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Undulatory instability of the nematic-isotropic interface
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A linear stability analysis of the undulatory instability of the nematic-isotropic (X-I) interface under a
vertical magnetic field is presented. It is shown that the boundary conditions on the lower surface of the
nematic layer have a very significant influence on the threshold characteristics. Furthermore, in the case
of homoetropic alignment, the interface is found to be spontaneously deformed if the thickness of the
nematic layer is less than a critical value.

PACS number(s): 61.30.Gd

I. INTRODUCTION

The interface between a nematic and an isotropic
liquid is characterized by a preferential ordering of the
director n, which describes the orientational ordering in
the nematic medium. Due to the symmetry in the plane
of the interface, only the angle between n and the local
normal to the director is fixed and the azimuthal orienta-
tion of n is not restricted. As the nematic medium is an-
isotropic, it follows that a planar interface becomes un-
stable under a su%ciently strong electric or magnetic field
if the alignment imposed by the interface is not along a
direction favored by the field. The tilt of the interface
from the horizontal leads to a more favorable orientation
of n with respect to the field direction, thus lowering the
free energy. Furthermore, as the interfacial tension and
the density difference between these phases of a nemato-
genic material are very small, relatively weak fields can
destabilize the interface.

There are two possible modes of instability of the%-I
interface under an applied electric or magnetic field. The
first is the de Gennes instability [1,2], where the interface
splits up into domains of opposite tilt from the horizontal
above a critical value of the field. The azimuthal angle of
n at the interface jumps by ~ across the boundary be-
tween two domains, thus creating surface disclinations in
the director field. Such interfacial deformations have
been experimentally observed [3,4]. The second is the in-
stability observed by Yokoyama, Kobayashi, and Kamei
[5]„where the interface becomes undulatory above a
threshold field, with the wave vector of the undulations
oriented normal to the plane containing the initial direc-
tor field. The onset of the interfacial deformation is ac-
companied by a periodic twist distortion in the nernatic
layer due to a periodic change in the azimuthal angle of n
at the interface. As discussed in Ref. [5], this twist dis-
tortion along with the interfacial undulation leads to a
more favorable orientation of the nematic director near
the interface with respect to the vertical field. Conse-
quently, the planar interface becomes unstable if the field
is sufticiently strong. As the orientation of n varies
smoothly across the interface, no surface disclinations are
created in this case.

In order to understand the origin of the undulatory in-

stability, consider an 1V-I interface lying in the x-y plane,
subjected to a vertical magnetic field H. It may be noted
here that in the case of an electric field the nonuniformity
of the field in the nernatic layer has to be taken into ac-
count, but the results are not expected to be qualitatively
different. The nematic director is only restricted to lie on
a cone of easy alignment directions at the interface. This
degeneracy can be lifted by orienting the director along
the y axis at the lower surface of the nematic layer, so
that n=n(y, z). Furthermore, the nernatic is assumed to
have a positive diamagnetic anisotropy (hy) and conse-
quently, n tends to align along H. As H is increased, the
distortions in the director field become confined to two
thin regions close to the two surfaces of the nematic lay-
er. Now let the interface be tilted from the horizontal
about the y axis. As shown in Fig. 1, by changing the
orientation of the director on the cone of easy directions,
we can align it more favorably with respect to H and
hence decrease the magnetic energy of the system. This
reorientation of n near the interface introduces a twist in
the nematic layer, with the sign of the twist deterInined
by the sign of the interfacial tilt. On the other hand, it
can decrease the amount of splay-bend distortion as the
director in the bulk is aligned more favorably with
respect to H. Furthermore, the tilt of the interface in-
creases the surface energy due to the interfacial tension
and the gravitational energy arising from the difference in
the densities of the two phases. The latter forces the in-
terfacial deformation to be periodic with alternating re-
gions of opposite tilt. The threshold field is determined
by the balance between the changes in the bulk and sur-
face energies of the system.

In this paper, a linear stability analysis of the undulato-
ry instability is presented. The X-I interface can be pro-
duced in an experiment by creating a temperature gra-
dient across the thickness of the sandwich cell containing
the liquid. As demonstrated in Ref. [5], it can also be ob-
tained at a fixed temperature by making the wetting
properties of the two surfaces of the cell different. The
interface is then produced by maintaining a weakly doped
material at a temperature within the range of coexistence
of the two phases. In all the discussion below only the
latter situation is considered, and hence the material pa-
rameters are not temperature dependent. The basic equa-
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FIG. 1. A schematic representation of the
coupling between interfacial tilt and twist de-
formation in the nematic layer close to the N-I
interface, responsible for the undulatory insta-
bility. The director at the interface is only re-
stricted to lie on a cone of easy alignment
directions. The applied field is along the z axis.
Below the threshold the director is in the y-z
plane {a). Above the threshold the interface is
tilted by an angle e=(dh/dx) from the hor-
izontal and the director at the interface is
twisted by an angle 1t; about the local normal
[(b) and (c)]. Note that the sign of g; depends
on that of e.

b

tions are derived in Sec. II and some analytical results,
obtained under certain approximations, are described in
Sec. III. The conclusions reached here are confirmed by
the rigorous numerical treatment of the problem dis-
cussed in Sec. IV. The results of the qualitative analysis
of the instability presented in Ref. [5] are also discussed
in this section, in light of the present study.

II. THEORY

Consider a nematic layer of thickness d sandwiched be-
tween the isotropic phase and a solid substrate. Let 5(z)
be the angle between n and the z axis at subcritical values
of the applied field. At the interface, 5(z =d) =5;. Due
to the finite anchoring strength of the nematic director at
the interface, 5, is a function of H. On the lower surface
of the layer n is assumed to be oriented either along the z
axis (homeotropic alignment) or along the y axis (planar
alignment) with infinite anchoring strength. Thus at sub-
critical values of H the director field in the nematic is
given by

n=(0, sin5, cos5) .

In order to study the stability of the interface, let us
consider a perturbation of the interface from the horizon-
tal of the form,

h =hocosqx .

Here the wave vector of the perturbation is assumed to be
along x, in agreement with the experimental observa-
tions. Hence all the variables in the problem are indepen-
dent of y. It may be noted here that an interfacial defor-
mation with q along y corresponds to the de Gennes in-
stability and associated surface disclination lines. Let
P(x, z) describe the twist deformation created in the
nematic layer above the instability threshold. As dis-
cussed earlier, this twist along with the interfacial undu--
lation h (x) changes 5(z), the angle between n and the z
axis. Let 8(x,z) describe this change. Then above the
threshold the director field is given by

n =sin(5+ 8)sing,

n~ =sin(5+8)cosg,

n, =cos(5+8) .

(2)

ny =ny

n, =n, cose+n sine .

At the interface expressions (2) and (3) must
equivalent. Equating the two sets and neglecting the
higher-order terms, we find

P, = —ecot5;+g, , (4)

8; = 26 cot5; tl/J; (5)
l

where the subscript i denotes the value at the interface.
The first term in each of the above two expressions gives
the contribution arising purely from the tilt of the inter-
face. It is clear from Eq. (5) that this contribution to 8; is
always positive. Since Ay is positive, the second term,
which is a combination of the surface tilt and the twist is,
therefore, essential for the onset of the instability. The
values of P and 8 in the bulk of the nematic are deter-
mined by their values at the interface. Therefore, their x
dependences in the bulk can be assumed to be the same as
those at the interface. From Eqs. (1)„(4),and (5) it fol-
lows that

Let x'y'z' be the local coordinate system at the interface,
tilted about the y axis by an angle e=(dhldx) with
respect to the laboratory xyz system. Let g; be the twist
at the interface in the x'y'z' system. Clearly the angle be-
tween the z' axis and n at the interface is 5;(H) even
above the threshold. Therefore, the director at the inter-
face is given by

n =sin5;sing, ,

n .=sin5;cosP;,

n;=cos5; .

Transforming these to the xyz system, we get

n =n cose —n, .sine,
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P(x, z) =P(z)sinqx, (6)

8(x,z) =8(z)sin qx . (7)

The bulk free energy density of the nematic is given by

F=
—,'[K, (divn) +K2(n.curln) +K3(n X curln)

—bg(n H) ],

where K &, K2, and K3 are the splay, twist, and bend elas-
tic constants, respectively. Substituting for n from Eq.
(2) and neglecting terms independent of P and 8, the fol-
lowing expression for the change in the bulk free energy
density of the nematic above the threshold of the instabil-
ity is obtained.

hF= —'K, sin 5 +(K sin 5+K cos 5)
a as

1 3

2

a0
az

—K, sin S
as
az

ay
ax

+ —,'(K2sin 5+K3cos 5)sin 5 + —,'(K, K3 )s—in25 8+ —,'hyH sin25 8 .
1 3 az

In this expression only the lowest-order terms have been
retained as we are interested in the behavior of the system
close to the instability threshold.

Minimizing b,F with respect to P and 8, the following
differential equations for 5, P, and 8 are obtained. Near
the threshold of the instability most of the deformation in
the director field is confined to a narrow layer close to the
interface. The thickness of this layer is typically equal to

the magnetic coherence length, and can be much smaller
than the thickness of the nematic layer. In these equa-
tions the x dependence of P and 8 have been neglected as
the wavelength of the interfacial undulation can be ex-
pected to be very much larger than the length over which
the director field is deformed, as indeed confirmed by the
calculations.

(K, sin 5+K3cos 5) +—,'(K, —K3)sin25
az2 az

—
—,'hyH sin2S=O,

(Kzsin 5+K3cos 5)sin 5a. . . ay
az 3 az

=0 (10)

(K, sin 5+K3cos 5) +(K, —K3)sin25
~ ~ a'0 'as

az' az
a0
az

as as+ (K
&

—K3 ) sin25 +cos25
az2 az

0—byH cos2S 0=0 .

The boundary conditions at z =0 are

0,0,$;), homeotropic alignment

(vr/2, 0,0), planar alignment .5, 8, rh = '

And those at z=d are

( W/2)sin2(50 —5; ) —(K, sin 5;+K3cos 5, )
as

l

8=8; and P=P;,

=0,

+s 2kpgh + 2/E

where hp is the density difference between the nematic
and the isotropic phases, y the interfacial tension, and g
the acceleration due to gravity. Then the change in the
total free energy of the system per wavelength (I, ) of the
interfacial undulation can be written as

f, = J f bFdz+F, dx .
0 . 0

where 8'is the anchoring strength of the director at the
interface and S0 the angle made by n with the z' axis at
the interface in the absence of any surface torques.
and 8; are given by Eqs. (4) and (5), respectively.

The increase in the surface free energy density above
the threshold is given by

III. ANALYTICAL RESULTS

A. Homeotropic alignment

The homeotropic alignment at the lower surface pre-
cludes any twist distortion across the thickness of the
nematic layer. Furthermore, in this case it is possible to
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solve Eqs. (9)—(11) analytically in the one elastic constant
approximation and in the limit of small 5O and strong an-
choring of the director at the interface. The solutions are

the limit of zero field, Eq. (16) reduces to

h,p,~= b,p (3—K/g ) /d

5;
5 = . sinh( wg),

sinh w
(12)

Therefore, if d is less than a critical value given by

d, =3K/(Apg ),

and

0;8= . sinh(wg),
sinh w

(13)

(14)

where w =(hy/K)'~ Hd and g=z/d. Substituting these
solutions in Eq. (8) the change in the bulk free energy
density of the system due to the interfacial deformations
is obtained. Integrating this expression over the thick-
ness of the nematic layer and over one wavelength of the
deformation, we get

the interface is intrinsically unstable. For the above men-
tioned values of E and hp, d, turns out to be 77 pm. For
thinner samples, the change in the director profile accom-
panying the interfacial undulation reduces the overall
elastic distortion in the nematic layer, leading to a spon-
taneous deformation of the interface. Such spontaneous
interfacial deformation is also expected in the case of the
de Gennes instability [3,6]. These conclusions are borne
out by the results of the numerical calculations presented
in the following section.

B. Planar alignment

fb =
2 [ [sinh(2w) —2w]5, Pz

8m sinh2~

+4( w /qd) sinh(2w)5, 8, j .

Substituting for 8; and P; from Eqs. (4) and (5), and
minimizing the resulting expression with respect to f;,
we get

1 2w sinh(2w)q+
5; qd sinh(2w) —2w

ho.

Using this expression we find the total change in the free
energy of the system per one wavelength of the interfacial
deformation to be

In the case of planar alignment the periodic variation
of g; at the interface introduces a twist deformation
across the thickness of the layer. This additional defor-
mation makes the threshold behavior very different from
that in the earlier case. Though it is not possible to solve
Eqs. (9)—(11) analytically we can still get some insight
into the threshold behavior if we assume that the solu-
tions have the form: 8(z)=8,f, (z) and P(z. )=g,f2(z),
where f, and f2 are independent of 8,. and P;. Following
the same procedure as above, the change in the bulk free
energy per wavelength of the deformation is found to be

(w I2+2I3) q +2(w I2I~+I, (dq)

where the effective surface tension,

y,a=y —K(w ld)cothw,

the effective density difference,

hp, s=hp —(4E/g)(w/d) [cosh2w /(sinh2w —2w)],

(15)

(16)

and X is the elastic constant. Thus the change in the
bulk free energy of the nematic layer due to the reorienta-
tion of n associated with the interfacial deformations
effectively lower the interfacial tension and the density
difference between the two phases. Using typical values
of the material parameters and the threshold field, the
second of these contributions is found to be a few orders
of magnitude larger than the first. Hence the interface
becomes unstable when the applied field is large enough
to make hp, z zero. The instability develops with a
threshold wave vector q,h =0, as this term is proportional
to q '. The threshold field can be calculated from the
condition that bp, &=0. For b,p=2. 0X10 erg/cm,
K =3.0X 10 dyn, and d =100 pm, this gives a thresh-
old field of 190 G. Interestingly, these contributions from
the bulk free energy do not vanish when H=O. Thus in

+2I3 )cot(5; )q h 0,

where I& = f osin 5fzdg, I2 = fosin25f, dg,
I3=f0(d5/dg)(df, /dg)dg and I&=f osin 5(dfz/
dg) dg. The first term in the above expression is propor-
tional to H, while the second is proportional to H .
Moreover, in comparison with the homeotropic case, the
former can be expected to be the dominant one, and we
see that it has a minimum at a nonzero value of q due to
the twist deformation in the nematic layer. Hence we can
anticipate the instability to set in with q,h%0 as indeed
confirmed by the numerical calculations.

IV. NUMERICAL RESULTS

In order to determine the threshold, a small value of
ho ((d is first selected. Then for a given value of H Eq.
(9) is solved to obtain 5(z). Equations (10) and (11) are
subsequently solved to find 8(z) and P(z) for given values
of q and g;. These difFerential equations were solved us-

ing finite difference methods [7]. Using the x depen-
dences of h, P;, and 8, , given by Eqs. (1), (4), and (5), the
change in the total free energy per one wavelength of the
surface undulation f, is then calculated and minimized
with respect to g;. Thus for given values of q and H, the
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