z) ] = ( Jk L,f i /iz) +

iz +i (JkL,L i Wi )«+ [JkL,L if2(z) ]«
I

(2.30)

ifi
(JkL, L if 1 ).. (2.31)

which is the third part in the denominator of Eq. (2.21),
where

Jz«)='T [fFLz(5))

fz(t) =exp( itL2 )fz, —

f2=L2W, ,

L2 (1 Pik

(2.32)

(2.33)

(2.34)

(2.35)
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In general, for the nth-order memory effect
(n =2, 3,4, . . . ), we define the projection operators P„„
and P„'k as

Ln Pa —i, kAn —i

fn =L.~n —i

(2.38)

(2.39)
(JkL,L, . L„ iX) I.„~„,' L.f. )

(2.36) In n

(JkL, Li . L„f„) (2.40)

P„'k~ =(1 P„k—)X,
where

(2.37)
Then for the nth-order memory efFect (n =2, 3,4, . . . ), we
have

[JkL,LiL2 L„2f„ i(z)]

=(JkL,LiL2 ' L„2f„,/iz)

+
—i (JkL,L,L2 . L„ if„ i)

'z+i [JkL,LiL2 L„ iW„ i) +(JkL,LiL2 . . L„ if„(z)]
where j'„(z)= V'FL [f„(t)].The collision factor Qkl(z) can be written as

Qkl(z) = [JkL,fi (z) ]aa/Akl
T

(2.41)

1
l g0+

kl
iZ + id' ) + I.P ( + —ih3

Ez +ECO2+l /2+
lz +ico3+ [JkL,L iL2L3f4(z)]aa

(2 42)

where

co„=(JkL, L i
. L„W'„)

y„=( JkL, L i
—L„f„+,/z)

b,„=(JkL,Li L„f„)

(2.43)

(2.44)

(2.45)

( Jk(&) ) =QJk(&)

As is seen from Eqs. (2.43) and (2.44), the matrix element
of co„ends with (L„W„) and y„with (L„+,W„) a, the
state index m being determined by the equations. This
implies that y„ is of one Inore projection than co„. By re-
calling that the eventual projection is performed with
respect to I.&'p„we can consider cu„and y„, respectively,
as the first-order and second-order correction parts. If
y„ is neglected in approximation, we obtain the Mori-
type continued fraction scheme [11].

So far we have obtained the current for the weak per-
turbation by the CPT. The current given in Eqs. (2.5) and
(2.21) can be rewritten as

In the next section we will apply the present formalism
to a system of electrons in impurity background.

III. AN APPLICATION

Now, for the sake of demonstration to see how much
this formalism is valid, we apply it to magneto-optical
transitions in solids. We consider a system of electrons in
isotropic semiconductors which interact weakly with
background impurities and assume that the electron-
electron interaction is absent. Then we may adopt the
single-electron formalism. For a static magnetic field B
applied in the z axis, the electron energy is quantized. If,
in addition, a microwave of angular frequency ~ is ap-
plied along the z direction, the electromagnetic energy
is absorbed at co=co„~, being the cyclotron frequency,
i.e., the cyclotron transition arises. Thus we can
apply the present formalism to this problem with
z = —co = (co ia—)(a ~—0+ ) in Eqs. (2.21) and (2.42).

The Liouville operator I., can be written as

(3.1)

Xf gorki(t s)Ei(s)ds, —
0

where

kl ( r ) VFL [o kl (z ) ]
—iA kl

kl (Z)
iz —Aki+ Qkl (z)

(2.46)

(2.47)

(2.48)
+

k )Pa Ja —l, a~P, a —i & ( Jl )Pa Ja+1,a~P, a+i (3.2)

where I., and I, are the Liouville operators correspond-
ing to the electron Hamiltonian H, and the scattering po-
tential V, respectively.

If the microwave is circularly polarized, the absorption
power is proportional to the real part of the conductivity
tensor o kl (co ) with k = —and l = +, for which

and Qkl(z) is given by Eq. (2.42), which is given in the
continued fraction form, in terms of co„, y„, and 5„. where J*=J +iJ and
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a ++kl ~Fa+ l, a a, a+ 1~a+ l, a (3.3) D= —igbF +1 J +1J +1 V pVp
pea

(3.14)

&a+l a &~c . (3.4) +
a+ 1,a a, a+1 a+ 1,aePa Va+1,P VP, a+1

pea+ 1

Here c, p—=e —
Ep and bF p—=(F Fp—)lc, p, where E is

the energy eigenvalue and F the Fermi-distribution
function for the state ~a) [8]. Thus we have from Eq.
(2.21)

+~FP,P—1 a, a+ 1 P P —1 EP,a Va+ 1,P VP —l, a
pea+ 1

(3.15)

a+ l Fa a, a+ 1 a+ l, a
0'kl(CO) 1

+1 e 1(~ ~ ) Qg[(1Ll)
(3.5)

[(1 P)L,L—'+p, ]p =0

The collision factor Qk&(co), sometimes called the line-
shape function in case of optical transitions, can be ob-
tained in a similar manner. If we assume that the interac-
tions with the electromagnetic field and with the back-
ground impurities are weak enough it will su%ce to con-
sider only the lowest-order contribution in Eq. (2.42). We
consider the fact that terms including an odd number of
Vs disappear in the average over impurity distribution
[14],and consider

(3.16)

+i g ~FP+1,PJa, a+1JP+1,Pea+1,PVa+1, P+1 VP, a
pea

(3.17)

+
1 g ~Fa+l, aJa, a+lJa+1, aea+1,PVa, P P, a
pea

(3.18)

+ 2~Fa+ 1,aJa,a+1Ja+ l, aEPa Va+1, P VP, a+1
pea+ 1

(3.19)

and

[J L,X(1 P)L„L—+p, ] =0
+ 2

PP—1 aa+1 PP —1 Pa a+1P P—1 a
pea+ 1

(3.20)
for any operator X. Then the lowest-order part of the
memory terms is given as + 2X P+1P aa+1 P+1Pea+1P a+1P+1 Pa

pea
yo= ( A —8 —C +D) /co,

Al=F —G —H+I,

K —L —M+N
COl F —G —H+I

y, = —a+co, /( —co),

where

(3.6)

(3.7)

(3.8)

(3.9)

(3.21)

N= i'd—,F +, J +1J++, e +, pV pVp, (3.22)
pea

+ 3
a+ 1,a a, a+1 a+ 1,a Pa Va+1,P VP, a+1

pea+ 1

(3.23)

and

0 P —Q+R—
co(F —6 H+—I)— (3.10)

+ 3~FP,P—1 a, a+1 P,P—1 eP, aVa+1 P P—l, a
pea+ 1

(3.24)

+~Fa+ 1,aJa,a+ 1Ja+ 1,a a+1,P P, a+1
pea+ 1

(3.11)

+ 3
Q g P+1P aa+1JP+1PEa+1P a+ 1 P+1 Pa

pea

(3.25)
+~FP,P—1Ja, a+ 1JP,P—1 Va+1,P VP—l, a

pea+ 1

(3.12)
R = —igbF +1 J +1J +1 e +1 pV pVp . (326)

pea

+C = i g AFp+1—pJa a+1Jp+1 pVa+1 p+, Vp a,
pea

Thus after some systematic calculation we have
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1 EFpp 1 Jpp
Qkl(co) l ' g Va+1,pVp, a+I gF + Va+ 1,p Vp —l, a

P~a+1 ~ ' AFa+ 1,a Ja+1,a

+
1 ~Fp+ l,p Jp+ l,p+g —V pVp

— '
+

'
V +p+Vp

pea ~ a+ l, a Ja+ l, a

+ Q (Ep )
P&a+ 1

I. co—rap +& 01—03—
(2ep 8,—8, ) —r 2

~Fp, p-l Jp,p-l+
Va+l, pVp, a+1 ~F

'

+ Va+l, pVp-1, a
a+ l, a Ja+ l, a

+ g(sp +, )
pea

Fp+l, pV pVpa-
a+ l, a

&co —ic +1 p+I, 02 —04—

+
P+1 P

a+1,P+1 P, a
a+ l, a

(2ep +,82 —82) —r 2

(3.27)

where IV. CONCLUDING REMARKS

Ei(F —G H+I) —(K L ——M +—N)
01= (F —6 H+I)—

E2(F —6 —H +I) (K L ——M +N)—
02= (F—6 H+I)—
0

(0 P —Q +R ) E—(F —G H—+I)—1

co(F —G H+I)—
(0 P —Q +—R )

—E2 (F—6 H+I)—
co(F —G H+I)—

I 2=( JL,Li f2(co))—

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

This result is similar to Sawaki's expression based on the
Stark ladder representation [12] and Ryu and Choi's re-
sult based on the method of Argyres and Mori [13]. In
this theory, yo and yl are the correction part; yo gives
the first two terms in Eq. (3.27) and yi yields 83 and 84.
If the interaction with the background is quite weak and
01 02 03 and 04 are neglected, the third and fourth terms
are similar to Kawabata's result [14] based on Mori's
method.

In Sec. II, we derived the linear dynamic conductivity
in a system of many electrons by the CPT introduced ear-
lier. The conductivity tensor is given in a continued frac-
tion form, in terms of the scattering factors co„, y„, and
A„(n =1,2, 3, . . . ). The co„and b,„, respectively, corre-
spond to the characteristic frequencies and the reciprocal
decay times in the Mori-type formalism [11]. But the
present formalism includes the additional factor y „,
which plays a role of second-order correction. This factor
comes from the fact that the CPT deals with the time-
dependent and time-independent perturbations in the
unified category.

In Sec. III we demonstrated that the theory could be
applied to a simple problem and made comparison with
some other works. In real cases, however, further calcu-
lation including computer work is needed. This part is
left for a future study.
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