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Exact derivation of the Kardar-Parisi-Zhang equation for the restricted solid-on-solid model
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We derive the Kardar-Parisi-Zhang (KPZ) equation exactly for a discrete model, the restricted solid-
on-solid (RSOS) model introduced by Kim and Kosterlitz [Phys. Rev. Lett. 62, 2289 (1989)]by using the
master-equation approach. It is confirmed that the RSOS model belongs to the KPZ universality class
and the coefficient A, of the nonlinear term is negative for the RSOS model.

PACS number{s): 61.50.Cj, 05.40.+j

Recently, there have been many studies in the field of
nonequilibrium surface growth. A number of discrete
models and continuous equations for growth phenomena
have been introduced and studied [1]. One of the most
interesting features in the nonequilibrium surface growth
is the nontrivial scaling behavior of the dynamical inter-
face width, i.e.,

W(L, t)=( ~, /th, —h)
)

L'f(t/L*)-,1

where h; is the height of site i of the substrate. h, I., and
d' denote the mean height, system size, and the dimen-
sion of the substrate, respectively. The symbol ( ) stands
for the statistical average. The scaling function,
f(x)~const for x &&1, and f (x)-x~ for x &&1 with
P=a/z. The exponents a, P, and z are called the rough-
ness, the growth, and the dynamical exponents, respec-
tively.

The simplest nonlinear equation describing a growing
surface with lateral growth effect was introduced by Kar-
dar, Parisi, and Zhang [2],

Bh(x, t) p A,=vV h(x, t)+ —[Vh(x, t)] +ri(x, t),
at

where r)(x, t) is the Gaussian white noise satisfying

(g(x, t)ri(x', t') ) =2Do" (x —x')5(t —t') .

Associated with the KPZ equation, a lot of discrete mod-
els have been introduced; for example, the restricted
solid-on-solid (RSOS) model [3], the Eden model [4], the
ballistic deposition model [5], and the deposition-
evaporation model [6]. Among these stochastic models,
the RSOS model exhibits a surprisingly good scaling
behavior even in a small system size, and it exhibits fast
convergent behavior toward a steady state. The physical
reason for this effect could originate froin the fact that
the restricted condition reduces the random growth pro-
cess, which leads to surface diffusion and tends to smooth
the surface. Since the numerical solution of the RSOS
model in one dimension is consistent with the analytic re-
sult of the KPZ equation, and the scaling behavior of the
numerical solution in higher dimensions behaves con-
sistently with the result from the Flory type argument
[7], it may be said that the RSOS model is a good sto-
chastic model corresponding to the KPZ equation, but
any direct derivation of the continuous equation from the

RSOS model is absent, to our knowledge. In this Brief
Report, we derive the KPZ equation from the RSOS
model exactly by using the master-equation approach in-
troduced by Vvendensky et al. [10]. Originally this
method was introduced to derive the continuous equation
for the Arrhenius hopping in the molecular beam epitaxi-
al (MBE) growth. However, since the MBE surface con-
tains deep valleys and steep cliffs, it is rather ambiguous
to take a continuous limit in the height difference be-
tween the nearest-neighbor columns, even in the limit of
a unit lattice constant a ~0. But in the RSOS model, the
height difference is at most as small as the unit lattice
constant, so that the regularization from discrete to con-
tinuous variables as a ~0 is much more manifest. On the
other hand, the direct derivation of the continuous KPZ
equation from a discrete model exists only for the
deposition-evaporation model of Plischke, Racz, and Liu
[6], to our knowledge, and any other derivation is absent.
Thus we think it worthwhile to consider the exact deriva-
tion of the KPZ equation from the RSOS model in this
Brief Report.

The derivation process mainly consists of the two
steps. First, we derive the discrete Langevin equation for
the RSOS model by setting up a master equation and by
using the Fokker-Planck formalism. Second, we change
the discrete equation into the continuous one by taking
the limit of the lattice constant a ~0. We begin the first
step by considering a birth and death type of master
equation,

=g W(H', H)P(H', t ) gW(H', H)P—(H; t),
Bt H'

(4)
where H= [h;] denotes the configuration of the heights
and P(H; t) is the probability distribution of having the
configuration H at time t. W(H', H) is the transitional
probability from the state H to the state H'. Next, we
define the transition moments of W (H', H ) as

K,'"=g (h —h; ) W(H', H),

K '=g(h h;)(hj —h )W—(H', H),
H'

K i'I, =g Q (h —h; ) W(H', H) .
H' j= 1
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Then it is straightforward to show that the above master
equation is turned into the form of the Kramers-Moyal
partial diff'erential equation [8] with the transition mo-
ments,

a2

1 if x~0,
0 ifx &0

I

(12)

where r is the deposition time for a layer. $(x) is the
unit step function defined by

j=i i.
(6)

Note that, by definition, the case of x=0 is included in
the case of x & 0 as an analytic continuation for the range
of x ~ 0. Then the first and second moments of W for the
RSOS model become

All the terms after p )2 may be neglected in Eq. (6) due
to higher order. Then Eq. (6) reduces to the following
Fokker-Planck equation:

BP
Bt

a2
(7)

If the system size is large enough and intrinsic Auctua-
tions in the system are not too big, then it is known that
the Langevin equation becomes equivalent to the
Fokker-Planck equation [9]

h,' =X'"+qi

where g; is the Gaussian white noise such that

(q, )=0, (9)

(ri, (t)q, (t') ) =K,',"5(t—t') . (10)

X5(h, li;+a)Q 5(h', h. )i'

In order to obtain the discrete Langevin equation for
the RSOS model, one has to find out the transition proba-
bility W(H', H )explicitly. W'e follow the method used
by Vvedensky et al. [10], which was used to derive the
continuous equation for the Arrhenius hopping. Note
that the RSOS model does not allow overhangs or any va-
cancies, so that the height h, of the site i is defined
uniquely, and the configuration H = [h, ] is also uniquely
determined. Since the quantity W(H', H) represents the
transition probability from a particular initial surface
configuration H to the next surface configuration H', it is
related to the deposition process of the RSOS model.
The deposition rule of the RSOS model is that a site is
selected randomly among substrate sites and the height of
the selected site increases by 1, provided that the height
difference between the nearest-neighbor columns is less
than 1. Thus the diffusion process does not occur, which
makes it easier to set up the transition probability explic-
itly. Also it is important to note that the height
difference remains as small as a unit lattice constant
through the entire process of growing.

The transition probability for the RSOS model does
not vanish only when a height increases by a unit lattice
constant a and the others remain unchanged, provided
that the restricted condition is held. Then, the transition
probability is written as

~(H, H') =—g $(h;+, h; )$(h;, —h,—)1

K "=—0" (h;+i —h;)0'(h;, —h;),Q

7
(13)

X '= $(h;+, —h; )8(h;, —h; )5;
'T

(14)

$(hh)= 1+ g Ak(bh)"
k=1

(15)

This regularization is much more reasonable in the RSOS
model than in the MBE growth done by Vvendensky [10]
because the surface of the MBE growth contains deep
valleys and steep cliffs, which yields the height difference
between the nearest-neighbor columns larger than 1.
However, the height difference in the RSOS model
remains at most as small as the unit lattice constant. So
the regularization process is much more convincing in
the RSOS growth.

The first moment is obtained as

K;"'=—[1+A, (h, ,
—h;)+ A2(h, , —h;) + . ]

7

X[1+A,(h;+, —h;)+A~(h;+, —h;) + ] .

(16)

h, (t) is replaced by a smooth function h (x, t) with x = t'a,

and we expand (h, +,—h, ) in powers of a, so that

h, ,(t) —h, (t)= g (+a)" 5"h(x, t)
x x=ia

Then the first moment is obtained, up to O(a ), as

(17)

Using these two moments, one can set up the discrete
Langevin equation for the RSOS model as proposed in
Eq. (8).

Next, we undertake the regularization to obtain the
continuous equation from the discrete Langevin equation.
In general, a unit step function may be regarded as the
limit of u (b h):—lim„„—,' (1+tanhnbh). Since the func-
tion of tanhx is analytic, u (x) can be regarded as an ana-
lytic function at least for the range of x )0. But since
the value of the step function at x =0 was defined as the
value of the analytic continuation, it must be true that
the step function is analytic even at x =0. Thus the step
function defined in Eq. (12) is analytic for x ~ 0.

In our consideration, since the argument of the step
function is equal to the height difference between the
nearest-neighbor columns, the argument is not greater
than the unit lattice constant a. Then one may expand
the unit step function in a Taylor series in the limit of
a~0 as
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K; (x) =—1+A a +(2A —A )a(&) 28h Bh
1

~ 2 2 1

2

+O(a ) . (18)

Similarly, the second moment is obtained, up to O(a ), as

(2) Q
K,(i '= 5(x —x')+O(a ) . (19)

Bh(x, t)
Bt

=vV h(x, t)+ [V—h(x, t)] +F+ri(x, t),
2

where the coefficients are given by

(20)

7

A, =2(2A2 —A, )a (21)

Thus the resulting continuous equation for the RSOS
model is, from Eq. (8),

which is equivalent to the KPZ equation. Since
tanhx-x —x /3+, 2& &0, and 32=0 when the
unit step function is regarded as the limit of the hyperbol-
ic tangential function. Then the coefficient A, (0 in the
RSOS model, which con6rms the result from the tilt ar-
gument. Even though we have derived the KPZ equation
in one dimension, it is straightforward to extend it into
higher dimensions. Thus we conclude that the RSOS
model is equivalent to the KPZ equation in the continu-
ous limit and in the general dimension.

In summary, we have exactly derived the continuous
KPZ equation from a stochastic model, the restricted
solid-on-solid model, by constructing the master equa-
tion, and by changing it into the Langevin equation via
the Fokker-Planck formalism. The regularization pro-
cess from the discrete quantities to the continuous ones
has been clearly explained in the RSOS model, which is
due to the restriction of the height difFerence between the
nearest-neighbor columns.

and also the noise is given by

Q(g(x, t)q(x', t')) = 5(x —x')5(t —t'),
7
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