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Controlling of chaotic motion by chaos and noise signals in a logistic map
and a Bonhoeffer —van der Pol oscillator
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The possibility of the conversion of a chaotic attractor to a strange but nonchaotic attractor is investi-

gated numerically in both a discrete system, the logistic map, and in a continuous dynamical system, the
Bonhoeffer —van der Pol oscillator. A suppression of the chaotic property, namely, the sensitive depen-
dence on initial states, is found when an appropriate (i) chaotic signal and (ii) Gaussian white noise are
added. A strange but nonchaotic attractor is shown to occur for some ranges of amplitude of the exter-
nal perturbation. The controlled orbit is characterized by the Lyapunov exponent, correlation dimen-

sion, power spectrum, and return map.

PACS number(s): 05.45.+b

The presence of chaos in many nonlinear dynamical
systems has been extensively studied. In recent years a
great deal of interest has been focused on controlling
chaos [1—6]. There also have been recent attempts to use
chaos profitably by synchronizing chaotic orbits [7—10].
The existing control methods are capable of converting a
chaotic motion into a regular dynamics, either by stabil-
izing an unstable periodic orbit embedded in the chaotic
attractor [2—5] or by creating a new periodic orbit
[1,5,6]. One of the prime motivations to control chaotic
motion is its extreme sensitive dependence on initial con-
ditions. The sensitive dependence on initial conditions is
characterized by a positive maximal Lyapunov exponent.
In the chaotic regime two nearby trajectories diverge ex-
ponentially until they become completely uncorrelated
and hence future prediction becomes inaccurate. It is
thus important to investigate the possibility of the
suppression of sensitive dependence on initial conditions
and maintaining the strangeness of the attractor, instead
of stabilizing a periodic orbit.

Motivated by the above, in this paper we study the
conversion of a chaotic attractor into a strange nonchaot-
ic attractor by adding an appropriate (i) chaotic signal
and (ii) Gaussian white noise. We carry out our investi-
gation both in a discrete system, the logistic map [11,12]

Figure 1 shows the chaotic attractor of the logistic
map (1) for A =3 in the x„versus x„+, plane. The
Lyapunov exponent of this attractor is =0.39. Now, we
study the effect of the addition of a chaotic signal to Eq.
(1) with A =3. The logistic map with the addition of a
chaotic solution can be written as

x„+&
=x„exp[ A (1—x„)]+Cy„, (3)

where y„ is the chaotic solution generated from the logis-
tic map (1). First we study the influence of the chaotic
solution generated with A =3 from (1). Later, we show
the effect of chaotic solution of (1) generated with
different values of A.

Figure 2 shows the estimated Lyapunov exponent as a
function of the parameter C. From this figure we note
that A, is positive for C & C =0.075 while it takes nega-
tive values for C & C . The Lyapunov exponent with a

x„+,=x„exp[A (1—x„)], x„&0,
and in a continuous dynamical system, the
Bonhoeffer —van der Pol (BVP) oscillator [5],

x =x —x l3 —y +f cost,

y =c (x +a by) . —
(2a)

(2b)

In Eq. (2) a, b, and c are constant parameters and f is the
amplitude of the external periodic force. Recently, Car-
roll and Pecora [13] studied the effect of adding chaotic
and noise signals separately in a Duffing oscillator circuit
in a different context. They studied the effect of the add-
ed signals on the Gipping of the state of the system be-
tween two coexisting periodic attractors and observed
stochastic resonance. In our present study we use chaotic
and noise signals in the context of controlling chaos.

FIG. 1. Chaotic attractor of the logistic mapping (1) for
A =3.
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FIG. 2. Estimated Lyapunov exponent versus the parameter FIG. 4. Variation of correlation dimension as a function of

negative value implies that the solution is insensitive to
small disturbances in the initial conditions. In other
words, chaotic property is suppressed for C & C* and
hence the attractor is nonchaotic. Figure 3 shows the at-
tractor in the x„versus x„+, plane for C=0.1. The
Lyapunov exponent of the attractor is —0. 12. Further,
we have estimated the correlation dimension D, of the
controlled attractor. To calculate D, we have used the
algorithm proposed by Grassberger and Proccacia [14].
The correlation dimension of the attractor shown in Fig.
3 is estimated as 0.82. The attractor is thus strange. The
negative Lyapunov exponent, noninteger dimension, and
return map (Fig. 3) imply that the controlled attractor is
strange but nonchaotic. The strange nonchaotic attrac-
tor has been previously found to occur in numerical stud-
ies of many nonlinear systems and also in actual experi-
ments [15—20].

The occurrence of a strange nonchaotic attractor is
further confirmed by a power spectrum analysis. For a
strange nonchaotic attractor the number of peaks N(o )

in a power spectrum exceeding a threshold amplitude cr is
scaled as [20]

N(o)~o, 1(a(2 .

The power spectrum of the attractor (Fig. 3) is obtained
using the fast Fourier transform with 4096 data points.
From the log&ON(o ) versus log, oo plot the value of the
scaling exponent a is estimated as 1.45. This is in agree-
ment with the power-law scaling relation (4).

A strange nonchaotic attractor is found for C values
for which A, ~0. Figure 4 shows the variation of correla-
tion dimension as a function of the parameter C. Figures
2 and 4 clearly support the occurrence of a strange non-
chaotic attractor for C & C'. In the logistic map the in-
teraction between dynamic and stochastic (coupling term)
forces gives rise to the strange nonchaotic attractor. The
efFect of various nonlinear coupling terms such as y,
siny, and exp(y) has also been studied. The critical values
of C' above which the strange nonchaotic attractor
occurs corresponding to the coupling terms y, siny, and
exp(y) are found to be 0.0425, 0.168, and 0.0225, respec-
tively. Further we have carried out our analysis using the
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FIG. 3. Strange nonchaotic attractor of Eq. {3)for C =0.1.
FIG. 5. Estimated Lyapunov exponent versus the amplitude
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TABLE I. Estimated critical value C* for different A values
used to generate the chaotic solution. The generated chaotic
solution is added to Eq. (3).

A

0.10

2.8
2.9
3.0
3.1

3.3
3.4
3.5
3.7
3.8

0.051
0.067
0.075
0.064
0.101
0.086
0.090
0.187
0.158

0.00—

-0.10-

chaotic solution generated for various values of A. For C
values in the interval (0,0.2) we have estimated the
Lyapunov exponent of attractors of (3) and determined
the value of C above which A, becotnes negative. Table I
gives C values for different 2 values.

Next we study the effect of noise added to the chaotic
solution of the logistic map. Cy„ in Eq. (3) is replaced by
Dg(n), where Iq(n)I are independent random numbers
with mean m and standard deviation cr. We study the
influence of noise by fixing A at 3 and by varying the am-
plitude D of the noise for m =0.2 and cr =0.1. Figure 5
shows the mean Lyapunov exponent obtained by averag-
ing over 500 realizations of g(n) as a function of D. For
D &D* the Lyapunov exponent is positive. In this case
the long time motion is still chaotic. For D &D* the
Lyapunov exponent is negative and the attractor is non-
chaotic. Figure 6 shows the controlled attractor for
D =0.6. This figure clearly indicates that the attractor is
strange.

We have also studied the influence of a chaotic signal

-0.20 =
-0.50 0.50

FIG. 7. Maximal Lyapunov exponent as a function of D for
the BVP oscillator.

in the BVP equation (2). The parameters a, b, c, and f
are fixed at 0.7, 0.8, 0.1, and 0.74, respectively, for which
chaotic motion is observed. In Eq. (2(a) f cost is replaced
by f cost +Du (t), where u (t) is the chaotic solution gen-
erated from the logistic map u„+ &

=4u„(1—u„). D is the
amplitude of the chaotic solution added to the driving
force. The iteration of the logistic map lies in the interval
(0,1). The solution is converted into the range ( —1, 1).
The chaotic solution generated from the map is added to
the BVP equation after every (2m/50) time step. Figure
7 shows the variation of the maximal Lyapunov exponent
as a function of D. It is seen that for a range of D values
A, is negative, that is, the motion is nonchaotic. Figure 8
shows the Poincare map of the attractor for D =0.3.
The A, of the attractor is negative, as seen from Fig. 7.
From the negative value of the Lyapunov exponent and
Poincare map (Fig. 7) we conclude that the controlled at-
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FICx. 6. Strange nonchaotic attractor in the presence of exter-
nal noise with D =0.6.

FIG. 8. Strange nonchaotic attractor of the BVP oscillator
with D =0.3.
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tractor is strange and nonchaotic. A strange nonchaotic
attractor has been observed in the BVP equation when an
appropriate Gaussian white noise is added to the system
instead of chaos [5].

To conclude, we have shown here that there is a possi-
bility of conversion of a strange and chaotic attractor to a
strange but nonchaotic attractor by adding an appropri-
ate chaotic signal and noise term in both the logistic map
and BVP equation. To these systems chaos from deter-
ministic dynamical systems is added. However, a chaotic
solution from the same system is added to the logistic
map (3), whereas a chaotic signal from a different dynam-
ical system is added to the BVP equation. When a chaot-
ic solution is added to these systems, a strange nonchaot-
ic attractor is found to replace the strange chaotic attrac-

tor for a range of coupling strength. A strange nonchaot-
ic attractor is also observed when Gaussian noise is added
instead of a chaotic signal. Though the controlled orbit
still appears complex, it is structurally stable and small
errors in an initial condition will not have a strong efFect
on the long time prediction. Further, chaos is not always
an unwanted phenomenon. It can be utilized for useful
purposes. In such a case, conversion of a chaotic attrac-
tor to a strange nonchaotic attractor may provide much
better predictability.

The author thanks Sudeshna Sinha for many useful
suggestions and K. P. N. Murthy for a critical reading of
the manuscript and stimulating discussions.
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