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We discuss the route for eliminating chaos in nonlinear oscillations by changing only the shape
of a periodic force. We consider the Duffing oscillator forced with the Jacobi elliptic function sn
and, applying a simple averaging technique, show that the phenomenon of chaos suppression due to
reshaping of the driving force may be easily explained as an effect solely arising from the change of
the effective amplitude of the first harmonic in the Fourier series expansion of the elliptic function.
This conclusion is clearly con6rmed by direct numerical simulations.

PACS number(s): 05.45.+b

I. INTRODUCTION

As is well known, the main methods to control chaotic
dynamics are based on the idea of the stabilization of
unstable periodic orbits by feedback or external signals,
and this may be achieved in several difFerent ways (see,
e.g. , [1—6] to cite a few). One of the methods is to use a
small parametric [2,3] or direct [4] force applied at some
resonant frequency, and the chaos suppression is then ob-
served as regularization of the motion at exact resonance.

/

Recently, Chacon and Diaz Bejarano [5] have proposed
a route for eliminating chaos in nonlinear oscillation by
changing only the shape of a weak periodic perturbation.
In particular, they used the modified DufBng oscillator,

X GX

dt2
—n~ + Px = —p —+ Fsn (cut; m),

dt

where sn (wt; m) is the Jacobi elliptic function with the
modulus m (0 ( m ( 1) and, applying the Melnikov-
Holmes analysis (see, e.g. , [7]), demonstrated that chaos
may be suppressed by changing m only, provided the
forcing period is fixed. When m = 0 we have sn(cut; 0) =
sin(wt), i.e. , the standard DuKng oscillator, and the idea
of Ref. [5] to change the pulse shape selecting m, g 0
seems to originate from the earlier analyzed effect of
small-amplitude parametric [2,3] or direct [4) perturba-
tions on chaotic dynamics. However, our recent results
have shown that for nonresonant parametric perturba-
tions chaos suppression may be effective only for the
case of large amplitudes [6]. This immediately implies
that higher-order harmonics, which usually appear due
to such a reshaping cannot be effective enough to be im-

portant in the chaos suppression. The purpose of this
paper is to show that the chaos suppression discussed
in Ref. [5] is basically produced by the first harmonic
of the anharmonic force and the effective contribution of
higher-order harmonics may be taken as a simple (small)
renormalization of a coefficient in the DufBng oscillator
equation. Thus, our results suggest that the phenomenon
of the reshaping-induced chaos suppression is nothing but
a variation of the amplitude of an effective harmonic driv-
ing force.

The paper is organized as follows. In Sec. II we briefly
discuss, using the ideas and method of Ref. [6], the effect
of a high-frequency Chrect force on the DufFing oscillator.
In Sec. III the more general theory developed in Sec. II
is applied to Eq. (1) to demonstrate that in such a case
the contribution of higher-order harmonics is small. In
Sec. IV we confirm the results of our analysis by direct
numerical simulations, and last, Sec. V concludes the pa-
per.

II. ANALYTICAL APPROACH

First, we consider the more general problem of the
forced dynamics in the presence of a high-frequency pe-
riodic perturbation. If such a periodic perturbation is
applied to a system driven by a low-frequency force, it
may be effective to suppress chaotic dynamics provided
the perturbation amplitude is big enough. The effect of a
parametric perturbation was considered in [6], but here
we are interested in a similar kind of phenomenon but
caused by a direct driving force.

Let us consider the driven damped DuKng oscillator
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with two driving forces,

d' 3 dx
dt2

—nx + pxs = —p —+ I" sin(wt) + e sin(Ot), (2)
dt

where the frequency 0 is assumed to be much bigger than
the other frequency, a. As was shown in Ref. [6], the
efI'ect of such rapidly varying oscillations may be analyzed
by the method based on the separation of difI'erent time
scales. Using the ideas of Ref. [6], we look for the solution
of Eq. (2) in the form,

x = X + Aq cos(At) + Bz sin(Ot) + A2 cos(20t)
+B2 sin(20t) + (3)

it may be found that the efI'ective DufFing equation has
the renormalized coefficient,

3P e2
O,'= O.'—

2n4 - n4
n=l

III. CHAOS SUPPRESSION 8Y AN EI.LIPTIC
DRIVING FORCE

We consider now the DufFing oscillator driven by an
elliptic driving force as in Eq. (1). First, the elliptic
function in Eq. (1) may be expanded into the Fourier
series,

a11 a12
1 —

~3 + ~5 + ~11 ~12+ g4 + )

g4 + )

a21 + ) B2 (4)

and so on. The first terms of the expansions (4) have the
simple form,

a11 +~11 ~11 (5)

and other ones are functions of a11 and 611 or their deriva-
tives (see also Refs. [6,8]). Substituting now Eq. (5) into
the equation for the "averaged" oscillation amplitude X,

where the coefFicients X, A1, B1, A2, B2, . . . are assumed
to be slowly varying functions on the scale 0 . Sub-
stituting Eq. (3) into Eq. (2) and equating the terms in
front of difI'erent harmonics, we obtain an infinite system
of coupled nonlinear equations for X, A1, B1, . . . which
can be efI'ectively solved by applying asymptotic expan-
sions (cf. Refs. [6,8]),

7l 4)t
sn(wt; m) = ) G (m) sin (2n + 1)

where

G„(m) =
K~m sinh ~ (n+ -)] '

K = K(m) is the elliptic integral of the first kind, and
K'(m)—:K(1 —m). Then, we note that from the view-
point of the main harmonic (at n = 0) the higher-order
(n & 1) harmonics in Eq. (10) may be simply viewed as
those produced by (additional) rapidly varying perturba-
tions, provided the oscillation frequency is large enough.
Using the approach developed in Sec. II, we derive an ef-
fective nonlinear equation for the slowly varying compo-
nent X = (x) of the oscillation amplitude x, where ( )
stands for averaging over the time scales smaller than the
oscillation period T = 4K(m)/cu, e.g. , over T/3. To do
this, we look for a solution of Eqs. (1) and (10) in the
form of the asymptotic expansion [cf. Eq. (3)]

d X 3 3 2 2

dt2
—nX+PX + -PX(A +B + )2

x = X + ) [A,~ sin(O~t) + B,~ cos(A~t)], (12)

dX + I' sin(~t), (6)
dt

where

O~ = (2j + l)vrw/2K(m) for j = 0, 1, 2, . . . .

we find the simple result that the slowly varying dynam-
ics of the system is described (up to the terms of order of
0 ) by the standard Duffing equation with the senor
malized coefFicient

3
n —+n—=

i
n ——P

2 04'

e sin(Ot) —+ ) e sin(nOt).
n=l

(8)

For this case the expansion (3) involves a double sum,

It is easy to extend the analysis presented above to cover
a more general case when the high-frequency driving
force has an arbitrary shape that allows an expansion
in a Fourier series, so that in Eq. (1) we should make the
change,

The expansion coefFicients A;~ and B,~ are found with the
help of a power series in the small parameter O. , which

2
allow one to derive an effective equation for the slowly
varying component X with any accuracy. The resulting
"averaged" equation corresponds, in fact, to an efI'ective
harmonically driven damped DufIing oscillator

dX 3 dX
dt2

—nX + PX = —p + EGp(m) sin(Apt), (14)
dt

with the renormalized coefficient,

3/F2 ) G2 (m)
20p4(2n + 1)4 '

where the frequency Oo is assumed to be fixed. The
Melnikov-Holmes condition to prevent chaos in Eq. (14)
may be written in the following simple form:



RESHAPING-INDUCED CHAOS SUPPRESSION 871

1.3

1.2

Oo the effective contribution of higher-order harmonics
in the phenomenon of eliminating chaotic dynamics on
the time scales T is very small, and the main effect
is expected from the contribution of the first harmonic

( Go). The function

sr K(m)
~m sinh[nK'(m) /2K(m)]
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FIG. 1. Dependence of the amplitude Go(m) of the first
harmonic in the expansion (10) on the modulus m of the
elliptic force.

depends on m and this dependence is shown in Fig.
1. Therefore, we expect that the main features of the
reshaping-induced chaos suppression discussed in Ref. [5]
may be seen dealing solely with the amplitude Go(m) of
the first harmonic in the Fourier expansion (10), (11),
and the phenomenon of the chaos control due to a re-
shaping of the amplitude of the driving force [5] may
be understood as that arising from a change of the am-
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The results (14) to (16) mean that for the case I"
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FIG. 2. Lyapunov exponent (a) and the bifurcation dia-
gram (b) vs the modulus m of the elliptic driving force in Eq.

FIG. 3. The same as in Fig. 2 but for the standard DufFing
equation (18) with a sinusoidal driving force whose amplitude
is taken as the amplitude of the first harmonic in Eq. (10).
Note a (small) shift of the plots in comparison with Figs. 2

(a) and 2(b), respectively. However, the global behavior and
especially the scenario of the chaos suppression are the very
same.
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plitude EGo(m) of the effective harmonic force in the
"averaged" equation (14).

IV. RESULTS OF NUMERICAL SIMULATIONS

To verify the idea presented above we have performed
independently the computer simulations of Eq. (1) and
the effective DuKng equation (14). First, the problem
(1) of the elliptic driving force was considered under the
assumption of Ref. [5] that the period is constant, the
latter was achieved by dividing the argument of the el-
liptic function sn by 1/K(m). The parameters of the
Duffing oscillator were chosen to be cr. = P = cu = 1.0
and p = 0.27. The initial condition always was x(0) = 0
and dx(0)/dt = 0.001. For the sinusoidal driving force
(i.e. , when m = 0) there occurs an asymmetric periodic
attractor at positive values of x (see Fig. 2). Increasing
m, a period doubling route to chaos is observed ending
up in an asymmetric chaotic attractor with a positive
Lyapunov exponent. Further increasing yields a hete-
roclinic symmetry restoring crisis that merges the two
attractors occurring at either sides of the potential well
for x ) 0 and x ( 0. As one can see in Fig. 2(a),
the Lyapunov exponent increases after the crisis. Thus,
changing m from 0 to 1, one can suppress chaos in the
case of the higher-dimensional, symmetric attractor as
well as in the lower-dimensional, asymmetric attractor
case. Furthermore, one can observe the typical occur-
rence of a "scenario out of chaos, " that always occurs
in suppressing chaos by parametric perturbations [2,3,6].
It results from the fact that the perturbations can be
reduced to an efFective control parameter change.

To identify the efFect produced solely by the first har-
monic in the chaos suppression presented in Figs. 2(a)
and 2(b), we have done the same simulations for the stan-
dard DufIing equation,

d2x 3 dx
dt

—nx + Pxs = —P—+ f (Go) sin(~t),
dt

where f (Go) is proportional to the amplitude of the first
harmonic in the expansion (10). The results are pre-
sented in Fig. 3 where the amplitude is scaled by the
function inverse to Go(m). In this way the plots in Fig.
3 can directly be compared to those calculated using the
elliptic driving force sn (ut/K; m, ) and shown in Fig. 2.
The plots in Figs. 3(a) and 3(b) clearly show up a direct
equivalence to the former ones, Figs. 2(a) and 2(b), re-
spectively. One can also observe the period doubling cas-
cade first resulting in an asymmetric attractor and then
merging into the larger, symmetric attractor via crisis.

However, the scenario shown in Fig. 3(b) and the Lya-
punov exponent shown in Fig. 3(a) are clearly seen to
be shifted a little bit in the control parameter resulting
from the (small) influence of the higher-order harmon-
ics existing in the case of the anharmonic driving force.
Nevertheless, the global behavior and especially the sup-
pression of chaos are the very same, showing up that the
conclusions made in the previous section are confirmed.

V. CONCLUSION

In conclusion, we have considered both analytically
and numerically the chaos suppression by changing only
the shape of a periodic force taking the driving force as
the Jacobi elliptic function sn. As follows from our anal-
ysis and numerical results, the effect predicted in Ref. [5]
may be simply explained by a variation of the amplitude
of the first harmonic, whereas a contribution of higher-
order harmonics is shown to be small. Thus, this confirms
that there are only two independent (known up until now)
ways of controlling chaos the feedback method (see,
e.g. , [1])and the periodic forcing method (see, e.g. , [2—4])
whereas the method suggested in Ref. [5] may be effec-
tively reduced to the known one.
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