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Scaling function for free-electron-laser gain including alternating-gradient focusing
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In the exponential regime before saturation, we present a variational calculation of the gain of a free
electron laser (FEL), with alternating-gradient focusing used to supplement the natural focusing of the
wiggler. The longitudinal velocity modulation due to the quadrupole focusing is properly taken into ac-
count and it is found that it does not prevent quadrupole focusing from ei%ciently increasing the gain.
Our analytic calculation agrees with computer simulation to a few percent, and it provides rapid compu-
tation facilitating FEL design optimization.

PACS number(s): 41.60.Cr

There is great interest [I] in the development of free-
electron lasers as sources of intense coherent radiation at
wavelengths below 1000 A. For a single pass FEL
amplifier, the exponential-folding length of the amplified
radiation must be minimized to reduce the required
length of the wiggler magnet. This requires an electron
beam with high peak current, small normalized emit-
tance, and small energy spread. To achieve high gain at
the shortest wavelengths, strong focusing of the electron
beam is necessary. In previous work [2] we presented an
analysis of the FEL gain including the natural focusing of
the wiggler. As emphasized by Scharlemann [3], the nat-
ural focusing in a helical wiggler, or in a linear wiggler
with parabolic pole faces, does not modulate the electron
velocity or phase. On the other hand, alternating-
gradient focusing [4—7] can provide stronger focusing
and hence potentially higher gain, but it results in a
modulation of the longitudinal velocity of each electron,
and hence in a modulation of the electron's phase with
respect to the electromagnetic wave.

In this Brief Report, we report analytic and numerical
calculations of the FEL gain in the exponential regime,
including natural and alternating-gradient focusing. We
6nd that despite the longitudinal velocity modulation in-
troduced by the quadrupole focusing, alternating-
gradient focusing is effective in achieving increased gain.
In fact, we have observed that there is a price paid in the
mechanism by which natural focusing results in constant
longitudinal velocity. In the case of natural focusing,
when an electron moves further from the axis, its trans-
verse angular deviation decreases, while its wiggling am-
plitude increases in such a manner as to maintain con-
stant longitudinal velocity. As a consequence, for natural
focusing, the longitudinal velocities of electrons with
large betatron oscillation amplitudes are reduced by a
greater amount than in the case of alternating-gradient
focusing. The reduction of the dependence of the longi-
tudinal velocity on betatron oscillation amplitude in the
case of alternating-gradient focusing turns out to offset
the effect of the longitudinal velocity modulation.
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Let us comment on the relationship of our work to that
of Scharlemann [3]. We consider the exponential gain re-
gime of a short wavelength FEL with a low emittance
electron beam from an rf linac. Scharlemann's interest
was in big, broad electron beams from induction linacs
and to long, tapered wigglers in which most of the output
power was provided by trapped electrons. In this case he
found that alternating-gradient focusing was very detri-
mental to the gain, and natural focusing far superior.
Our work provides important insight into the exponential
regime and shows that in this case alternating-gradient
focusing is very effective. This result is not in convict
with Scharlemann's work, but is counter to the intuition
one might have had based on his work on a different
operating regime.

In earlier work, we presented an analytic calculation
[7,8] of the FEL gain valid in the regime of exponential
growth before saturation, based upon a dispersion rela-
tion derived from the Vlasov-Maxwell equations. This
treatment included the effects of the energy spread, emit-
tance, and the natural focusing of the electron beam, and
the diffraction and guiding of the radiation field. The
dispersion relation was solved using a variational approx-
imation, and the results for the exponential-folding
length of the electric field of the fundamental guided
mode were expressed in a scaled form. In the present
work, we extend our earlier treatment to include
alternating-gradient quadrupole focusing. We derive the
dispersion relation determining the exponential-folding
length and demonstrate an extended form of the scaling
relation.

In our calculation, the electron beam's energy distribu-
tion h (y) is Gaussian, with average energy yomc, and
rms spread yoo. . The static wiggler magnetic field has
period A, and wave number k =2~/A, . The resonant
radiation frequency co, =k„c of the FEL is determined by
k„=2yok II I+K ), where K=eB, , /k mc and B, , is
the rms value of the wiggler magnetic field (in mks units).
We assume the electron beam focusing is due to both nat-
ural focusing of either a helical wiggler or a linear wiggler
with parabolic pole faces, and external alternating-
gradient quadrupole focusing. We model the external
quadrupole focusing by assuming it to result from a mag-
netic field
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d2 = —(k„+k cosk&z)x,
dz2

d = —(k„—k cosk&z)y,
dz

(la)

where k„=Kk /y &2 corresponds to natural focusing
and k =eg/ymc to the quadrupole focusing. We as-
sume

and

a =(2k„/k&)'« I

q =2(k, /kz)'«1 .

(2a)

(2b)

In this case, the solutions of the Mathieu equation [9]
of Eqs. (la) and (lb) are well approximated by

x =x&cos(k&z+@„),

y =y&cos(ktiz+4 ),
where

(3a)

(3b)

k =Qk +k /2k' (4)

In Eq. (4), k& is the betatron wave number resulting from
both the natural and external quadrupole focusing, and
k„ is the wave number of the betatron oscillation, which
would exist due to natural focusing in the absence of
external quadrupole focusing. The condition for the va-
lidity of the approximate solutions of Eqs. (3) and (4) is
Ar~ && Atg && Xq && Atp && Xp, which can be satisfied in in-
teresting practical cases. The constants xp, yp 4 @y are
determined by the initial conditions. Equation (4) explic-
itly shows the enhancement of focusing due to the quad-

I

B&= (
—

gy cosk&z, —gx cosk&z, 0),
where k& =2m. /A. & and A, & is the period of the external
quadrupole field. We assume A, & ))k„, and in this case
the equations of motion describing the transverse beta-
tron oscillations of the electrons are

( (x 2 ) (x l 2 ) )
1 /2

( (y
2 ) (y

l 2 ) )
1 /2 k R 2 /6 (6)

We consider the linear region before saturation, and
write the electric Geld of the fundamental guided laser
mode of frequency co in the form

E(r, co)e e ' " ' 'e+c.c. ,
—ipk z

where e is either the helical polarization vector
(x+iy)/v'2 or the linear polarization vector x. The
function E (r, co) describes the transverse-mode profile in
terms of the dimensionless coordinates r=+2k„k R.
The factor exp( ipk —z) describes the deviation from
free space propagation and 2m.Imp is the growth rate per
wiggler period. The exponential-folding length L of the
electric field of the amplified mode is given by

I/I. =k Imp . (7)

Assuming yo)) 1, so that space charge effects are negligi-
ble, Vlasov-Maxwell equations have been used to derive a
dispersion relation determining p and E (r):

rupoles. In accelerator physics, this approximation is
called the "smooth approximation" [10] and corresponds
to neglecting the variation of the betatron functions.

Initially, we assume the electron beam has a uniform
longitudinal density, and a uniform "water-bag" distribu-
tion inside a four-dimensional sphere in the four-
dimensional transverse phase space R=(x,y), R'
=d R/dz = (x ',y');

U(R R') = no
8(k R —k R —R')

k R7T p Q

where the step function 8( v) = 1 for v )0 and 8( v ) =0 for
v (0. Integrating U(R, R') over the angular deviation
R', one obtains the parabolic transverse density profile:
g(R)=no(l R—/Ro) for R (Ro, and g(R)=0 for
R )Ro. The peak electron density is no, and the electron
beam current is Io =enocmR 0/2. the rms transverse em-
ittance e of the matched electron beam is defined by

(Vi+p)E(r)= (2pyo—) f h'(y) f d pu(p +k r )y'

0
X dse ' 'exp —i

2k

p2 p.r
r + 2ks+ r sin(2ks)+— 2[1—cos(2ks)]

k k k

XE r cosks+ sinks (8)

where k =k p /k„characterizes the total focusing
strength [Eq. (4)] and the Laplacian Vi corresponds to
the dimensionless coordinates r. In addition, we have
defined

Xo p+kr
~r Xo 4

b = —k /(16k kg),
u(p +k r ) =(1/hark a )8(k a —k r p), —

(2py0) =e Zon oK [JJ] /2mck

r

with [JJ]= 1 for a helical wiggler, and

[JJ]=JO(K /2(1+K ))—J, (K~/2(1+K ))

for a linear wiggler. The radius corresponding to the
edge of the electron beam expressed in dimensionless
coordinates is a =+2k„k Ro and Z0=377 0 is the im-
pedance of free space.

The dispersion relation of Eq. (8) reduces to that of Eq.
(5) of Ref. [2] when the external focusing vanishes, i.e.,
b =0. As in Ref. [2], we note that the dispersion relation
of Eq. (8) corresponds to the stationary solutions of the
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variational form

f d rE(r)(V&+p, )E(r)= f d r f d r'&(r)~(r, r')E(r')

with the kernal A now given by

(9)

A(r, r')=(2p) f dyh(y) f ds u
sin ks

k (r +r' 2r—r'cosks)
sin 2ks

Xe
—isIp+(co —co )/co —2I(y —y )/y ]+1/4(k /sin ks)(r +r —2r r'cosks)I

r r 0 0

Xe —ib/2k I(2ks/sin ks)(r +r' —2r.r'cosks) —(2/sin ks)[(r +r )cosks —2r r']I

As in Ref. [2], we choose the trial function
2 2

e yr /2a 1+a
E(r)=

AHo'"(r&p, ), r ~ a, (10)

where we require Im&p) 0 to satisfy the boundary condition at r ~ ~, and Ho ' is the Hankel function. The constant
A is chosen to assure continuity of E (r). Continuity of the logarithmic derivative at r =a leads to the constraint

Employing Eq. (10) in the variational form of Eq. (9) yields
T

Da (1—e «) —y[1 —(1—y)e «]
D

o sds expt i [p/D—+(co co„)/cg—„D]s—(a/D)2s2] 1 e "+

cos(ks/D)[1 —(i/Sg)g(ka )t an( ks /D) Yl+

1 e
(12)

with

and

i 2 k
q+

———(ka 2) —s+ —1+cos
4 D D

l 2 k~ . ks

16
g(ka ~) + sin

g=k /kgkp,

4eZoD=
KMC 1+K po

I I I I I I I I I I I I I

I

scribed by the dependence of G on a few dimensionless
scaled variables (five including the effect of external quad-
rupole focusing). In Fig. 1 we plot 6 =Im(p)/ Dagainst
2k„@=4m@/A.„, for fixed values of scaled energy spread
o /D=0. 1 and scaled total betatron focusing strength
k&/k„D =0.5. Curves are shown corresponding to
different values of the ratio k&/k„, which is determined
in terms of g by Eq. (14). One sees that in the region of
4m.e/I, „=1, the case of pure natural focusing, k&/k„= 1,

The physical significance of the parameter
g=k /k&k~ can be inferred from Eq. (4), from which we
see that

0.30

k„ =1—
2

0.15
Thus, g determines the fraction of the total focusing
strength due to the natural focusing of the wiggler.

Observing that Da =12(k„e)(D/k ), it is seen that the
exponential-folding length L of the electric field can be
expressed in the scaled form

0
0.3

4me,

I I I I I

10

We have determined the universal gain function
6=Im(p)/D [of Eq. (14)] by numerically solving Eqs.
(ll) and (12). As in our earlier work [2], the scaling law
allows the entire physical parameter space to be de-

FIG. 1. We plot the scaled growth rate Im(p)/D against
4~a/A, , for fixed values of scaled energy spread o /D =0.1 and
scaled total betatron focusing strength k&/k D =0.5. The
curves shown correspond to diferent values of the ratio
kp/k„=1, 3, 5, and 10. The detuning is optimized for every
point.
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has smaller G than the cases corresponding to k&/k„& 3.
This demonstrates that alternating-gradient focusing is
an efficient method of increasing the gain. As mentioned
earlier, an advantage of alternating-gradient focusing is
that the reduction of longitudinal velocity with increasing
betatron oscillation amplitude is less than for natural
focusing. As a consequence, the spread of longitudinal
phase drift (relative to the electromagnetic wave) is small-
er for alternating-gradient focusing than for natural
focusing. This is the reason for 6 being larger; the small-
er the percentage of the total focusing being due to natu-
ral focusing. The direct interpretation of Fig. 1 in terms
of physical parameters is complicated by the fact that the
scaled transverse current D depends on K and y, and
hence varies when the strength of the natural focusing k„
is modified by changing the value of E and/or y.

In Fig. 1, for each point (2k„e, kit/k D, o /D, kp/k„),
the scaled detuning (co —co„)/co,D was optimized. We
note that the optimized detuning criteria (Eq. (13) of Ref.
[2]}determined for natural focusing is not valid in the
case of alternating-gradient focusing. The optimized de-
tuning is now less than the optimum value for natural
focusing, because the longitudinal velocity reduction at
the outer edge of the beam is less than in the case of pure
natural focusing.

We have compared the results of our variational ap-
proximation to those of computer simulation employing a
modified version of the code TDA [11]. The modification
of TDA consisted of changing the transverse betatron os-
cillation equations from x"+k„x =0, y"+k„y =0 to
x"+kttx =O,y"+k@=0, where ktt is given by Eq. (4).
The gain lengths determined in these two different ways
agree to a few percent. As an example, we consider pa-
rameters appropriate to the UV-FEL under design at
BNL with A,„=1000 A. In this case

y =490, %=1.09, k =2.2 cm .

We take the normalized emittance e„=ye= 8 mm mrad,
the energy spread o =4.35 X 10 and the current ID=300
A. The betatron wavelength from natural focusing is
A,„=14 m. In this case the scaled transverse current
D = 1.5 X 10 . When the focusing is exclusively due to
the natural focusing of the wiggler, the power gain length
is found to be

L/2=1. 07 m (natural focusing) .

Using the analytic theory developed in this paper, we

have determined the optimum strength of the
alternating-gradient focusing to minimize the gain length.
The optimum value of the total betatron wavelength
Att=2m. /ktt=3. 27 m. The corresponding optimum value
of the power gain length is found to be

I./2=0. 78 m (variational)

=0.77 m (modified TDA) .

The variational calculation is found to agree with com-
puter simulation to a few percent, and it is seen that the
alternating-gradient focusing has led to a 30% reduction
in the gain length.

The minimum in the dependence of the gain length on
betatron wavelength is quite Bat. When k&=5. 88 m, the
power gain length only increases to 0.81 m. In this case
the assumed focusing can be realized by choosing the
period length of the alternating-gradient structure to be
A,&=20 cm and the strength of the quadrupole focusing
k =2~/A. with A, =96 cm. The inequality constraints
necessary for the validity of our approximations are
satisfied: k~ =2.2 cm && A, &

=20 cm && A,
q
=96 cm && A,&

=588 cm((A, „=1400cm. The parameter )=1.65, and
the focusing gradient g = 35 T/m, which is achievable.

Before we developed the analytic theory presented
here, properly taking into account the alternating-
gradient focusing, we tried to get a rough idea of the
effectiveness of external quadrupole focusing using the
approximation developed in Ref. [2]. This corresponds to
setting k„/k&=1 in Eq. (4), but treating k„as a free pa-
rameter not equal to Ilk /yi/2. Doing this ignores the
longitudinal velocity modulation and leads to incorrect
results. Following this incorrect procedure, we found
that the gain length was minimized for A,&=5.7 m with
I./2=1. 00 m, showing very little improvement over nat-
ural focusing. When the longitudinal velocity modula-
tion was properly taken into account, we found the
greater improvement stated earlier. The reason for this is
that when the longitudinal velocity modulation is taken
into account, the dependence of the longitudinal velocity
on betatron oscillation amplitude is reduced, leading to
smaller spread in the longitudinal phase drift, and hence
higher FEL gain.
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