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Rigorous analysis of weak boundary-coupling effects in twisted chiral nematic liquid crystals
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General expressions for the threshold and saturation fields are derived analytically for field-controlled
twisted chiral nematic layers with weak boundary coupling. The anchoring energy used is the Rapini-
Papoular type [J. Phys. (Paris) Colloq. 30, C4-54 (1969)] in which the azimuthal and the polar anchorings
are combined. We can recover the results previously obtained for various limiting cases of the problem,
but our results show major differences in detail from other studies in which the azimuthal and polar an-

chorings are treated as two independent contributions.

PACS number(s): 61.30.Cz, 61.30.Eb

In liquid crystals, surface effects have been studied
mainly for nematic liquid crystals (NLC’s) [1]. Macro-
scopically, the surface effects are manifested in the direc-
tor orientation of the NLC in the bulk. There are two
cases: (1) the ‘“strong anchoring” case, in which the
director close to the surface takes a fixed mean orienta-
tion e, which is called the anchoring direction or the
“easy” direction as denoted by de Gennes [2]; and (2) the
“weak anchoring” case. Practically, in most cases, the
surface forces are not strong enough to impose a well-
defined director orientation n, at the surface. When there
are other fields (electric, magnetic, and flow) the director
at the interface obviously deviates from the easy direc-
tion. To describe a weak anchoring surface for an
untwisted NLC sample, Rapini and Papoular [3] (RP)
have introduced a simple phenomenological expression
for the interfacial energy per unit area for a one-
dimensional deformation [3],

gs=-‘2‘i-sin2(e°—90). (1
Here 6, is the tilt angle for the easy direction e, and 6° is
the preferred tilt of the director at the nematic-wall inter-
face. The anchoring strength or anchoring energy pro-
portionality constant A4 determines the ability of the
director to deviate from the easy direction. For a twisted
NLC sample the RP energy density must be extended to
the more general form [1]

gs=—A(n~e)2 , 2)

2
which is a nonlinear combination of the azimuthal and
polar angles. On the basis of the RP function, some au-
thors have studied the influence of the bulk orientation of
the NLC by an interfacial effect [4—9] and have attempt-
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ed to measure 4 [10-13]. However, in [4-9], the unified
RP energy form (2) has been written as a linear combina-
tion of an azimuthal angle anchoring term
go=(A,/2)sin¥(6°—0,) and a polar angle anchoring
term g, =(4,/2 )sin%(¢°—@,). Although such a separa-
tion simplifies the mathematical analysis, there is no
physical reason to make such a separation. In addition,
in Refs. [4-9], the two optimum directions (6,,¢,) and
(69,0 + ) are inconsistent with the original intention of
(2) in that there is only one easy direction at the surface.
Since the proposal of (2), the calculation of the field-
controlled director orientation in a twisted chiral nematic
(TCN) layer with weak anchoring has been an open ques-
tion for more than 20 years.

In this paper, we give a brief report on our study of the
problem. We consider a nematic cell located between the
two planes z =0 and z =d with mirror symmetry with
respect to the middle plane z=d /2. The surface tilt an-
gle 6° is taken to be the same on both surfaces. The easy
direction e on the surface of z =0 and the director in the
z layer may be expressed as

e=(cosb,,0,sinb,) , (3)
n={(cosfcos¢,cosfsing,sinb) , (4)

respectively, where the polar angle ¢ and tilt angle 6 are
functions of z. If a magnetic field H [ =(0,0,H)] is ap-
plied to the TCN cell, the free energy density in the bulk
may be expressed as [2]

2
n'VXn+£7L

g, =1k (V-n)?+1k,, .
0
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where 6''=d0/dz, $'V=d ¢ /dz, and
f(8)=k,,cos’0+k3sin%0 , 6
h(0)=cos*(0)(k,,cos’0+k4;sin0) . (7

The constants k,, k,,, and k;; are the splay, twist, and
bend elastic constants of the NLC, respectively, p,
denotes the pitch of the material induced by a chiral
dopant, and Ay is the anisotropy of the diamagnetic sus-
ceptibility of the NLC.

The total free energy is the sum of the surface energy
[Eq. (2)] and the bulk free energy [the integration of Eq.
(5) over the cell volume]. Minimization of the total free
energy yields the stable director configuration for any
given field. Applying a variational calculation for the
two-dimensional problem [14] to the total free energy, we
find four equations describing the equilibrium deforma-
tion of the director:

£(8)8'V], _y= A(sinfsinf+ cosf,cosbcosd)

X (cosfysinBcosd —sinfycosh) , (8)
2wk
h(0)¢V],_g="—2cos20
+ A (cosBycosOcosg +sinfsinb)
X cosBysingcoso , 9)
1 27k,
m—_1 2
¢ 70) C, + P2 cos“@ | , (10
2
1 27Tk22
0 (1)2+_— + 2
f(6)6 70 C, e cos*0

+AxH%in20=C, , (11)

where 82’=d 6! /dz, and C, and C, are two constants of
integration. Equations (8) and (9) are the boundary con-
ditions due to the balance of the torque for tilt and twist
at z =0, respectively. Equations (10) and (11) give the
director orientation in the bulk. The surface torque bal-
ance equations at z =d are simply equal to the negative
of the right-hand side of Egs. (8) and (9). Essentially,
Egs. (8)-(11) are the basic equations for solving the
threshold and the saturation problems analytically. The
right-hand side of torque equations (8) and (9) are both
functions of € and ¢ simultaneously. This is entirely
different from the corresponding equations obtained in
Refs. [4-9], in which one depends only on 6 and the other
depends only on ¢. This shows that the challenging prob-
lem for the present analysis is to solve the complicated
Egs. (8) and (9).

Under the extreme condition for 6 at the midplane of

| d’R+(¢,—2¢")[ (k33 — 2k, )b, —2¢°)+4mdk,, /po]

the cell,
d d

CDIN N 4=

6 > 0, 6 > Ou » (12)
and the mirror symmetry with respect to z=d /2,

¢|z=7 =140 (13)
integration of Egs. (8)—(11) gives
d_ % 1p
o=, N'ede, (14)
¢ o M NV26) 2rky,
> ¢—f00 e |Gt cos’0 [d6, (15

F(6°)N ~172(6%)= A (sinf,5in6° + cos@,cos6°cosd?)
X (c0s8sinf°cos¢® —sinfycos8°) , (16)

C, = A(cosB,cos8°cos¢®+sinf,sing°)cosf,sing cosa® ,

17)
where N(0) is
N(0)=f(0) | AxHXsin?@,, —sin*)
2
1 2rky
+ +
7(0,) C, 7 cos“0y,
271-1
—_ + 2 .
h(0) Cl Po cos“@ ] (18)

It is clear now that for given values of ¢,, 8;, and H, the
values of ¢°, 6° and 0y can be determined completely
from Egs. (14)—(17).

To derive the threshold magnetic field Hy of the
Fréedericksz transition [2], we need to suppose 6,=0 and
6°=6,,=0 for H < Hy and 6,,—0 when H—Hy. With
these boundary conditions the limiting integrals in Egs.
(14) and (15) can be solved analytically to give the rela-
tionship between the threshold field and the anchoring
energy. With a similar process, by taking the limit 6,—0
and 6,,—m/2, we can derive analytically the saturation
field Hg, above which the LC layer becomes completely
homeotropic from Egs. (14)-(17). However, in the actu-
al calculations there are some mathematical difficulties to
overcome. This is also the case for the previous studies
(see the controversy between the authors in Refs. [7-9]
and Ref. [10]). The details of the calculation will be given
in another paper [14]; here we give only the results.

The threshold magnetic field H, is

172

F Ayd?

) (19)



786 BRIEF REPORTS 51

where R and ¢° are the solutions of the transcendental
equations

172
A cos’¢°=1"k, R tan | — ;& ] , (20)
11
b, —2¢°— 2md _ A—dsin¢°cos¢° . 1)
Do 953

The saturation field Hy is

Z t h Zd COSZ[¢;/2_7Tdk22/(p0k33)]
—=tanh | — ’
A 2k33 Sinhz[Zd /(2k33 )]
(22)
where
2wk 2
Z2=AyHZ2k— > 2 ’ ) (23)
0

In order to compare our results with previous studies, we
consider Egs. (19)-(23) for the threshold and the satura-
tion properties. It is convenient to introduce the dimen-
sionless coupling parameter

. 7Tk22
M

and also to use the reduced magnetic field u'=H/H,,
where

(24)

172
HC=:1—

K

Ax (25)

is the threshold magnetic field for an untwisted nematic
slab (¢, =0) with rigid boundary coupling (A=0, i.e.,
A — o).

For this limit, Eq. (19) reduces to

k117T2+(k33_2k22 )¢%+47Tdk22¢t /P()
Ax

172

Hpd=

(26)

This recovers the result obtained by Becker, Nehring,
and Scheffer [10] under the assumption of strong azimu-
thal anchoring and the consideration of polar anchoring
only. This is also the result reported by Hirning et al.
[11] in treating the tilt anchoring and twist anchoring in-
dependently and taking both the anchoring strengths as
infinite. In the case of a twisted nematic layer (TN) with
strong anchoring and d /p,=0, Eq. (26) reduces to

172
k11772+(k33“‘2k22)¢%
Ax

This is the same result as that derived by Leslie [4] as
well as Schadt and Helfrich [5]. Furthermore, for the

27)

homogeneous nematic slab with weak anchoring,
d /po=0and ¢, =0, Egs. (19)-(21) lead to
Ay 112
A=k, AxHptan | k—X H, |, (28)
11

which is the same result as that obtained by Rapini and
Papoular [3]. These agreements for various limiting con-
ditions offer a good check on the present general theory.
However, in order to demonstrate the difference between
the present theory and previous studies, it is necessary to
consider other special cases.

For an isotropic surface (A—w, A4 =0), in other
words, where there is no anchoring energy, we have

2m

AYH}=k3, 29)

This provides the reasonable result that the Fréedericksz
transition does not exist for a nematic slab (py,— o) cou-
pling with an isotropic surface. We have also calculated
numerically the A dependencies of the threshold and the
saturation fields for a 90° twisted layer with the same ma-
terial parameters as those used in [10], i.e., k33 /k;; =1.5,
k,,/k1,=0.6, and d /p,=0. The result is shown in Fig.
1, where the solid lines give the results for the present
calculations and the dashed lines are those reported in
[10]. From Fig. 1 it is clear that the results of the previ-
ous studies may give the correct threshold fields only in
the limiting case of 4 — 0.

To discuss the saturation properties, as defined in Ref.
[10], we introduce the parameter

ki3 k33po

21172

"2 , (30)

Y=

where the reduced saturation field '’ is defined as
u"=Hg/H,. Using Egs. (24), (30), and R'=¢,/
2+mdk,, /k33pg, with a lengthy calculation, we find that
Eq. (22) reduces to

u’:Present Theory

N ky; | _ tanh(7Y /2) cos’R’ 31)
ki1 Y sinhX(7Y /2) |’
and that

3 |

B d/p,=0 T

r ksskn=15 7

r kao/k1=0.6

2 -

= B u":Present Theory b

=T u":Becker et al. T

B [ ]

———

FIG. 1. A dependence of the reduced threshold (u') and satu-
ration (u'’) fields of a 90° twisted slab. Solid lines show the
present theoretical results and dashed lines show those reported
in Ref. [10]. Material parameters used in the computation are
ki3 /ky1=1.5,ky /k,1=0.6,and d /p,=0.
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o 1|sin2R’| a2
tang = .
¢ cos’R’+sinhX (7Y /2)
For the TCNLC of very short pitch, where

[2k,,d /(ks3pg) )P —u""%kyy /k3; >0, Egs. (31) and (32)
can be rewritten as

k ’ 2p

Y EENy tan('n'l:' /2) |, : <2:os R . 33)
kll Y sin (7TY'/2)
o 1]sin2R’|

tang’= (34)

cos’R'—sin(7Y'/2) ’

respectively, where

Y'=Y/i'=V [2kyd /(kyypo) P—u'%kyy /kss .

The relationship between A and u'’ given by Egs.
(30)—-(32) has been calculated numerically with the same
values of the physical parameters given previously. The
result is shown in Fig. 1. One notices that, in the limit of
Y — o, Eq. (31) leads to nearly the same result as report-
ed in Refs. [8] and [10]. However, in the limit of Y —0,
we have

2 172
k3,

k11k33

d
|Pol ’

Equation (35) shows that, for a NLC slab, «'"’— 0 becausée
|pol— o (see the solid line shown in Fig. 1). This differs
from the result in which the saturation voltage vanished
at some value of A (see the dashed line shown in Fig. 1)
as reported in Refs. [8] and [10]. Therefore, the present
theory is the only one which leads to the natural con-
clusion that decreasing the anchoring strength reduces
the saturation field and that, in the limit, free anchoring
(i.e., A =0) gives a zero saturation field.

In summary, in keeping with the model of Rapini and
Papoular, we have made a rigorous analysis of weak
boundary coupling effects for nematic liquid crystals. In-
stead of using two different anchoring strengths, polar
and azimuthal, we need only one unified anchoring
strength A4 in the derivation of the threshold field and
the saturation field. Calculations of the director
configuration for NLC cells with different surface an-
choring and external fields becomes much easier. This
may be significant in the development of LC display de-
vices.

u'—2 (35)
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