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The general view of galactic evolution suggests an early period of “violent” relaxation followed by the
establishment of a long-lived quasiequilibrium state which is associated with a stationary or steady-state
solution of the Vlasov equation. The predicted time scale for the initial violent period, which has been
supported by a number of simulations, is of the order of a few galactic crossing times. However, the for-
mation of stellar clusters may constrain the early mixing to a slower diffusion which precedes the violent
phase. To explore this possibility, we report on a recent study of the relaxation of a highly virialized
(large ratio of kinetic to potential energy) model of a one-dimensional “galaxy” consisting of N parallel
mass sheets interacting solely through their mutual gravitational attraction. We show that (1) relaxation
consists of a long diffusive phase which can be of the order of a thousand crossing times and depends
sensitively on the system population, followed by a short-lived “violent” period lasting less than 100
crossing times, and (2) the overall relaxation time has a minimum for a system consisting of about 30
sheets, suggesting that dynamics is most “chaotic” for this population. However, regardless of the popu-
lation, the ultimate stationary state exhibits the expected core-halo structure in p (position, velocity)
space. Possible implications of the study for both nonlinear dynamics and astrophysics are considered.
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I. INTRODUCTION

A central question for astrophysics and, more
specifically, stellar dynamics, is the prediction of the re-
laxation time for autonomous gravitating systems. A
quick look at galaxies and globular clusters reveals that
many elliptical galaxies and globular clusters have little
internal structure and are devoid of gas and dust, indicat-
ing that they have relaxed to some type of “equilibrium,”
whereas spiral and irregular galaxies are still evolving [1].
Finer details show that, in fact, the velocity distribution
of most ellipticals is not isotropic, indicating that al-
though they are highly relaxed they are not in complete
statistical equilibrium. In contrast, many globular clus-
ters are fully isotropic and may be completely relaxed
[1,2].

The usual picture of galactic evolution partitions the
process into two different time scales, an initial period of
“violent relaxation” in which the system rapidly ap-
proaches a nearly stationary ‘‘metastable” state [1,2]
which is a discrete representation of a stationary Vlasov
distribution. This state, in turn, gradually approaches
complete thermal equilibrium. The time scale for the ini-
tial process results from “collisionless” Vlasov evolution
while the last, slow stage is a result of ““collisional” relax-
ation. Some authors have offered a refinement of this pic-
ture by introducing a third, intermediate, time scale aris-
ing from Landau damping [1] which results from the in-
teraction of individual system elements with collective
fluctuations. This scenario is predicated on the assump-
tion that the initial distribution of stars is “well mixed”
[3] so that the violent phase begins almost immediately.
However, observation suggests that many stars form in
isolated clusters which, in turn, require an additional
period of diffusion prior to realizing the well-mixed con-
dition.
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It was shown long ago by Chandrasekhar [4] and oth-
ers that, due to the low stellar density, the time scale for
collisional relaxation of galaxies is greater than the pre-
dicted age of the universe, while the more dense globulars
are nearly thermalized. Because the early stage is based
on initial Vlasov evolution, it was anticipated that its
duration is on the order of a typical crossing time and,
hence, independent of population (N). In contrast, the
final stage encompasses the evolution through a sequence
of approximately stationary Vlasov states to complete
thermal equilibrium and is population dependent. In a
seminal paper Lynden-Bell uniquely approached the
question of the final result of the violent phase using
methods from quantum statistical physics [5]. He as-
sumed that, because the Vlasov flow is incompressible,
the individual mass elements were analogous to fermions,
and hence their final distribution in p space could be
represented as a sum of Fermi distributions [6]. An alter-
native proposal was later brought forth by Shu [3].

In order to test these ideas, a number of investigators
have studied the early stages of evolution of model sys-
tems. Because the numerical simulation of three-
dimensional systems is slow and inexact [7], typically
one-dimensional systems were chosen which could be
evolved with greater numerical accuracy for a large num-
ber of crossing times. The most popular model chosen
consists of a system of parallel mass sheets which are con-
strained to move in a direction perpendicular to their sur-
face. This system, mentioned in the literature by Oort in
1932 [8], has been studied intensively, both numerically
and analytically, since about 1967 and has been used to
investigate both evolutionary stages. While the Lynden-
Bell or Shu conjectures have not been confirmed [9], most
simulations do show a rapid progression to a nearly sta-
tionary “metastable” state [9-13].

Until 1982, it was generally accepted that the final evo-
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lutionary stage for this one-dimensional system took
place in N?T,, where N is the system population and T,
is approximately the time required for a mass sheet to
traverse the system [14]. By applying nonparametric
statistics to the distribution of sheets in position and ve-
locity, Wright, Miller, and Stein showed that, in fact, the
system was not relaxed after 2N ZTC [11]. For a reference
distribution, they used the exact results derived by
Rybicki for the microcanonical ensemble [15]. Shortly
thereafter, Luwel, Severne, and Rousseeuw found that
complete thermalization seemed to occur in a time scale
of only NT, for a specially chosen set of initial condi-
tions. They conjectured that this would occur for all sys-
tems with initial states selected sufficiently close to equi-
librium [10]. Further work we performed demonstrated
that this was not the case: Rather we found a remarkable
sensitivity of the stationary metastable state to the initial
condition selected in a given simulation [12,16,17].

In other work, new insights have been obtained con-
cerning the ergodic properties and the final relaxation
time scale. By computating Lyapunov exponents associ-
ated with different periodic trajectors, we demonstrated
the coexistence of both a stable and an unstable region of
the phase space for each N <11. For N =11, the former-
ly stable region becomes unstable, suggesting that this is
a critical population at which the system becomes both
ergodic, and mixing [18]. By extrapolating the time re-
quired for the Lyapunov exponents generated by trajec-
tories originating near each unstable fixed point to con-
verge to a common value, we predicted that complete
thermalization would require on the order of 10’7, [19].
Simulations carried out by Tsuchiya, Konishi, and Gou-
da have just confirmed our prediction. They report that
the minimum thermalization time is about (10°-107)T,,
and increases with system population [20].

This leaves unanswered the significance of the earlier
research by Luwel, Severne, and Rousseeuw. What kind
of relaxation did they observe, and what is the
significance of the fact that it seemed to occur on the
time scale NT,? It seems clear that this process does not
represent collisional relaxation. While it could arise from
the violent phase, although this would be counter to
current ideas, or represent the intermediate particle-
fluctuation time scale (Landau damping) considered by
Kandrup and Severne for this system [21], there is a third
possibility. The counterstreaming initial conditions
selected by Luwel, Severne, and Rousseeuw place the sys-
tem members in separate clusters from which they must
diffuse before the system an be considered ‘“well mixed.”

To gain further insight into the early stages of the re-
laxation process, we prepared the system in a highly viri-
alized counterstreaming initial state (dumbbell, see Fig. 1)
in the p (position, velocity) space and followed its evolu-
tion to metastable equilibrium. The choice of tight clus-
tering in each dumbbell lobe is analogous to the relatively
small size of typical stellar clusters on a galactic scale.
The evolution of these initial dumbbell states is charac-
terized by a period during which each lobe of the
dumbbell grows in size until the elements of each region
finally commingle. Once the lobes overlap, there is a tran-
sition to a metastable core-halo structure. These initial
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FIG. 1. Initial counterstreaming u space distribution for
N =200 sheets. Dimensionless units are defined by Egs. (5) and
(6).

states have the advantage that the duration of the period
of transition from a dumbbell to the metastable core-halo
structure is relatively short and thus easily quantified.

We find that the lifetime of the initial ‘diffusive”
phase, defined as the time preceding the dumbbell to
core-halo transition during which two distinct lobes in
the pu space are easily distinguished depends strongly on
system population and, after passing a minimum, appears
to increase linearly with N over a wide range. In this
context, it would seem that Luwel, Severne, and
Rousseeuw were actually observing the initial “diffusive”
phase, rather than thermalization. Moreover, the fact
that the transition from “dumbbell” to core-halo struc-
ture is rapid suggests that the separation of the latter
stages of evolution into both an intermediate and a col-
lisional time scale is unlikely. However, additional work
will be required to answer this question fully. A bonus of
the study is the unavoidable conclusion that the most
rapid exploration of the phase space (most ‘“‘chaotic”
behavior) occurs for N about 30, where the relaxation
time has its minimum.

The details of the study are presented below. We first
describe the initialization of the system into the dumbbell
configuration. We then describe the criteria for estimat-
ing the time of transition, and its dependence on popula-
tion. In the conclusions we discuss both the dynamical
and astrophysical implications of the results.

II. DESCRIPTION OF THE ONE-DIMENSIONAL
SYSTEM

The one-dimensional self-gravitating system is com-
posed of N identical mass sheets, each of uniform mass
density and infinite in extent in, say, the (y,z) plane. The
sheets move freely along the x axis and accelerate as a re-
sult of their mutual gravitational attraction. The ith
sheet experiences a constant acceleration given by

A,=(27G /N)[N —2i +1], (1)

where 1/N is the mass of a sheet and G is the universal
gravitational constant. At an encounter the sheets pass
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freely through each other. The energy of the system is 4
expressed as s I
N *
E=(1/2N) 3 v}+Q27G/N?) 3 |x,—x;| , 2) 2 ¢
1 i<j L . ‘\ .
. ° oo

where v; and x; are the velocity and position of the ith
particle, respectively.

The equilibrium velocity and position probability den-
sity functions for this system in the microcanonical en-
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and FIG. 2. System distribution after 1700z,. Note the appear-
ance of two distinct clusters.
E=(37GM*/2E)x ; (6)
v, x, M, and E represent the velocity, position, total sys- 4
tem mass, and total system energy, respectively. r
The dynamical time required for a sheet to traverse the 3r
system is referred to as the characteristic time and has L .
been expressed by Luwel, Severne, and Rousseeuw (here- 2r . O .
after LSR) [10] in terms of the maximum value of the - 1 I LIRS %, .
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III. SIMULATION SETUP = e 7
o ... .. o L )
All initial positions and velocities were scaled accord- 2 I *
ing to Egs. (5) and (6) with M =1 and 2w#G =1. This re- 3k
sults in a characteristic time ¢, of 27 and forces a total di- A
mensionless energy of 2 for all systems. The center of JyY) S L R L L.
mass and total momentum were constrained to zero. The 4 -8 -2 10 ! 2 8 4
evolution of each system was simulated using an exact POSITION

code with updating occurring at each encounter. All cal-
culations were performed in double precision (16
significant figures) on a VAX 6310, and energy was con-
served to better than one part in 10'°,

FIG. 3. System after 1800z,. Note that the clusters have
disappeared and core-halo structure has been established.

The initial counterstreaming configuration [10,12] in u 5
(x,v) space (see Fig. 1) was constructed by the random L
sampling of uniform distributions for both positions and
velocities. First the width of each domain of initial veloc- sr .
ities was selected as 0.0001 of the velocity ceiling. The 2 . .
velocities were then chose by uniformly sampling the two > L t . aAte
intervals in arbitrary units and translating until their sum 3} ‘s $o°
was zero. Similarly, the positions were chosen next by S °r ’ ,o'.‘ . *
uniformly sampling a new symmetric interval, translating Wt . *s AN S
so that the center of mass is zero, and rescaling the values [ e .
. . .. . . . . -2F
to obtain the desired virial ratio [twice the (kinetic b oo M
energy)/(potential energy)] [12]. Finally, Rybicki scaling -3
[see Egs. (5) and (6)] was applied to obtain an energy of 3 Laf
[12]' 5 [ 1 J E—— 1 1 1 1 1 1
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IV, SIMULATION RESULTS POSITION
The virial ratio of the initial configuration was chosen FIG. 4. System after 20000z.. Note the persistence of core-

to be 50. Simulations were carried out for eleven halo structure.
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FIG. 5. Time of cluster breakup versus sys-
tem population. Note the minimum at N =40
and the linear dependence on N for asymptoti-
cally large population.
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different system populations (N =6, 8, 10, 30, 40, 50, 100,
150, 200, 250, and 300). In each case the evolution in u
space was carefully observed by plotting the
configuration every 100 characteristic times. In all cases,
initially the dumbbell configuration is conserved, i.e., the
two clusters orbit each other in the pu space consistent
with a simple, two particle, system. Gradually, individu-
al masses are seen to diffuse out of the clusters. This re-
sults from the random order of crossings which occurs
during the short piece of the cycle where the clusters’ po-
sitions overlap. However, the identification of two distinct
clusters persists for some time. Finally, within a short
period of time, the two cluster structure collapses abrupt-
ly leaving a central core and a diffuse halo. The core-halo
distribution appears to be stationary and no further sys-
tematic evolution is observed on these time scales. The
sequence for a 200 sheet system is illustrated in Figs.
1-4.

For each population we have been able to localize ¢,
the time at which breakup occurs, to within 100z,. Of
course, for small system populations it was more difficult
to distinguish the two types of structure in u space. The
central concern of this study is to estimate the depen-
dence of the cluster duration on system size. For large
systems it was apparent that ¢, increases linearly with N.
However, a minimum value is obtained for N about 40.
As N decreases below 40, t, increases once again, but
much more rapidly. In Fig. 5 we have plotted ¢, versus N
with a fitting curve of the form f(N)=a /N +bN which
appears to represent the crude data as well as can be ex-
pected.

V. DISCUSSION OF RESULTS
AND CLOSING COMMENTS

The results of the study clearly show that the duration
of the initial ‘“diffusive” phase of relaxation depends on
system population. These results were not observed in
earlier simulations of this system [9,11,14] or in simula-
tions of three-dimensional systems [1,2,22] because the
initial conditions were nearly ‘“well mixed” and did not
include the presence of localized clusters. While it is not
surprising that collisional relaxation to complete thermal
equilibrium depends on population, the N dependence of
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the early phase is more difficult to understand. One pos-
sible explanation is that the initial state selected yields
uncharacteristic results. In our case, if the initial
dumbbell state were squeezed into two symmetrically
placed mass points, then it would define an unstable
periodic solution to the Vlasov equation. The fact that
the actual initial state is “‘close” to this periodic solution
may inhibit strong mixing in the early phases, leaving
phase mixing as the sole initial relaxation mechanism [1].
The investigation of the population dependence of initial
relaxation resulting from different initial conditions
would be required to fully answer this question. Howev-
er, it is hard to imagine that population dependence will
simply disappear.

It has been demonstrated that the failure of small sys-
tems (N <11) to rapidly converge to equilibrium is due
to the segmentation of the phase space into distinct coex-
isting ergodic and stable components [18]. The failure to
observe thermalization of large systems (say N >50) in
simulations for times upwards of 10%, is due to the weak-
ening of the pairwise interaction between separated
sheets in the Vlasov limit. (The mass vanishes as 1/N so
the force vanishes as 1/N2) Thus the acceleration ex-
perienced by a given sheet becomes dominated by the
mean field arising from the long range force. Since near-
by sheets experience approximately the same mean field,
orbit separation in phase space and, consequently,
thermalization becomes a slow crawl. Since complete
thermalization has only been achieved in one study [20],
the dependence of this relaxation time on population is
unknown. With these thoughts in mind, it is not surpris-
ing that the most rapid mixing in phase space occurs for
N on the order of 30. For smaller values, remnants of
segmentation probably limit the rate of spreading of near-
by trajectories in phase space, while the system is too
close to a Vlasov fluid for larger values.

Although there are important differences between evo-
lution in one and three dimensions, the results of this
study may have implications for astrophysics (i.e., three-
dimensional self-gravitating systems) as well as nonlinear
dynamics. They suggest that, for some classes of initial
conditions, the initial relaxation of a galaxy may be less
“violent” than anticipated. Thus the observation that
many galaxies are ‘“‘irregular,” i.e., cannot be identified
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with approximately symmetric, stationary, Vlasov states,
may be primarily due to a prolonged initial relaxation
period resulting from the concentration of young stars in
stellar clusters. In preliminary studies we have found
that relaxation in systems initiated with three or four dis-
tinct clusters follow the sample pattern reported here and
reinforce this picture.

A better understanding of initial relaxation would re-
sult from an investigation of the connection between
Vlasov evolution and discrete particle simulations. Nu-
merical integrations of the Vlasov equation clearly show
that, for a typical initial mass distribution, as the fluid
evolves structure develops on increasingly finer (smaller)
length scales in the u space [23,24]. Thus relaxation to a
metastable equilibrium cannot occur without some type
of coarse graining, or other information sink. An N-
particle simulation intrinsically provides such a sink in
that it can only effectively imitate the Vlasov evolution

while the discrete particle masses are smaller than the
mass associated with a Vlasov fluid element with dimen-
sions on the order of the shortest prevalent wavelength.
However, once equality is reached, say at ¢,, the evolu-
tions should separate. The time scale for this separation
clearly depends on system population, and has not been
investigated. It would be worthwhile to compare the
time required following ¢, for the coarse-grained Vlasov
fluid to achieve a stationary state with that of the discrete
system. This is a suggestion for future work which may
provide insight into the surprising results of this study.
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