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Magnetic field effect on periodic stripe domains in nematic liquid crystals
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Hybrid aligned nematic films placed onto an isotropic Auid substrate exhibit an unusual periodic stripe
domain structure that appears only when the thickness of the film is smaller than a few tenths of a mi-
crometer. We investigated the effect of a magnetic field on the threshold between the periodic stripe
domains and the aperiodic deformed structure of the director. As experimentally observed, a magnetic
field applied along the stripe domains favors a nonperiodic state with the director undistorted in the hor-
izontal plane. The experimental findings are confirmed by a theory that takes into account not only the
usual type of the elastic distortions, but also the so-called saddle-splay elasticity. A comparison of the
experimental and theoretical data allows one to estimate that the saddle-splay elastic constant K,4 is of
the same order of magnitude as the bulk elastic constants; this result agrees with independent studies of
confined liquid crystal systems.

PACS number(sl: 61.30.Gd, 68.10.Cr

Many condensed matter materials show self-
organization in the form of stripe patterns. These include
superconductor s [1], Langmuir monolayers [2,3],
ferrofiuids [4,5], ferroelectrics [6], magnetic films [7,8], as
well as liquid crystals subjected to an external field [9,10]
or antagonistic boundary conditions [11—13]. In many
cases [1—8] the stripe pattern is formed by two different
thermodynamic phases and the modulation period is set
by a competition between long-range repulsive interac-
tions (which may be of electrostatic or magnetostatic ori-
gin) and short-ranged attractive forces (nonzero surface
tension of the domain walls). In liquid crystalline systems
[9,10], the stripe phase is a manifestation of a smooth
variation of the vector part of the order parameter. The
periodicity is set by the competition between an external
orienting field and elastic forces.

A different type and mechanism of the periodic self-
organization was found in thin submicrometer nematic
films placed between two isotropic media when no exter-
nal field is applied [11—13]. The two media are set in an-
tagonistic molecular orientation at the two surfaces of the
film: homeotropic at one boundary and planar at the oth-
er. Therefore, the nematic director n, which describes
the preferred molecular orientation, is distorted in the
vertical plane. For suKciently thick films n is restricted
to lie in the vertical plane; the configuration is known as
a hybrid aligned nematic cell (HAN). The decrease in the
film thickness results in the increase of the vertical curva-
ture and the HAN structure becomes unstable. Quite
surprisingly, the experiment [11]has revealed that start-
ing with some threshold thickness, the equilibrium state
is reached through the distortions out of the vertical
plane. These distortions create a periodic HAN (PHAN)
pattern in the film plane. The presence of both vertical
and horizontal deformations means that the PHAN
structure must be strongly infIuenced by the elastic con-
stant K&4, which describes the saddle-splay deformations
[11—13].

Only very recently the elastic constant K24, introduced
many years ago for smectic and nematic phases [14,15],

was estimated experimentally for nematic liquid crystals
[16,17], surfactant monolayers [18], and three-
dimensional lamellar smectic phases [19]. In contrast to
the standard positive elastic constants of bend, splay, and
twist deformations, the saddle-splay constant can be ei-
ther positive or negative [19,20]. In this work we study
the role played by an in-plane magnetic field on the stripe
structure in hybrid aligned nematic film both theoretical-
ly and experimentally. Our experiments have been made
using the liquid crystal pentylcyanobiphenyl (5CB) (BDH
Chemical Ltd. K15), which exhibits a nematic phase at
room temperature. A small drop of nematic liquid crys-
tal has been deposited on the isotropic fiuid surface (gly-
cerine, 99+% purity). The glycerine substrate provides
tangential orientation of 5CB. The upper boundary of
the nematic film is free with the normal easy orientation
(homeotropic wall).

The samples were prepared in Petri dishes (diameter of
80—100 mm) at room temperature and placed on the
stage of a polarizing microscope. The microscope was lo-
cated between the two poles of an electromagnet, which
provided a horizontal magnetic field (up to —5 kG). The
thickness of the film was estimated using the data on the
film area and the weight of the nematic drop deposited
onto the substrate. The HAN configuration is unstable
with respect to the appearance of the periodic domain,
as presented in Fig. 1(a): the threshold thickness shown
in this figure is about 0 4 pm and the PHAN
configuration is present in the thinner part of the film. In
Fig. 1, the thick region is on the left. As discussed in a
previous paper [13], the nematic film is not fiat: this al-
lows one to visualize the main peculiarities of the field ac-
tion on the stripes. First, when the field is applied along
the x axis, the threshold is shifted toward the thinner
part of the film [see Figs. 1(b)—1(d)]. The threshold d, in
Fig. 1(d) for the highest field H =2850 Cr, is about 0.30
pm. Second, the wave numbers are practically
uninAuenced by the magnetic field, but the threshold
wave number changes because the threshold thickness
changes. In Fig. 2 the wave numbers for different sam-
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mate of the ratio ~4, substantially based on the study of
the threshold d between the PHAN and the undistorted
planar structure. Since it was diffj[cult to estimate d, we
assumed that it was different from zero, with an upper
limit corresponding to -0.02 JMm. By means of this as-
sumption, the value of ~4 was estimated to be
—0.012&~4&0.0 or —1.00&E24 & —0.988, due to the
symmetry with respect to ~4= —0.5.

Now we work only on the HAN-PHAN transition
threshold and relax the assumption of the existence of the
planar-PHAN threshold so that ~4 can be a priori greater
than 0. In fact, the theoretical analysis on the behavior
of this threshold in a horizontal magnetic field suggests
that the relevant inhuence of the magnetic field on the ap-
pearance of the periodic domains is more pronounced for
K4 positive. For our theoretical calculations, whose re-
sults are presented in Fig. 3, we used a value for L, of
0.7 pm, as in the previous work.

Our experimental observations tell us that the total
threshold thickness variation from a 0- to a 3-kG field is
of about 0.1 pm and the threshold at zero field is about
0.4 pm: by simple inspection of Fig. 3(b) one can con-
clude that the best agreement between experimental ob-
servations and theoretical calculation happens in the case
of Lg& =0.4 pm for values of ~& between —0.05 and 0.05
or for —1.05 & ~4 & —0.95.

One can conclude that the value of ~4 is in agreement
with the previous estimate, but the uncertainty is much
higher now; this is due to the difficulty of estimating the
real profile of the film. As discussed in Ref. 13, the
nonflat profile of the film leads to additional azimuthal
anchoring. As a result, films with different profiles can
show different threshold thicknesses d, . In our calcula-

tions we have assumed that the geometric anchoring is
negligible so that the extrapolation length L& is infinity:
this is possible because the inhuence of these parameters
in the determination of the threshold thickness is within
the uncertainty of the experimental estimation of the
threshold itself. That is, assuming 10 pm &L& & ao, as is
true for the geometrical anchoring [12], the threshold
changes of about S%%uo.. this is lower than the experimental
error.

In conclusion, the present estimate ~4 is in agreement
with our previous one [13] and with the one given in Ref.
[16]. In comparing our result with the one in Ref. [16],
we make the following remark. The strip-domain effect
should be insensitive to the sign of the whole saddle-splay
term, as we have previously seen: this can be easily un-
derstood by considering the presence of positive and neg-
ative Gaussian curvature in the stripe domain. As a
consequence, we obtain a symmetric threshold d, with
respect to + K+2K2„~ (or in the notation of Ref. [16]
+~K+Kz4). So we obtain two estimates for the saddle-
splay constant because we are dealing with the absolute
value of ~K+2K&4 ~

or K+K24 ~. In the case of Ref [16],
the authors evaluated %24 by studying the director
configuration in a cylindrically shaped sample, thus hav-
ing only one sign of the Gaussian curvature and so a well
defined sign of K&4. The order of magnitude is compara-
ble to the bulk elastic constant, as in our case.
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