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Form of uncompensated heat giving rise to a Pfaffian differential form in thermodynamic space
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A form of uncompensated heat is presented which gives rise to a Pfaffian differential form for a non-
equilibrium extension of equilibrium entropy when the thermodynamic space is broadened to include
fluxes of various orders. It is thereby shown that the Pfaffian form descends from the Clausius inequali-
ty, which is regarded as equivalent to the second law of thermodynamics.

PACS number(s): 05.70.Ln

In a recent work [1] the present author has shown, on
the basis of analysis of the Clausius inequality and the
Clausius notion of uncompensated heat [2], that if the
Clausius uncompensated heat is taken into consideration
there exists a quantity called compensation differential
(differential of compensation function) whose circular in-
tegral over a cyclic process vanishes even though the pro-
cess is irreversible. This compensation function becomes
coincident with the Clausius entropy as the process be-
comes reversible. Pfaffian differential forms for this com-
pensation function have been deduced from the balance
equation for nonequilibrium entropy in Ref. [1]. It is also
found that the latter is generally not in a Pfaffian form if
the system is away from equilibrium and the processes
are nonlinear. Since the deduction for the differential
forms for the compensation function has been indirectly
made through the nonequilibrium entropy, it is judged
not fully satisfactory. We remove this unsatisfactory
feature by presenting a balance equation for the compen-
sation function itself and derive a Pfaffian differential
form for it by assuming a form for the uncompensated
heat accompanying the irreversible processes involved. in
the cycle. This assumption is tantamount to clarifying
the meaning of uncompensated heat for the irreversible
processes of interest.

Carnot’s theorem [3] made it possible for Lord Kelvin
[4] to discover that there exists a universal thermodynam-
ic temperature scale independent of thermometric materi-
als. We now know that this universal temperature scale
can be made to coincide with the absolute temperature
scale. On the basis of the Carnot theorem and the ther-
modynamic temperature scale, Clausius [2], for a cyclic
process which must be interpreted as global but not local,
obtained an inequality

—¢$do/T>0. (1)

Here dQ is the heat transfer counted negative if it is given
up by the body as a whole to the surroundings and posi-
tive if it is taken up by the body from the surroundings.
The cyclic integration is over the cycle of processes. The
temperature 7 in (1) is the temperature of the heat reser-
voir which is in thermal contact with the infinitesimal
Carnot cycle at a point in the cyclic process for the
overall cycle. Clausius [2] introduced the notion of un-

1063-651X/95/51(1)/768(4)/$06.00 51

compensated heat which balances the cyclic integral on
the left-hand side of the Clausius inequality (1) and is al-
ways positive, vanishing only for reversible processes. As
by Clausius, it will be denoted by N. Thus we have

N=—-¢$do/T>0. )

The uncompensated heat N may be written in the integral
form for the cyclic process

N=¢adnN>0, 3)

where dN =0 for all segments of the cyclic process, or it
is possible to devise a cycle such that N <0. But this
would violate the second law. Hence the inequality
dN = 0. Combination of (2) and (3) yields the equation

$dQ/T+ PdN=0. @)

This integral form can be cast into the differential form

(5]
d¥V=dQ /T +dN , (5)
which on integration over the cycle vanishes identically:
$dv=0. (6)

This means that in the space of variables defining the cir-
cular integral in the aforementioned integral form, the
differential dW¥ is an exact differential regardless of the
nature of the process involved, namely, whether the pro-
cess is reversible or irreversible. The quantity W is called
the compensation function and d¥ the compensation
differential.
If the process is reversible so that dN =0 identically
everywhere over the cycle of processes, then
$ do/T=¢ av=o0, ¥

rev rev

where the subscript rev on the integral means that the cy-
cle is reversible. For such cases Clausius defined the en-
tropy S, by the formula

dS,=(dQ /T, - (8)

The reversible compensation function ¥, therefore coin-

cides with the Clausius entropy S,:

rev
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Se = \I/l'eV * (9)

We should distinguish the compensation function from
the nonequilibrium entropy, which we reserve for the
kinetic theory entropy defined by the Boltzmann H func-
tion and the information entropy used for nonequilibrium
problems, since the compensation function is different
from the Boltzmann entropy [7].

If we denote the internal energy change by dE and the
associated work by dW, then the first law of thermo-
dynamics for an infinitesimal process takes the following
differential form:

dE =dQ —dW , (10)
where the work done by the system is taken to be positive
and the work done on the system by the surroundings is
taken to be negative. Since the energy must be conserved
in a cyclic process, reversible or irreversible, the integral
form for the first law for the cycle in question is
$dE=0. (11)
Therefore, the first and second laws of thermodynamics
now can be phrased as a pair of vanishing integrals (11)
and (6) for E and V¥, respectively [6]. We emphasize that
¥ is not the same as the Clausius entropy nor is it the
Boltzmann entropy defined in the phase space in terms of
distribution functions of particle momenta and positions
as shown by kinetic theory analysis [7]. It is now neces-
sary to clarify the nature of the compensation function
and a possible form for the uncompensated heat.
The circular integral (6) may be written as an integral
over period 7 for the cycle

Pav= fofdt—d%=0 : (12)

Writing the uncompensated heat in the form
dN =(dN /dt)dt allows to put (5) in the differential form

dv —1dQ , dN

—= —= 4=

dt d dt dt
Since the time derivatives in (13) are the global rates of

change, it is useful to express them in local form. To this
end, we write

(13)

) (14)

—1§Q= -1 o — c— __ . c
T EE =77 [ dB(—1Q'=— [ drV-Q/T),
(15)

AN _ [ arpg, . (16)

Here u is the fluid velocity, and it is assumed that the
temperature is uniform over the surface B of the volume
of the infinitesimal Carnot cycle which is in contact with
a local heat reservoir of temperature 7. It must be noted
that except for the terminal infinitesimal Carnot cycles
this local heat reservoir is generally not one of the heat

reservoirs of the finite Carnot cycle which is imagined to
consist of infinitesimal Carnot cycles in the derivation of
inequality (1) by Clausius. Here p denotes the mass den-
sity, Q€ is the net heat flux at the surface B whose posi-
tive normal direction is outward, and p@c is the local rate
of uncompensated heat. Equation (13) and the continuity
of the processes imply the balance equation for compen-
sation function W:

~

a9

dt
The precise nature of Q° and @c is not known at this
point in development. We would now like to clarify their
meanings. The meanings of Q° and 26 are bound to
change as our understanding of irreversible processes
evolves with time when more and more refined experi-
ments are performed.

Before we make propositions for Q° and ?..C, we need to
define some observables and their evolution equations.
Some of the evolution equations are simply the mass,
momentum, and energy conservation laws expressed in
local form, whereas the rest of the evolution equations
are constitutive equations for various fluxes such as
diffusion fluxes, heat fluxes, stresses, and other higher-
order fluxes deemed necessary for description of irreversi-
ble processes of interest.

Definitions: & is the energy density; II=3"_, I, is
shear stress; A=37_,A, is the excess normal stress,
namely, the excess trace part of the stress;
Q=3.,-,Q,=heat flux; and J,=mass diffusion flux of
species a.

Note that if the stress (pressure) tensor is denoted by P,
then it may be decomposed into components as follows:

=—V(Q/T)+pE. . a7

r r
P=>P,=3 (II,+A,8+p,8),
a=1 a=1
where II,=(P,+P,)/2— 18 TrP,, A, =1TrP,—p,, p,
is the partial pressure of species a, and 8 is the unit
second-rank tensor. The fluxes including IIK, A, Qg
and J, will be denoted collectively by ®;, =pP,,(k=1),
which are suitably ordered with regard to index k. Since
their ordering is not important for our discussion here,
we will not elaborate on it. There can be as many fluxes
as necessary for an appropriate description of irreversible
processes of interest. They are included in the set {®,,:
1<a =r;k =1}. Partial pressures p, and the total pres-
sure p =3/ _, p, appear as constitutive parameters in the
phenomenological theory. These are local variables, and
are measured by putting the infinitesimal cycle of interest
in mechanical equilibrium with the local heat reservoir
which is at partial pressures p, (1<a =r) and tempera-
ture 7. This manner of quantifying partial pressures
means that the pressure will have a distribution over the
finite cycle composed of the infinitesimal cycles, for
which the pressures are quantified by the means just indi-
cated. We make the following propositions for the con-
servation laws and the evolution equations for fluxes.
Proposition 1. The mass, momentum, and energy con-
servation laws for an r-component fluid mixture have the
following local forms:

(18)
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do g o

P T =—V-pu, (19)
d
pzca_—V-Ja , (20)
du _ o
o V-P+pF , (21
p%(—f—=—V-Q—P:Vu+ S I,°F, , (22)
a=1

where F is the external force per volume per mass at posi-
tion r, and F, is its species component; v is the specific
volume v =p~ '; ¢, =p, /p is the mass fraction of species
a; and d /dt =3 /0t +u-V, the substantial time derivative
in the reference frame moving at the fluid velocity u.

These local forms are easily derivable from the mass,
momentum, and energy conservation laws by using the
method of continuum mechanics. Coupled with these
conservation laws, there are evolution equations for vari-
ous fluxes including those appearing in these conserva-
tion laws, namely, J,, Q, or Q,, and P or P,. The forms
of such evolution equations depend on the substance in
hand. They are therefore constitutive equations which
must be clarified on the basis of investigations of material
properties. Their forms cannot be arbitrary, but are sub-
ject to thermodynamic laws. Such evolution equations
for fluxes are collectively written as follows.

Proposition 2.

d
Pt
where ¢, is the flux of ®,,, Z,, is a collection of terms
including the thermodynamic force driving the flux ®,,,
and A, is the dissipation term responsible for energy dis-
sipation in the system.

We have written them out as separate terms, since they
have different physical interpretations and origins. Phe-
nomenologically, these terms must be chosen so as to
satisfy the second law of thermodynamics which in the
present formulation is represented by the inequality for
the local uncompensated heat production per unit time

(24)

$ka=_v.¢ka+ZkG+Ak0 (1fa=<r;kz1), (23)

pE.20.

Some examples for the kinematic term Z,, and the dissi-
pation term A, can be found in Ref. [1]. These quantl-
ties allow us to understand the meanings of Q° and £ =, ap-
pearing in the compensation function balance equation
(17).

Since mass fractions ¢, and fluxes @ka (1fa=<r;k=1)
are treated as independent thermodynamic variables to-
gether with & and v, each of them must be paired with its
conjugate intensive variable. We will denote them by fi,
for ¢, and by X, for > xa- The former will turn out to be
the chemical potential of species a and the latter the gen-
eralized potentials. The parameter fi, can in principle be
quantified by setting the infinitesimal cycle of interest in
material equilibrium with the local heat reservoir of com-
position ¢, (1=<a <r), temperature T and partial pres-
sures p,. Similarly, X;, can in principle be quantified by
making the differences in ®,, vanish across the boun-

daries between the infinitesimal cycle of interest and the
local heat reservoir of temperature 7, pressure p, and
chemical potentials i, (1<a =<r). Therefore, intensive
parameters T, p, fl,, and X, characterize the contact
conditions between the infinitesimal cycle of interest and
the local heat reservoir which is under control of the ob-
server, that is, a part of the local heat reservoir may serve
as the measuring instruments for temperature, pressure,
chemical potentials, and generalized potentials. These
parameters are therefore contact quantmes We make
the following proposition for Q¢ and £ =..

Proposition 3. There is a set of intensive parameters
X, and I, conjugate to fluxes ® xe and mass fractions c,
respectively, such that the compensated heat flux J, and
the uncompensated heat production p._.c are given by

J.=Q/T=3 Q. /T

a=1
=3 T |Q-RJ+ 3 Xkavﬁkal e
a=1 k=1
2, =p8, =~ 2 —p,8):Vu+QS-VInT
+3,-(Vt, —F
_k§1 Yo VXig ]

r
+T7'S S Xio(Ziy +A%)20.
a=1k>1

Since =, must be positive semidefinite by the require-
ment of the positive uncompensated heat production—
the second law of thermodynamics, inequality (24) for =,
dictates the acceptable forms for the kinematic Z;, and
the dissipation terms A, of the evolution equations for
fluxes, and hence for the evolution equations for the
fluxes. The proposition for the compensated heat flux J,
defines the meaning of QF, whereas the proposition for
uncompensated heat production =, defines what we mean
by the uncompensated heat originally introduced by
Clausius but left unelucidated.

The compensatlon function balance equation now can
be expressed in a Pfaffian form in space ®=(6,v, ca,CDka
1<a=<r;k=1). It can be done quite easily by eliminat-
ing the compensated heat flux and the uncompensated
heat production by using the balance and evolution equa-
tions (19)-(23). After some straightforward algebraic
steps, from (17), (25), and (26) we obtain the differential
form

(26)

dV=T""d,6+pdv— 3 f,d,c,

a=1

r
+ 2 2 Xkadt{l\)ka ’
a=1k21
where d,=d /dt and p=3)_,p,. This is the Pfaffian
form for the compensation function consistent with the
form of uncompensated heat proposed; it is the main aim
of this work to give the thermodynamic basis to this

(27)
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differential form, which has not been adequately done un-
til now. This differential form has the following proper-
ty:

fdtp

which can be deduced, on account of continuity, from
(11), since

=¢pd ¥=0, (28)

X s =[Jat [ dr —pw+v up¥
—f dr [’ dtp—-—O 29)
The vanishing circular 1ntegral implies that the

differential form d,¥ in (27) is exact in space ®, and thus
¥ is a state function in ®. This state function is deter-
mined as an integral of the Pfaffian form (27) once the
constitutive relations for T, p, fi,, and X,, are given in
space &. As X;, vanishes for all k£ and a,
d,Y—d, ¥, ,=d,S,, where S, is the equilibrium (Clau-
sius) entropy, and we recover the equilibrium thermo-
dynamic relation. However, at nonequilibrium or for ir-
reversible processes W#S In fact, the local equilibrium
assumption for d,S, is recovered if it is assumed that
d,®,,=0 for all k and a. If it is further assumed that
there are only the usual 13 moments (2+ 117 moments
for an r-component mixture); Z,, consists of only the
thermodynamic force term for ®,,; X;,, and A,, are
linearly proportional to ®,, (see Ref. [1] for the propor-
tionality coefficients), then the mathematical structure of
linear irreversible thermodynamics is recovered from the

present theory. Therefore, the theory of linear irreversi-
ble thermodynamics is contained in the present theory.
Kinetic theory analysis [7] of the Boltzmann statistical
entropy shows that it is different from the compensation
function and does not have the Pfaffian differential form
in @ like (27) for W.

In conclusion, we have shown how the Pfaffian form
(27) for the compensation function arises in a way con-
sistent with the second law of thermodynamics, and also
how to set the evolution equations for fluxes under the
umbrella of the second law of thermodynamics in the
sense that Z,;, and A, must be such that =, is positive
semidefinite and at the same time the evolution equations
for fluxes are consistent with the Pfaffian form for the
compensation function (27). The key to this result is pro-
position 3 for Q° and =,. It must be noted that in this
phenomenological approach the parameters T, p, fi,, and
X, are constitutive parameters which must be postulated
on phenomenological grounds. In this connection, note
that T~ is usually replaced by the caloric equation of
state. If the compensation function ¥ is interpreted as
coincident with the nonequilibrium entropy in extended
irreversible thermodynamics (EIT) [8,9], then proposi-
tions 1-3 presented provide the thermodynamic founda-
tions for the extended Gibbs relation for the nonequilibri-
um entropy in EIT in a rather general context.
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