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Undulatory instability of the nematic-isotropic interface
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A linear stability analysis of the undulatory instability of the nematic-isotropic (N-I) interface under a
vertical magnetic field is presented. It is shown that the boundary conditions on the lower surface of the
nematic layer have a very significant influence on the threshold characteristics. Furthermore, in the case
of homoetropic alignment, the interface is found to be spontaneously deformed if the thickness of the

nematic layer is less than a critical value.

PACS number(s): 61.30.Gd

I. INTRODUCTION

The interface between a nematic and an isotropic
liquid is characterized by a preferential ordering of the
director fi, which describes the orientational ordering in
the nematic medium. Due to the symmetry in the plane
of the interface, only the angle between fi and the local
normal to the director is fixed and the azimuthal orienta-
tion of @i is not restricted. As the nematic medium is an-
isotropic, it follows that a planar interface becomes un-
stable under a sufficiently strong electric or magnetic field
if the alignment imposed by the interface is not along a
direction favored by the field. The tilt of the interface
from the horizontal leads to a more favorable orientation
of Tl with respect to the field direction, thus lowering the
free energy. Furthermore, as the interfacial tension and
the density difference between these phases of a nemato-
genic material are very small, relatively weak fields can
destabilize the interface.

There are two possible modes of instability of theN-I
interface under an applied electric or magnetic field. The
first is the de Gennes instability [1,2], where the interface
splits up into domains of opposite tilt from the horizontal
above a critical value of the field. The azimuthal angle of
fi at the interface jumps by 7 across the boundary be-
tween two domains, thus creating surface disclinations in
the director field. Such interfacial deformations have
been experimentally observed [3,4]. The second is the in-
stability observed by Yokoyama, Kobayashi, and Kamei
[5], where the interface becomes undulatory above a
threshold field, with the wave vector of the undulations
oriented normal to the plane containing the initial direc-
tor field. The onset of the interfacial deformation is ac-
companied by a periodic twist distortion in the nematic
layer due to a periodic change in the azimuthal angle of i
at the interface. As discussed in Ref. [5], this twist dis-
tortion along with the interfacial undulation leads to a
more favorable orientation of the nematic director near
the interface with respect to the vertical field. Conse-
quently, the planar interface becomes unstable if the field
is sufficiently strong. As the orientation of fi varies
smoothly across the interface, no surface disclinations are
created in this case.

In order to understand the origin of the undulatory in-
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stability, consider an N-I interface lying in the x-y plane,
subjected to a vertical magnetic field H. It may be noted
here that in the case of an electric field the nonuniformity
of the field in the nematic layer has to be taken into ac-
count, but the results are not expected to be qualitatively
different. The nematic director is only restricted to lie on
a cone of easy alignment directions at the interface. This
degeneracy can be lifted by orienting the director along
the y axis at the lower surface of the nematic layer, so
that i=n(y,z). Furthermore, the nematic is assumed to
have a positive diamagnetic anisotropy (Ay) and conse-
quently, T tends to align along H. As H is increased, the
distortions in the director field become confined to two
thin regions close to the two surfaces of the nematic lay-
er. Now let the interface be tilted from the horizontal
about the y axis. As shown in Fig. 1, by changing the
orientation of the director on the cone of easy directions,
we can align it more favorably with respect to H and
hence decrease the magnetic energy of the system. This
reorientation of 0 near the interface introduces a twist in
the nematic layer, with the sign of the twist determined
by the sign of the interfacial tilt. On the other hand, it
can decrease the amount of splay-bend distortion as the
director in the bulk is aligned more favorably with
respect to H. Furthermore, the tilt of the interface in-
creases the surface energy due to the interfacial tension
and the gravitational energy arising from the difference in
the densities of the two phases. The latter forces the in-
terfacial deformation to be periodic with alternating re-
gions of opposite tilt. The threshold field is determined
by the balance between the changes in the bulk and sur-
face energies of the system.

In this paper, a linear stability analysis of the undulato-
ry instability is presented. The N-I interface can be pro-
duced in an experiment by creating a temperature gra-
dient across the thickness of the sandwich cell containing
the liquid. As demonstrated in Ref. [5], it can also be ob-
tained at a fixed temperature by making the wetting
properties of the two surfaces of the cell different. The
interface is then produced by maintaining a weakly doped
material at a temperature within the range of coexistence
of the two phases. In all the discussion below only the
latter situation is considered, and hence the material pa-
rameters are not temperature dependent. The basic equa-
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FIG. 1. A schematic representation of the
coupling between interfacial tilt and twist de-
x formation in the nematic layer close to the N-T

N Nl N

, interface, responsible for the undulatory insta-
bility. The director at the interface is only re-
stricted to lie on a cone of easy alignment
directions. The applied field is along the z axis.
Below the threshold the director is in the y-z
plane (a). Above the threshold the interface is

tions are derived in Sec. II and some analytical results,
obtained under certain approximations, are described in
Sec. III. The conclusions reached here are confirmed by
the rigorous numerical treatment of the problem dis-
cussed in Sec. IV. The results of the qualitative analysis
of the instability presented in Ref. [5] are also discussed
in this section, in light of the present study.

II. THEORY

Consider a nematic layer of thickness d sandwiched be-
tween the isotropic phase and a solid substrate. Let 8(z)
be the angle between fi and the z axis at subcritical values
of the applied field. At the interface, 6(z =d)=3§;. Due
to the finite anchoring strength of the nematic director at
the interface, §; is a function of H. On the lower surface
of the layer 1 is assumed to be oriented either along the z
axis (homeotropic alignment) or along the y axis (planar
alignment) with infinite anchoring strength. Thus at sub-
critical values of H the director field in the nematic is
given by

1=(0,sind,cosd) .

In order to study the stability of the interface, let us
consider a perturbation of the interface from the horizon-
tal of the form,

h=hycosgx . (1)

Here the wave vector of the perturbation is assumed to be
along x, in agreement with the experimental observa-
tions. Hence all the variables in the problem are indepen-
dent of y. It may be noted here that an interfacial defor-
mation with g along y corresponds to the de Gennes in-
stability and associated surface disclination lines. Let
¢(x,z) describe the twist deformation created in the
nematic layer above the instability threshold. As dis-

cussed earlier, this twist along with the interfacial undu--

lation % (x) changes 8(z), the angle between @i and the z
axis. Let O(x,z) describe this change. Then above the
threshold the director field is given by

tilted by an angle e=(dh /dx) from the hor-
izontal and the director at the interface is
twisted by an angle ¥; about the local normal
[(b) and (c)]. Note that the sign of ¥; depends
on that of €.

n, =sin(8+0)sing ,
n, =sin(8+6)cos¢ , (2)
n,=cos(8+0) .

Let x'y’z’ be the local coordinate system at the interface,
tilted about the y axis by an angle e=(dh/dx) with
respect to the laboratory xyz system. Let ¢, be the twist
at the interface in the x'y’z’ system. Clearly the angle be-
tween the z’ axis and 0 at the interface is §;(H) even
above the threshold. Therefore, the director at the inter-
face is given by

n,,=sind,;siny; ,
n, =sind;cosy; ,
n, =cosd; .
Transforming these to the xyz system, we get
n, =n,.cos€ —n,sine ,
ny = ny’ ’ (3)
n,=n,cos€+n,sine .
At the

interface expressions (2) and (3) must be

equivalent. Equating the two sets and neglecting the
higher-order terms, we find
¢;=—e€cotd; +v,; , 4)
9,‘ :%EZCOtSi "‘61[1,' > (5)

where the subscript i denotes the value at the interface.
The first term in each of the above two expressions gives
the contribution arising purely from the tilt of the inter-
face. It is clear from Eq. (5) that this contribution to 6; is
always positive. Since Ay is positive, the second term,
which is a combination of the surface tilt and the twist is,
therefore, essential for the onset of the instability. The
values of ¢ and 6 in the bulk of the nematic are deter-
mined by their values at the interface. Therefore, their x
dependences in the bulk can be assumed to be the same as
those at the interface. From Egs. (1), (4), and (5) it fol-
lows that
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¢(x,z)=¢(z)singx , (6)  where K, K,, and K, are the splay, twist, and bend elas-
6(x,z)=0(z)sin%qx . (7)  tic constants, respectively. Substituting for fi from Eq.
(2) and neglecting terms independent of ¢ and 8, the fol-
lowing expression for the change in the bulk free energy
density of the nematic above the threshold of the instabil-

The bulk free energy density of the nematic is given by
F=1[K(divi)*+ K, (fi-curli)>+ K ; (A X curlfi )*

— Ax(3-H)] ity is obtained.
]
2
. 3¢ . a6 | |96 . a8 | | 3¢
F=1K in%8 2 26y (90 | |90 | _ 28 | 99
A >K  sin 3 ] + (K ;sin“8+ K ;cos°8) [ 32 3z K sin“8 32 3
3 |’ 3 |’
+L(K,sin?+ K yc0s28)sin? | 22 | +1(k —K)sin28 | = | 6+ LAxH%in256 . (8)
2 3 oz ChE oz 2

In this expression only the lowest-order terms have been  the magnetic coherence length, and can be much smaller
retained as we are interested in the behavior of the system than the thickness of the nematic layer. In these equa-
close to the instability threshold. tions the x dependence of ¢ and 6 have been neglected as
Minimizing AF with respect to ¢ and 0, the following the wavelength of the interfacial undulation can be ex-
differential equations for 8, ¢, and 0 are obtained. Near  pected to be very much larger than the length over which
the threshold of the instability most of the deformation in the director field is deformed, as indeed confirmed by the
the director field is confined to a narrow layer close to the calculations.
interface. The thickness of this layer is typically equal to

2
2
(K sin?8+ K ;c0s%5) %—2— +L(K,—K;)sin28 95 —1AyH%in26=0, ©)
z
9 (K ,5in%8 + K 30528 )sin%d 9 =0, (10)
oz oz
. 3% . a8 a0
2 25y | 90 — <20 | |2
(K sin“d+ K ;co0s°8) ) +(K; —K;)sin2d 32 32
3% ’
+(K,—K,) |sin28 {57 +c0s28 | —— | [0—AxH?%c0s2660=0. (11)
z
[
The boundary conditions at z=0 are F,=1Apgh*+1yé*,
0,0,¢;) , homeotropic alignment where Ap is the density difference between the nematic
(8,6,)= |(,2,0,0) , planar alignment . and the isotropic phases, ¥ the interfacial tension, and g
the acceleration due to gravity. Then the change in the
And those at z=d are total free energy of the system per wavelength (A) of the
3 interfacial undulation can be written as
. . 3
—8.)— 2 2 _— | =
(W /2)sin2(8,—86;) — (K ;sin“5; + K ;c0s°5;) [ 3z ], 0, ftzfok [f0d+hAFdz+Fs .

0=0; and ¢=¢; ,

. . . III. ANALYTICAL RESULTS
where W is the anchoring strength of the director at the

interface and 8, the angle made by fi with the z’ axis at
the interface in the absence of any surface torques. ¢;
and 0, are given by Eqgs. (4) and (5), respectively. The homeotropic alignment at the lower surface pre-

The increase in the surface free energy density above cludes any twist distortion across the thickness of the
the threshold is given by nematic layer. Furthermore, in this case it is possible to

A. Homeotropic alignment
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solve Egs. (9)—(11) analytically in the one elastic constant
approximation and in the limit of small §, and strong an-
choring of the director at the interface. The solutions are

i

8=;m—h‘(—w—)slnh(w§) , (12)
0= —2"_ginh( 1
= Sinh(w) SRS, 13
and
¢=¢; , (14)

where w=(Ay/K)""?Hd and £=z/d. Substituting these
solutions in Eq. (8) the change in the bulk free energy
density of the system due to the interfacial deformations
is obtained. Integrating this expression over the thick-
ness of the nematic layer and over one wavelength of the
deformation, we get

fr=—"R4_ (1 Ginn(2w) — 20]576?

8w sinh?w
+4(w /qd)*sinh(2w)8,6;} .
Substituting for 6; and ¢; from Egs. (4) and (5), and

minimizing the resulting expression with respect to ¥;,
we get

1 2w?  sinh(2w)
i=——= |q+ hy .
Vi 75, |97 ga? smhw)—2w |M0
Using this expression we find the total change in the free
energy of the system per one wavelength of the interfacial
deformation to be

fi=5Veaq +Bpag /3,
where the effective surface tension,
Yes=VY — K(w/d)cothw , (15)
the effective density difference,
Apg=Ap—(4K /g)(w /d)3[cosh’w /(sinh2w —2w)] ,
(16)

and K is the elastic constant. Thus the change in the
bulk free energy of the nematic layer due to the reorienta-
tion of © associated with the interfacial deformations
effectively lower the interfacial tension and the density
difference between the two phases. Using typical values
of the material parameters and the threshold field, the
second of these contributions is found to be a few orders
of magnitude larger than the first. Hence the interface
becomes unstable when the applied field is large enough
to make Ap. zero. The instability develops with a
threshold wave vector g, =0, as this term is proportional
to ¢ ~!. The threshold field can be calculated from the
condition that Ap.;=0. For Ap=2.0X1073 erg/cm?,
K=3.0X10"7 dyn, and d =100 um, this gives a thresh-
old field of 190 G. Interestingly, these contributions from
the bulk free energy do not vanish when H=0. Thus in

the limit of zero field, Eq. (16) reduces to
Apg=Ap—(3K /g)/d*> .

Therefore, if d is less than a critical value given by
d}=3K /(Apg) ,

the interface is intrinsically unstable. For the above men-
tioned values of K and Ap, d.. turns out to be 77 um. For
thinner samples, the change in the director profile accom-
panying the interfacial undulation reduces the overall
elastic distortion in the nematic layer, leading to a spon-
taneous deformation of the interface. Such spontaneous
interfacial deformation is also expected in the case of the
de Gennes instability [3,6]. These conclusions are borne
out by the results of the numerical calculations presented
in the following section.

B. Planar alignment

In the case of planar alignment the periodic variation
of 3; at the interface introduces a twist deformation
across the thickness of the layer. This additional defor-
mation makes the threshold behavior very different from
that in the earlier case. Though it is not possible to solve
Eqgs. (9)—(11) analytically we can still get some insight
into the threshold behavior if we assume that the solu-
tions have the form: 6(z)=0,f,(z) and ¢(z)=¢,f,(z),
where f| and f, are independent of 6; and ¢;. Following
the same procedure as above, the change in the bulk free
energy per wavelength of the deformation is found to be

(wi, +2I,)?
fo=— KN 22T o,
8d | I,+1,(dg)
+213)cot(8;)q |} ,
where I, = [lsin*8f3dE, I,= [ lsin28f dE,

I,=[(d8/dE)Ndf /dE)dE  and  I,= [(sin®8(df,/
d&)*dE. The first term in the above expression is propor-
tional to H*, while the second is proportional to H?Z.
Moreover, in comparison with the homeotropic case, the
former can be expected to be the dominant one, and we
see that it has a minimum at a nonzero value of ¢ due to
the twist deformation in the nematic layer. Hence we can
anticipate the instability to set in with g, 70 as indeed
confirmed by the numerical calculations.

IV. NUMERICAL RESULTS

In order to determine the threshold, a small value of
hy <<d is first selected. Then for a given value of H Eq.
(9) is solved to obtain 8(z). Equations (10) and (11) are
subsequently solved to find 6(z) and ¢(z) for given values
of g and ¢;. These differential equations were solved us-
ing finite difference methods [7]. Using the x depen-
dences of h, ¢;, and 6;, given by Egs. (1), (4), and (5), the
change in the total free energy per one wavelength of the
surface undulation f, is then calculated and minimized
with respect to ¢;. Thus for given values of ¢ and H, the
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minimum of f, is found. The value of H is then varied to
make minf, =0; this is the critical value H, for the onset
of the instability for the given value of g. Minimization
of H, with respect to g gives the threshold wave vector
44, and the threshold field H,. The following values of
the material parameters were used in the calculations
(4,5,8]. K,=2.7X1077 dyn, K,=1.4X10"7 dyn,
K;=3.0X10"7 dyn, AY=1.0X10""7 esu, y =2.0X 1072
erg/cm?, Ap=2.0X10"3 g/cm’, and W=1.0%X10"?
erg/cm?.

A. Homeotropic alignment

The profiles of 8(z) and 6(z) across the nematic layer,
obtained from the calculations, are shown in Fig. 2 for
d =100 um and 8§,=1.0 rad. Note that these two profiles
are very similar as one would expect from Egs. (12) and
(13). On the other hand, ¢ is independent of z in the
homeotropic case. The variation of the critical field H,
with g obtained from the calculations is shown in Fig. 3.
In agreement with the above analysis the interface is
found to be spontaneously deformed if the thickness is
less than about 80 um. For thicker samples the instabili-
ty sets in at a threshold wave vector g, =0, as H is in-
creased above a threshold value. The neglect of the x
dependence of the deformation in the nematic layer in
Egs. (10) and (11) is, therefore, fully justified in this case
as the wavelength of the interfacial undulations is infinite.
The variation of the threshold field H,, with §, is shown
in Fig. 4. Hy, is found to increase with the thickness of
the nematic layer. As H is increased above the threshold
value the interface becomes unstable for all values of g
less than a critical value g,.. Figure 5 presents the varia-
tion of g, with H calculated from the linear theory. The
variation obtained from the condition Ap =0, is also
given for comparison. If the interface is subjected to a
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FIG. 2. Profiles of 8(z) in radians (a) and 6(z)/|6;| (b) across
the nematic layer slightly above the threshold in the case of
homeotropic alignment for §,=1.0 rad and d =100 um.
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FIG. 3. Variation of the critical field H, with the wave vector
g for homeotropic alignment for 8§,=1.0 rad and d =100 um
(a), 80 um (b), and 50 pm (c).

magnetic field stronger than H,, the interface can be ex-
pected to develop deformations corresponding to the
fastest growing mode whose wave vector lies between O
and g.. However, with time these structures would slow-
ly coarsen and reach the free energy minimum at g =0.
Since in the case of homeotropic alignment the wave-
length of the deformation is set by the lateral size of the
system, the only means to visualize the instability may be
to observe the response of the system to a strong field.

0.32

0.28 -

a

- |
X 0.24 -

joo]
. ]

0.20 -

/
0.16 ; ‘ . , . ,
0.0 0.4 0.8 1.2 1.6

8, (rad)

FIG. 4. Variation of the threshold field H, with §, for
homeotropic alignment for d =200 pm (a) and 100 pum (b).
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FIG. 5. Dependence of the critical field g, on H in the case of
homeotropic alignment for d =100 um and §,=0.1 rad, ob-
tained from the numerical calculations (a) and from the condi-
tion Ap.s=0 (b).

B. Planar alignment

The variation of 8(z), 8(z), and ¢(z) across the nematic
layer are shown in Fig. 6 for d =50 pm and §,=1.0 rad.
Figure 7 presents the variation of H, with ¢ for
d=50 um and 8,=1.0. In conformity with the earlier
discussion we see that H, has a minimum at gq.~50
cm™!. The variations of H,, and g, with 8 are given in
Figs. 8 and 9, respectively, for a few values of d. From
Figs. 6 and 9 it can be seen that the thickness of the

2.0 H
1.2 4
c

s i
S

0.4
) 7 a

-0.4 - b

-1.2 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Profiles of 8(z) in radians (a), 6(z)/|6;| (b), and
&#(z)/¢; (c) across the nematic layer slightly above the threshold
in the case of planar alignment for §,=1.0 rad and d =50 um.

2.3

H, (K Gauss)

T T T T — T

0 60 120 180
q (em™)

FIG. 7. Variation of the critical field H, with the wave vector
q for planar alignment for §,=1.0 rad and d =50 pm.

strongly deformed region in the nematic layer is typically
an order of magnitude smaller than the wavelength of the
interfacial undulations. Hence the neglect of the x
dependence of the deformation in comparison with its z
dependence in Egs. (10) and (11) is a reasonable approxi-
mation. In this case, the threshold field is found to in-
crease with decreasing d. This can be understood as
again due to the twist deformation in the sample, which
is stronger in thinner layers. Furthermore, it is clear that
both H,, and q,, increase on decreasing d. This trend is
in agreement with the experimental observations of Ref.
[5] on planar aligned nematic layers. Furthermore for a
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j&)
N1
N
3 -
=
|l
=]
b
c
1 . . . : : : ,
0.0 0.4 0.8 1.2 1.8
8, (rad)

FIG. 8. Variation of the threshold field H, with 8, for
d =25 um (a), 50 um (b), and 100 um (c).
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FIG. 9. Variation of the threshold wave vector g, with §,
for d =25 pm (a), 50 pm (b), and 100 um (c).

25 pm thick nematic layer with §,~=~1 rad, they find a
critical voltage of about 2.5 V and ¢ ~200 cm~!. Taking
Ae=35 this corresponds to a magnetic field of about 3.9
KG. These values of H,;, and gy, are clearly comparable
to those found from the present calculations. However,
since not all the material parameters of the nematic used
in the experiments are known, it is not possible to make a
proper comparison. Furthermore, it may be recalled here
that in the case of an electric field the nonuniformity of
the field in the nematic layer has to be taken into account
and, therefore, a very close agreement between the exper-
imental and calculated values of H,;, and g cannot any-
way be expected.

A qualitative analysis of the undulatory instability is
presented in Ref. [5] along with the experimental results.
They assume that near the threshold the director in the
bulk of the nematic layer is aligned along the field direc-

tion. Thus the boundary conditions on the lower surface
of the nematic layer are considered to be irrelevant for
the threshold behavior. Neglecting the twist distortion
across the nematic layer they come to the wrong con-
clusion that the instability occurs with g, =0 for planar
alignment. The observed nonzero value of gy, is attribut-
ed by them to the fastest growing mode. However, Fig. 6
shows that in the planar case the threshold field is not
high enough to align the director in the bulk along z, and
so the twist distortion across the thickness of the nematic
layer has to be taken into account. This results in the
vastly different behaviors in the two cases.

V. CONCLUSION

A linear stability analysis of the undulatory instability
of the nematic-isotropic interface under a vertical mag-
netic field has been presented. The analytical results ob-
tained under certain approximations are confirmed by de-
tailed numerical calculations. The boundary conditions
at the lower surface of the nematic layer are found to
have a significant influence on the threshold behavior.
Thus in the case of planar alignment the instability is
found to set in at a nonzero value of the threshold wave
vector q,,, while in the case of homeotropic alignment
g, =0. Furthermore, in the latter case, the interface is
shown to be spontaneously deformed if the thickness of
the nematic layer is less than a critical value. The results
of the calculations for planar alignment are in broad
agreement with the experimental observations of Yokoy-
ama, Kobayashi, and Kamei [5].
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