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Modulational instability of two counterpropagating waves
in an experimental transmission ling
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We present experiments on the modulational instability of two counterpropagating waves, observed in
an electrical transmission line. Our theoretical analysis leads to a set of two coupled nonlinear
Schrodinger equations and predicts a partition of the linear spectrum into several regions with difFerent

behaviors. The unstable region, found in our previous study [Phys. Rev. E 49, 828 (1994)] for a single
wave, remains here unstable, but with a much larger growth rate. Moreover, two new unstable regions
appear. Our experiments on the dynamics of the waves are in good agreement with the theoretical pre-
dictions.

PACS number(s): 03.40.Kf, 84.40.Mk

I. INTRODUCTION

Among the many fascinating effects due to nonlineari-
ty, there is a great deal of interest in self-induced modula-
tion of a plane wave [1],or modulational instability (MI),
which occurs in nonlinear dispersive media. In this con-
text, in a recent publication [2], we have investigated the
MI conditions of a forward wave in an experimental
transmission line and have shown that the linear spec-
trum can be divided into three different regions: between
two modulationally stable regions, there exists a third re-
gion where spontaneous or induced MI can occur.

On the other hand, several theoretical or numerical pa-
pers have shown that, first, the modulational growth rate
associated with a single unstable wave can be increased
by the presence of a second wave [3,4], and second, two
stable waves can become modulationally unstable in the
other's presence [3,5,6]. However, to our knowledge, no
experimental investigation has been reported. It is the
purpose of this paper to present a quantitative analysis
concerning MI for the superpostion of two counterpro-
pagating waves in an experimental electrical network,
with respect to the choice of the carrier frequency. We
present in the second section the theoretical predictions
based upon a set of two coupled nonlinear Schrodinger
equations, which we compare in the third section with
the experimental results. Then, the fourth section is de-
voted to some concluding remarks.

II. THEORETICAL STUDY

As in our previous paper [2], we consider a nonlinear
network with N cells (see Fig. 1). Each cell contains two
linear inductances, L, in series and L2 in parallel, and a
variable-capacitance diode (88112), biased by a constant
voltage Vo. Its caPacitance C(V„)=Co(1—aV„+PV„)
depends nonlinearly on the voltage V„of the nth cell,
with positive parameters Co, a, and P. Neglecting in a
first approximation the losses of the components, we easi-
ly derive from Kirchhoff's laws the system of nonlinear
discrete equations (for n = 1,2, . . . , N)

(d V„/dt )+cooV„+uo(2V„—V„+i—V„,)

=a(d V /dt ) P(d V /—dt ) (2.1)

with un=i/L, Co and coo= 1/L2Co. From (2.1), one gets
the linear dispersion relation

co =coo+4uosin (k/2), (2.2)

V„(t)=EV, +(X„X2,. . . , T, , T2, . . . )e' +

2 2i 0++E V2+(X„X~, . . . , T„T2,. . . )e

+EV, (X„X2,. . . , T„T2,. . . )e'

+E V2 (X&,Xz, . . . , T&, T2, . . . )e ' +c.c.,

(2.3)

where the carrier phases are 0+ =kn —cot and
0—= —kn —~t, and c.c. represents the complex conju-
gate. The second-harmonic terms Vz+ are added to the
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FIG. 1 Schematic representation of the experimental transmission
line. The network is composed of 45 identical cells, with two linear in-
ductances L1 and L2, and a variable-capacitance diode (BB112)of ca-
pacitance C( V„). Adjustable resistors R1 and R2 are used to minimize
the refiected waves at both ends of the line.

which corresponds to a bandpass filter with a lower cutoff
frequency f0

=coo/2n and an upper one,f,„=(coo+4uo)' /2m. , introduced by the lattice effects.
We now focus on a particular case, that is, the coex-

istence of forward and backward propagating waves with
the same angular frequency f=co/2m, and opposite wave
numbers k and —k, but with their low amplitudes slowly
varying in time and space with regard to the carrier
waves. In order to use the reductive perturbation method
[7], we introduce the independent multiple-scale variables
X;=c.'n and T; =E't, where c«1. Moreover, the solu-
tion of (2.1) is assumed to have the following form:
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1+ +~ 1+aV aV B V, +

Bx 1

+« t ~ Vt+ ~'+ Q2 ~ Vt —~')Vt+ =0

BV, BV, BV,
(2.4a)

fundamental ones Vt+ in order to take the asymmetry of
the variable-capacitance charge into account. However,
as shown in our previous paper [2], the second-harmonic
terms do not play any role when the carrier frequency f
exceeds f,„/2. Thus, in this case, they will not be con-
sidered.

Inserting (2.3) in (2.1) yields, after some standard cal-
culations, a set of two coupled nonlinear Schrodinger
(NLS) equations:

(a)
fmax

1.0

~ ~

O

U'

0
fo

~ ~ ~ a ~ ~ a ~ s
I

~ ~ ~ s ~ a a ~ ~
I

~ ~ ~ ~ s ~ ~ ~ ~ I a ~ s ~ ~ ~ ~ s ~1 5~ ~

+(Q, IV, I'+Q, IV,.I'», =0, (2.4b)

~ Q ~ ~ s s ~ s ~ ~ s I ~ s ~ ~ ~ ~ ~ ~ ~ I s ~ ~ s ~ ~ ~ ~ s I ~ ~ s ~ ~ ~ ~ s ~0.
0 1 2 3 4

Wave Vector: k (rad cell ')

for f (f,„/2, (2.5a)

Q, =QI'=3pco/2, Qz=3pro for f)f,„/2 . (2.5b)

where the group velocity V =dc@/dk=uosink/co and
the group velocity dispersion

P = ( d ro /dk ) = ( u o cosk —V )/2'
is calculated from (2.2), while the nonlinear coefficients
Q, and Q2 are, respectively,

3P 4a co

3' +16u ' k/2
O

O'

r

~ ~ s s ~ ~ ~ a ~
I

~ ~ ~ ~ ~ s ~ ~ ~
I

a ~ ~ s ~ ~ ~ ~ ~ I ~ ~ s ~ ~ ~ ~ a ~1 5~ L/

(b)
max

Physically, the set of two slow variables (T= T2 and
X=Xi =X& ) is sufficient to describe the evolution of the
envelopes, which corresponds to letting c tend to unity.

We now turn our attention to modulation instability
(MI). Equations (2.4) admitting plane wave solutions

Vt+ =Vt =Voexp[i(Q, +Q2)VoT],
we consider small amplitude and phase perturbations (re-
spectively a+ and b + ), such as

V,+=(V +oa++ib+)e px[i(Q, +Qz)~Vo~ T] . (2.6)

Inserting (2.6) in (2.4) and assuming that a+ and b+ are
of the form expi[K(X+ V T) i cr T]+c c yie—lds .a .set of
four equations in a + and b +, whose determinant must be
zero, that is,

P'&'+2P~'IlV—ol'(Qt+Q2) . (2.7)

.Q aa ~ s ~ a» ~ Ias ~ a ~ »as Ia»»», sI«ss» ~ aa0.
0 1 2 3 4

Wave Vector: k (rad cell ')

FICx. 2. Partition of the linear spectrum (fo,f „)of the line into

several regions concerning the stability of two counterpropagating
waves (a), and for a single propagating wave (b).

MI appears when (2.7) leads to positive rr solutions. Set-
ting f„the zero dispersion frequency, and fQ

the lower

frequency, where Q't+Qz becomes zero, while Qz is al-

ways positive, we have to consider four carrier frequency
bands, due to the signs of the coefficients of (2.7). As
summarized in Table I, three of these regions are modula-

TABLE I. Partition of the linear spectrum into four regions concerning modulational instability (MI) or stability
(no MI). The coe%cients of Eq. (2a7) are given with their signs. Note that Q2 is always positive. In the MI regions,
the maximum instability is obtained for the wave number E»„depending on the plane wave amplitude l Vol.

Region I
fo&f &fg

Ql+Q~ &0
MI

K
((Q', +Q, ) l~, l'»]'"

Region II
fg &f &f ..~2

P &0, Q) =Ql
Ql+Q~ &0

no MI

Region III
„/2&f&f

Ql'+Q2 &0
MI

E
((Qt'+Qpil&el'/&]' '

Region IV
f, &f&f,„

P &0, Q) =Ql'
Ql' —

Q2 &0
MI

E
((QI —Q2)l&ol'/&]' '
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tionally unstable in the Benjamin-Feir sense [1], if the
wave number K of the perturbation belongs to the insta-
bility domain, that is, 0&IC & v'2E, , The perturbation
wave number K, „corresponding to the maximum insta-
bility, is given by Table I. Using F= V K/2m. and Eqs.
(2.5)—(2.7), we easily get the maximum growth rate and
the relevant perturbation frequency, which are, e.g., forf,„/2 &f &f„that is, in region III,

(2.8)
Table I also shows that, for a carrier frequency in region
II, that is, for f& &f &f,„/2, no instability is theoreti-
cally expected. For the sake of clarity, the different re-
gions of MI occurrence are also displayed in Fig. 2(a)
with respect to the dispersion curve.

These results can be compared to those obtained for a
single propagating wave, as shown in Fig. 2(b). More
precisely, for a single wave, we have shown that only the
frequency band f,„/2 &f &f, (that is, region III of
Table I) presents MI, the maximum growth rate and the
relevant perturbation frequency being respectively, given
by

c7, = —,'PtolVol, (E,~, ), = V~(3PcolVol /2I')' /2m. .
(2.9)

Here, one can remark that the (F, t)z and oz are respec-
tively V'3 and 3 times larger than (I',~t ) t and cT t, accord-
ing to a large number of theoretical studies [3,4] devoted
to different physical systems.

Finally, when we compare Figs. 2(a) and 2(b), we ob-
serve that, in addition to region III, which is unstable for
both a single wave and the superposition of two counter-
propagating waves, the presence of the backward wave
gives rise to two other unstable bands, regions I and IV,
while region II always remains stable.

with a modulation frequency appearing spontaneously
from the electrical noise spectrum. The oscillograms of
Fig. 3 represent an example of spontaneous MI, forf=470 kHz that is in region I, the experimental rnodula-
tion frequency F,„=20kHz being given by the Fourier
spectrum Measuring also Vs=1 65 cells/ps and using
E= (2m /Vs )I", one gets an experimental value for the
perturbation wave number, giving the maximum of MI,
E,„=0.076 rad cell ', which is very close to the
theoretical one, EC, , =0.080 rad cell ', provided by
Table I. Note that the theoretical optimum perturbation
frequency F,p, is then 21 kHz.

Then, we consider the instability that can be induced
by a coherent and weak external modulation. We launch
the same sinusoidal wave, with f=470 kHz and
2lVol =1.1 V, slightly amplitude modulated (10%) at
both ends of the line, and we remark that the modulation
rate of the resulting wave, at cell number n =22, varies
with the envelope frequency. It becomes maximum
(50%) when the modulation frequency is about 18 kHz.
This value agrees quite well with that found for the spon-
taneous MI (20 kHz), and with the theoretical one,
Fopt 21 kHz

Next, we consider at the 22nd cell the superposition of
forward and backward propagating waves, but the carrier
frequency f =800 kHz lies now in region IV, and the am-
plitude is 2lVol=0. 6 V. The initial modulation rate
(20%) increases up to 45%, when the modulation fre-
quency is about 105 kHz. This value is in good agree-
ment with the theoretical one, F,„,=115 kHz calculated
from Table I and for region IV.

Let us now consider the case of a carrier frequency ly-
ing in region III. First, a single wave with f=670 kHz,
2lVol =0.17 V and slightly (25%) amplitude modulated
(see Fig. 4) is launched at the left end of the line, the right
one being carefully matched with a load resistance to

III. EXPERIMENTAL RESULTS
The experimental line is the same as in our previous

paper, with X=45 identical cells. The variable-
capacitance diode (BB 112) is biased by Vo=2 V, which
gives Co=320 pF, a=0.21 V ', and P=0.02 V . The
linear inductances are L, =220 pH and L2=470 pH. Un-
der these conditions, one has the characteristic frequen-
cies fo=435 kHz, fr=520 kHz, f, =720 kHz andf,„=1280 kHz, with a relative precision of about 5%.
A plane wave is launched at both ends of the line, which
present adjustable resistors in order to minimize the
parasitic refiected waves. The wave forms are observed
and stored by using a numerical oscilloscope (Lecroy
9450) with fast-Fourier-transform processing.

We erst investigate the stability of the superposition of
two counterpropagating waves with the same frequency
and amplitude, say 2lVol =1.1 V, near the center of the
line, which is at cell 22, and over the whole frequency
range fo &f &f,„. No instability is experimentally
detected for 500 kHz—=f& &f &620 kHz=—f,„/2,
which agrees rather well with the above theoretical pre-
dictions. In the other frequency bands an instability de-
velops, leading to a self-modulation of the resulting wave,

, Ill(i, 'll I, , Illill

jiI(lb&I~)' j~jlllI(lil
g[j

lf(IIIIlp

~ ~

FIG. 3. Spontaneous modulational instability for fo (f(f&. Rep-
resentation (above) of the initial plane wave with f=470 kHz and a
constant amplitude 2~ Vs~ = l. 1 V, which is launched at both ends of the
line (abscissa: 20 rms/div. ; ordinate: 2 V/div. ). The other oscillograms
correspond respectively to the observation at cell n =22 of the self-
modulated wave train (abscissa: 20ps/div. ; ordinate: 2 V/div. ) and the
relevant Fourier spectrum; the carrier frequency is 470 kHz (central
peak) with an amplitude of 1.1 V. The sidebands due to modulation are
+20 kHz away (ordinate: 0.5 V/div. ).
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wave with a carrier frequency f, with 500 kHz &f & 620
kHz, that is in region II. This confirms that this frequen-
cy band is modulationally stable, as predicted by the
theoretical study.

IV. CONCLUSION

FIG. 4. Induced modulational instability for f,„/2 &f &f, . The
initial plane wave supplied by the generator (above, abscissa: 20 ps/div. ,
ordinate: 0.5 V/div. ), with f=670 kHz, 2~Vs~=0. 17 V and a 25%
modulation rate, is launched either at the left end or at both ends of the
line. The middle oscillogram represents the observation at cell n =22 of
the single wave, whose modulation rate is then maximum (43%) for
F=20.5 kHz (abscissa: 20ps/div. ; ordinate: 0.2 V/div. ). The last oscil-
logram represents, at the same ce11 number, the superposition of the two
counterpropagating waves; the modulation rate is now 68%%uj and F=38
kHz (abscissa: 20 ps/div. ; ordinate: 0.2 V/div. ).

minimize the rejected wave. As observed previously,
this modulation becomes maximum (43%, see Fig. 4) at
cell number n =22, when the modulation frequency is set
to 20.5 kHz, a value very close to the theoretical one,
(F, , ),=20 kHz, predicted by Eq. (2.9). Launching now
the same wave at both ends of the line, we observe the su-
perposition of forward and backward waves again at the
22nd cell; the modulation becomes maximum (68%, see
Fig. 4) for a modulation frequency F =38 kHz. The
agreement with Eq. (2.8), giving a theoretical frequency
(F, t)2=35 kHz, is rather good, and we electively re-
trieve (F,„,)2= &3(F, , ),. We also note that the modula-
tion rate is quite larger for the superposition of two coun-
terpropagating waves than for a single one, which quali-
tatively confirms the theoretical prediction about the in-
crease of the maximum growth rate. It is important to
remark, that in our experiments the carrier frequency
remains always fixed. Thus, the eQ'ects we report here are
purely nonlinear.

Finally, no variation of the modulation rate is experi-
mentally found when we launch a slightly modulated

In this paper, we have studied the superposition of two
counterpropagating waves with the same frequency in a
nonlinear electrical transmission line. We have shown
that the evolution of their slowly varying amplitudes can
be modeled by two coupled NLS equations. Then, we
have calculated theoretically the modulational instability
conditions, namely the maximum growth rate and the
corresponding perturbation wave number. From this
analysis, four difFerent frequency regions can be predict-
ed: in addition to region III, already unstable for a single
wave, two other regions, i.e., regions I and IV, become
unstable due to the presence of the counterpropagating
wave.

Next, we have experimentally found the difterent re-
gions predicted by the theory. In regions I, III, and IV,
spontaneous or induced modulational instability occurs,
and the results agree very well with the theory. More-
over, we have e6'ectively observed in region III that the
maximum growth rate is larger for two counter propaga-
ting waves than for either wave alone, with the corre-
sponding modulation frequencies in the ratio of &3. In
addition, no instability is detected in region II, that is, for
500 kHz &f &620 kHz.

Therefore, the presence of a counterpropagating wave
drastically modifies the dynamics of the incident wave.
We must emphasize here that our first motivation was to
verify fundamental features of MI appearance in non-
linear transmission systems. Thus, a low frequency range
has been chosen for practical convenience, so that the
voltage wave forms can be directly measured with osci11o-
scope probes. Potential applications can, however, be
considered with higher frequencies, e.g., at microwave
frequencies, where nonlinear transmission lines have been
constructed to generate high frequency [8] or high-power
[9] pulses. MI may then behave as parasites and must be
avoided. For these practical applications, we can predict
that the useful frequency band will be restricted due to
any rejected wave with respect to the case of a single
wave.
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