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Split-operator technique anti solution of Liouville propagation equations
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We use the split-operator technique (SOT) to solve evolution equations of the Liouville type. The
method we propose is based on an iterative application of the evolution operator, associated with the
equation under study, on the initial distribution. The SOT approximation of the evolution operator
leads to analytical expressions that can be easily programmed. We discuss the validity of the method,
solving the Liouville equation governing the longitudinal phase-space dynamics of an e beam undergoing
free-electron-laser interaction and the phase-space evolution of a quartic anharmonic oscillator.
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8
p(q, p;r) =exp r —p + V'(q)

Bq Bp

Let us now define the differential operators

A = —p, 8= V'(q)Bq' Bp'
whose commutation is provided by

(2)

(3)

The use of a symmetrically split propagation operator
technique has been successfully applied by Feit, Fleck,
and Steiger [1] for the solution of Schrodinger equations
in the coordinate representation. The same method was
successively exploited by Torres-Vega and Frederick [2]
to study the phase-space evolution of wave functions.

In this paper we will start from the split-operator tech-
nique (SOT) to solve the classical evolution of a phase-
space distribution of particles subject to a given potential.
The method we propose differs from that exploited in
Refs. [1,2] because we mostly employ analytical methods
and avoid using the Fourier transform as an intermediate
step. Here, we outline the basic features of the procedure
and a more general analysis will be presented elsewhere.

The Liouville equation describing the evolution of the
phase-space distribution of an ensemble of noninteracting
particles subject to the potential V(q) is specified by [3]

p(q, p;r)= —p + V'(q) .p(q, p;r), (1)
8 . 8

Bp

with q and p being canonically conjugate variables and

V'(q)= V(q) .=a
Bq

If we assume that the initial phase-space distribution is
continuous and infinitely differentiable in the (q,p) vari-
ables, we can write the formal solution of (1) as

cl, 8
exp r —p + V'(q)

Bx Bp
a(~) A b(t)k c{~)C

where (a, b, c) are r-dependent functions satisfying a set
of nonlinear equations specified by the particular type of
group spanned by A, 8, and C'. For the case where one is
able to disentangle the evolution operator in the ordered
form (5), the time evolution of p(q, p;r) can be easily ob-
tained using standard operational rules [4].

The problem arises when A, 8, and C do not provide
any closed group; in this case, one should use approxi-
mate but efticient methods, such as the SOT approxima-
tion, according to which the evolution operator can be
written as

5Q A +8 ) (1/2)5&A 85~ (1/2)5v A (6)
The difference between the two sides of the above relation
is [1,2]

5g A +8 ) (1/2)5~A 8&. (1/2)5~ g
—= —,', (5&) [( & +28 ), [ A, k ]]+0((5r) ) .

(7)

The representation (6) is valid for short interval times,
and the solution p (q,p; & ) makes sense if

—,', (5r)'[A+28, [a,k]]p(q,p;0) «p(q, p;5r) .

The extension to longer interval times can be obtained
applying the evolution operator (6) n times to the initial
distribution. The problem is now how to effectively apply
the operator (6) to the phase-space distribution. The
Fourier transform method can be adopted as suggested in
Refs. [1,2]; however, in the present case, we can skip this
intermediate step, noting that

[&(5r)]"f(q p)=f(q. p. »
C = [ A, k]= —p V"(q) —V'(q)

Bp Bq
(4)

where there are n factors of 0(5r) and

For a few specific cases of V(q), A, ft, and c; provide a
closed group and thus the exponential operator on the
right-hand side of (2) can be written as the following or-
dered product [4]:

'Permanent address: INN-FIS, ENEA, Bologna, Italy.

5v a0(5r )=exp — p .exp 5r V'( q)
2 Bq Bp

s~ a
X exp — p

Bq

f(q p»)=p(q p»0) .
(10)
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FIG. 1 (a) Integration of the FEL Liouville equation p„,p& and phase-space distribution contour plots at r= 1, The histogram refers to the results of
the simulation code. Parameters: N =40, o,(0)= 5 X 10,p, (0)=4Na, (0), f=0.624. (b) Same as (a), /=2. 79. (c) same as (a), /= 12.48.

Using the well-known relation

exp A, f(x)=f(x+A ),d
dx

we find that q„and p„satisfy the recurrence relations

q„=q„ t
—&p„,——,'(5~) V' q„,— p„, , p„=p„,5~V' q„,—p„2

5~
qt =q —p5~ —

—,'(52) V' q
— p, p, =p+5~V' q

—
—,'p5~

The above relations provide the solution of the problem. We will illustrate two examples to prove the usefulness of
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FIG. 2. Longitudinal phase-space distribution. Same parameters as
Fig. 1(b) (SOT integration).

the technique described.
The Liouville equation associated with the one-

dimensional treatment of free-electron-laser (FEL) dy-
namics is [5]

1 1f(v)= exp2~ &2m. [harp, (0)]
(v —vo)'

(15)
2[my, (0)]

The parameter /i, ,(0) is linked to the rms value of the ini-
tial distribution. In Fig. 1 we have plotted the quantities

p, (0)
p, = I p(vg;1)dg,

In the first equation, there are n factors of 0(5r). The
last equation should be able to provide the solution of the
Liouville equation (13) with initial condition f(v). The
results of the integration are shown in Fig. 1. We have
assumed a Gaussian initial distribution, namely [6],

p(v, g;r) = ~ —v +/sin(g) -p(v, g;r),a . = a a
(12) + oo V Vo

p~= p(e, g;1)dc. ,
00 4m'

(16)

0(5r) -=exp —
—,'(v5r) exp g&(sing)

a a

X exp —
—,
'

( v5r ) (13)

In the case of the FEL, the initial distribution is usual-
ly independent of g and, therefore,

where v and g are longitudinal phase-space canonically
conjugate variables, ~ is a dimensionless time ranging
from 0 to 1, and g plays the role of coupling strength.
The evolution operator associated with Eq. (12) writes

and the contour plots of p(E, g;1), for different values of
the coupling strength g. The choice of the normaliza-
tions is due to the fact that we have confronted the
analytical results with those from a macroparticle simula-
tion code requiring the number of undulator periods (N),
the relative electron energy E, etc. The quantity p, (1) is
the rms of the v distribution at ~=1. The agreement be-
tween the solution (14) and the fully numerical procedure
is good. The advantage of the SOT is that the relevant
results are obtained at an almost negligible computer
cost. An idea of the distribution p( v, g; 1 ) is offered by
Fig. 2.
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yp= 1+a2 .

(20)
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