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Spectral signature of the pitchfork bifurcation: Liouville equation approach
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The time evolution of probability densities of one-dimensional nonlinear vector fields is studied using a
Liouville equation approach. It is shown that the Liouville operator admits a discrete spectrum of eigen-
values of decaying type if the vector field is far from bifurcation. The associated right and left eigenvec-
tors are explicitly constructed for simple models and shown to be distributions rather than regular func-
tions. On the other hand, the spectrum of the Liouville operator may become continuous at the bifurca-
tion point, a phenomenon illustrated explicitly in the paper in the case of the pitchfork bifurcation. The
relationship between the spectral decompositions of the Liouville and of the Fokker-Planck equations is
discussed. In particular, the spectral decompositions constructed here for the Liouville equation are ob-
tained as the noiseless limit of the well known spectral decompositions of the Fokker-Planck equation of
the associated stochastic process.

PACS number(s): 02.50.—r, 05.20.Gg, 82.20.Mj

I. INTRODUCTION

Complex systems giving rise to chaos or bifurcations
display a marked sensitivity to small errors, external dis-
turbances, or internal Auctuations since initial states
which are experimentally indistinguishable may follow
quite different paths in the course of time. This property
highlights the need to complement the traditional point-
like description in terms of trajectories by a probabilistic
description, capable of accounting in a natural manner
for the increasing delocalization of the dynamics in the
system state space.

The statistical approach to deterministic chaos has re-
cently attracted considerable attention. In particular, the
eigenvalues and also sometimes the eigenfunctions of the
Liouville operator or of its time discretized version (the
Frobenius-Perron operator) have been determined for a
number of representative models such as one-dimensional
maps or scattering type systems [1—6]. The situation is
rather different when simple bifurcation phenomena such
as pitchfork or Hopf bifurcations are concerned, for
which much of the effort has so far concentrated on a sto-
chastic description augmenting the deterministic descrip-
tion by incorporating the effects of fluctuations. One is
led this way to a master or a Fokker-Planck equation
whose solutions bear in one way or another the signature
of the bifurcation under consideration [7—9]. Our objec-
tive in the present paper is to develop a probabilistic
study of bifurcation phenomena at the level of the Liou-
ville equation in which only the deterministic dynamics is
taken into consideration and Auctuations are discarded.
As we shall see, this description already brings out clearly
the complexity of the bifurcation phenomenon through a
radical change of the spectral structure across the bifur-
cation point. It can therefore be considered as a minimal

model illustrating the evolution of probability densities,
which is considerably more tractable than the models in-
volving chaotic dynamics, while still displaying a good
deal of the complexity usually thought to be limited to
chaos. An additional interest is that the study can be car-
ried out for continuous time dynamic systems, which are
of paramount interest in nonequilibrium statistical
mechanics and for which many of the techniques
developed in chaos theory fail.

The general formulation is laid down in Sec. II, where
the initial value problem and the spectral representation
problem of densities are formulated at the level of the
Liouville equation and illustrated on a simple toy model
of linear dynamics. In Sec. III the Liouville equation cor-
responding to the normal form of a pitchfork bifurcation
is studied with special emphasis on the change of the
spectral properties as the system moves across the bifur-
cation point. A comparison with a Fokker-Planck equa-
tion description is presented in Sec. IV, whereas in Sec. V
the main conclusions and suggestions for future studies
are summarized.

II. GENERAL FORMULATION

A. Liouville equation and time evolution
of statistical ensembles

x=F(x;p), (2.1)

where x(t) is the state vector, F the vector field, and p a
set of parameters. As is well known [10], Eq. (2.1) in-

The evolution of a continuous time dynamic system is
given by a set of coupled first-order differential equations
of the form
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duces a Liouville equation for the evolution of the proba-
bility density p(x, t ) (2.8)

ap(x, t) = —V [Fp(x, t)]=Lp(x, t},
Bt

(2.2) g P„(x)g(y)=5(x—y) .
n=0

where L is the Liouville operator. Notice that this equa-
tion holds for dissipative as well as for conservative sys-
tems, for which Eq. (2.2) reduces to the well known Liou-
ville equation of classical statistical mechanics [11]. In
most of the present work we shall be concerned with dis-
sipative systems.

Let us write the formal solution of Eq. (2.1) in the form

p(x, t)= g c„(t)P„(x), (2.9)

and substituting into Eq. (2.2) one obtains

These relations allow, in principle, for a spectral repre-
sentation of a probability density obeying the Liouville
equation. Indeed, expanding p(x, t ) in terms of P„(x), us-

ing Eq. (2.8),

x(t ) = f'(x0,'p), (2.3)

where xo is the initial condition. One can then verify
straightforwardly that the solution of the Liouville Eq.
(2.2) reads

p(x, t)=pc„(0)e "P„(x)
n

=g &P„,pa&e "P„(x), (2.10)

p(x, t)= J dyp0(y)5(x —f'(y;p)), (2.4)

which can also be formally written as p, =exp(tL )p0. As-
suming, in addition, the invertibility of f, in agreement
with the uniqueness of the solution of Eq. (2.1), we may
then write Eq. (2.4) in the alternative form

p(x, t)=p0[f '(x;p)) Bf '(x;p)
Bx

(2.5)

where the last factor is the absolute value of the Jacobian
determinant of the inverse transformation f

B. Spectral decomposition

LP„(x)=s„g„(x). (2.6)

As [P„(x)) are in general not orthogonal, we also intro-
duce the eigenvalue problem of the adjoint operator I

f- P„(x)=s„*P„(x), (2.7)

where it has been assumed that s„ is an eigenvalue of
finite geometric multiplicity and that both E —s„and
L s„* have closed ran—ges [13] (see Ref. [14]). Under
these conditions P and P form a complete and biortho-
normal set

In general, the Liouville operator and its adj oint
I. =F V are related by L, +L, = —divF. For dissipative
systems, the divergence (divF) is not vanishing so that
the Liouville operator I. is not anti-Hermitian. As a
consequence, it is necessary to impose further conditions
beyond those usually assumed in classical statistical
mechanics in order to discuss the spectral properties of
such operators [12). For the sake of simplicity in the pre-
sentation of the general formulation, we restrict our argu-
ments for the moment to the simplest case where I has
only discrete eigenvalues. We emphasize that a continu-
ous spectrum may also appear, as shown in Sec. III B.

Let [s„ I be the eigenvalues of the Liouville operator L,
[P„(x)] the corresponding eigenvectors, assumed here
for simplicity to span the entire functional space of in-
terest,

where po is the initial density.
At this point, it is useful to recall that one of the main

roles of the probability density is to evaluate average
values of observables such as

& 2 &, = J 3(x)p(x, t)dx

=& w, e'~p, &=&e'~ w, p, &

n=0
(2.11)

The last identity in (2.11) can be regarded as another ver-
sion of the spectral decomposition that is applicable in
the case where P„or P„, or both, are distributions in the
sense of Schwartz. This is the case for the Liouville equa-
tion of the present problem as we shall see in the follow-
ing. On the other hand, the spectral decomposition (2.10)
holds in the sense of functions if P„are eigenfunctions,
but in the sense of distributions if P„are eigendistribu-
tions, according to the treated system. In the latter case,
we need to apply both members of the distributionlike
identities on test functions A (x), which should be regular
enough in order that the quantities & A, P„& become well
defined real (or complex} numbers and that the series in
(2.11) is convergent. A similar procedure should be
adopted with respect to the initial densities po when the

A. feigenvectors P„of L are distributions. As a result, the
spectral decomposition of the Liouville equation acquires
a mathematical meaning only for initial densities po and
final observables A belonging to appropriate functional
spaces of test functions V and V~, where the subscripts

p and 2 refer to density and observable spaces.
Depending on the functional space considered, the

Liouville operator may have di6'erent sets of eigenvalues
and eigenvectors and one may wonder whether there ex-
ists one particular set constituting a natural spectral rep-
resentation. We shall attempt to provide an answer to
this question by analyzing Eq. (2.11) in conjunction with
the solution to the initial value problem Eq. (2.4), in
which information on the physically acceptable densities
is incorporated at the outset.

It is worth noting that the conditions enunciated at the
beginning of this subsection imply the absence of Jordan
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blocks in the spectral decomposition of L. A Jordan-
block structure arises if the operator L admits vectors P
satisfying

(L s„—I )" '/&0,

p(x, t ) = g e""' f po(y )dy ( —1)"5'"'(x )
n=0 yg!

for p &0 (2.18)

while

(L s„I—) /=0
(2.12)

( t ) y —(n+1)yt

n=0

for some integer k & 1 (I being the identity operator).
Such vectors are called radical vectors of rank k associat-
ed with the (degenerate) eigenvalue s„[15]and are also
referred to in the literature on bifurcation theory as gen-
eralized eigenvectors [16]. The usual eigenvectors are
radical vectors of rank one. The linear subspace formed
by all the radical vectors associated with the eigenvalue
s„ is an invariant subspace under successive applications
of L, which is called a radical subspace [15]. In the case
where not all radical vectors are of rank one, the set of all
the eigenvectors is not sufficient to span the whole func-
tional space and other radical vectors need to be intro-
duced in the vector basis. A possible basis can be formed
by the radical vectors I g„k(x) I satisfying

Lg„k(x)=s„P„k(x)+P„k,(x)

with k =1,2, . . . , d„, (2.13)

where d„ is the dimension of the radical space of s„and
p„o=0. A case of degenerate eigenvalue giving rise to
Jordan blocks is encountered in Sec. III C.

C. Illustration:
A linear one-dimensional vector Aeld

We now illustrate the above formulation on the simple
one-variable linear system

dX

dt
PX (2.14)

The Liouville equation reads

(2.15)

and the solutions to the initial value problems Eqs.
(2.3)—(2.5) are

x =f '(xo)=xoe"' (2.16)

and

p(x, t)= f po(y)5(x —ye"')dy

=e "'po(xe "') . (2.17)

To put these expressions in the form of Eq. (2.10), one
needs to expand the 5 distribution or po(xe " ) in power
series, respectively, of ye"' and xe "' depending on the
sign of p. One reaches in this way the spectral represen-
tation equation

X f (
—1)"5'"'(y )po(y )dy

s„=np= n~p,
~

with—n =0, 1,2, 3, . . .

P„(x ) = (
—1)"5'"'(x ),

n

P„(x)= n!

(2.20)

The density-functional space of test functions can be
chosen as the set of all infinitely differentiable functions
p(x ) with compact support [17]

Vp= Co (R) . (2.21)

The support is said to be compact if there exists a con-
stant k &0 such that p(x)=0 for x (—k or x &k. In
such a case, the left eigenvectors are considered as
Schwartz distributions. On the other hand, the observ-
able functional space can be chosen as the space of entire
functions [18]

(2.22)

This choice is the necessary and sufhcient condition so
that the series (2.18) is well defined in the sense of distri-
butions once V is fixed as in (2.21), as proved in Appen-
dix A.

The second expression Eq. (2.19) is suitable for p&0
and applies to initial densities that are entire functions.
It predicts that as t ~ ~ the probability in any finite re-
gion of the phase space tends to zero. This is in agree-
ment with Eq. (2.16), which implies that the representa-
tive point tends to infinity. From the point of view of
spectral theory, it appears that x "/n& are now the eigen-
functions of I., whereas (

—1)"5'"'(x) are the eigendistri-

for p & 0, (2.19)

with the notation 6'"'(x ) =d "5(x )/dx".
The first of these expansions is suitable for p &0 and

applies to initial densities for which the integral with ar-
bitrary powers of y exists and to final observables A (x ),
which guarantee the convergence of the averages (2.11)
obtained by applying the expansion (2.18). It predicts
that as t —+ ~ all terms but the one for n =0 die out, thus
yielding lim, p(x, t) =5(x ). This is in agreement with
Eq. (2.16). From the standpoint of spectral theory, it su-
gests that (

—1)"5'"'(x ) are the eigendistributions of
Eq. (2.15), whereas x "/n! are the eigenfunctions of L .
The corresponding eigenvalues are given by the rate con-
stants appearing in exp(s„t). Therefore, the spectrum is
discrete and belongs to the negative real axis, which we
summarize, for p & 0, by
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P„(x)= nt (2.23)

y„(x ) =( —1)"8(")(x) .

We note the duality that exists between the spectral
decompositions of attractinp and repelling fixed points:
the eigenvectors of E and E are simply exchanged. As a
consequence, the density and observable functional
spaces are also exchanged, which corresponds to the
operation of time reversal t —+ —t mapping the attracting
case onto the repelling one.

The above statements on the spectrum of E and L can
be verified directly on the explicit form of the Liouville
operator, Eq. (2.15). For instance, the eigenvalue prob-
lem for E reads

px Q(x ) =sf(x ) .
dx

(2.24)

One can check straightforwardly that, depending on the
choice of p, this equation admits the polynomials x "/n!
or the 5 distributions ( —1)"5(")(x) as eigensolutions, the
corresponding eigenvalues being respectively n p and

(n+ 1)p,—in agreement with our earlier conclusions. A
similar study can be carried out for E, except that it is ac-
tually more convenient to switch to the Fourier space.

I

butions of E . Notice that despite the escape to infinity
in this scattering type system, the eigenvalues remain
negative and discrete, for, p & 0:

s„=—(n +1)p with n =0, 1,2, 3, . . .

Again, a full agreement with the conclusion based on
Eqs. (2.18) and (2.19) is obtained.

We remark that the spectrum of the Liouville operator
may include eigenvalues other than those given by (2.23)
if the functional space is enlarged. For instance, in the
case (M &0, the Liouville operator (2.15) admits the func-
tions x with Rea )0 as eigenfunctions. The correspond-
ing eigenvalue is s = —

)(t,(a+ 1), which does not belong to
the spectrum (2.23) if a is not an integer. The time evolu-
tion (2.17) of initial densities such as p0(x ) =x exp( —x )

(0 & Rea & 1 },which are not analytic at the origin, exhib-
its a decay

p(x, t)=e "' +'"x exp( —x e "')
—p(a+ 1)t a+ 0 (

—p(a+ 3)t
) (2.25)

which differs from (2.19). If the exponent a satisfies
N (Rea (X+ 1, where X is an integer, the initial density
pa(x) is N times differentiable, but not (N+1) times.
Therefore, p0(x ) E C'(E) with Rea & v, which is the
space of N-time difFerentiable functions with p0( )(x ) of
Holder type at the origin with exponent v —X, i.e., such
that ~pa '(x) —

pa '(0)~ & C~x ~' (Cbeing a positive con-
stant). The spectral decomposition (2.19) is then replaced
by

p(x, t ) = g e '"+""'p0"'(0), +R (x, t )
n=0 nl

(p & 0), (2.26)

where the rest R (x, t ) is given by

—pt X) X

R(x t)=e ~'f dx) f dx2 . . f dx [pa (x ) —p0( )(())] (2.27)

and decreases like

(~(x, t)(&
v(v —1) (v N+1) exp[ ——p(v+1)t]

(2.28)

The rest cannot be further decomposed into a series,
which suggests the existence of a continuous spectrum
for Res & —p(v+1). This is indeed the case, as shown
before with the eigenfunction x (Rea & v} of the Liou-
ville operator. The addition of continuous sets to the
Liouvillian spectrum when nonsmooth test functions are
allowed is a known property of Pollicott-Ruelle reso-
nances, which has been discussed for Axiom-A systems
and expanding maps [2,4,6, 19,20]. When we consider
nested functional spaces

values s„= p(n+—1) progressively emerge as if they
were previously hidden by the continuous spectrum
which covers a two-dimensional domain of the complex
plane s. In this regard, the largest functional space for
which the spectrum is discrete (if it exists) provides the
unique and robust spectral decomposition of the Liouvil-
lian dynamics, which we describe here.

We note that the preceding discussion for the case
p &0 and the spectral decomposition (2.19) also concern
the case p &0 and (2.18). In the case )M &0, the adjoint of
the Liouville operator E =pxB also admits the func-
tions x with Rea & 0 as eigenfunctions with correspond-
ing eigenvalues s =pa. The functional space of the ob-
servables should then be taken as 9„=C '( E ) with
Rea & v.

with

8c cC -(E)c cC '(E)cC '(E) (2.29) III. LIOUVILLK EQUATION
OF A ONE-DIMENSIONAL-VECTOR FIELD

AT A PITCHFORK BIFURCATION
. . . &v ) . . &v&)v&, (2.30)

the continuous spectrum shrinks and disappears in the
limit where the initial densities are taken as entire func-
tions. In this process, we observe that the discrete eigen-

dx
dt

—px x (3.1)

One of the simplest nonlinear vector fields describing a
bifurcation is given by the one-dimensional (1D) equation
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This equation plays a very important role in the descrip-
tion of a variety of far-from-equilibrium phenomena in
hydrodynamics, chemical reactions, laser physics, etc. ,
where transitions occur between dynamic regimes
characterized by a difFerent number of steady states. For
Eq. (3.1), the origin x =0 is the only fixed point for p & 0,
i.e., before the bifurcation. This fixed point is attracting
with a stability exponent A, =p and we may expect that it
behaves in a similar way as in the linear model (2.14) with

p &0. However, this fixed point loses its stability and be-
comes a repelling fixed point for p&0. Through the bi-
furcation, two new fixed points emerge from the origin
x =+&p, which take over the lost stability of the trivial
solution. The new fixed points are attracting with identi-
cal stability exponents A, = —2p.

We emphasize that Eq. (3.1) provides a universal
description of the so-called supercritical pitchfork bifur-
cation where two new steady states emerge in a sym-
metric manner at the bifurcation. Technically, this equa-
tion is known as the normal form of this bifurcation, i.e.,
it is the vector field which contains the minimal set of
terms capturing the essence of the bifurcation. For an
analytical vector field, there always exists a nonlinear
transformation of the coordinate x reducing the vector
field to the form x =px —x +O(x ), where the rest of
the terms of higher degree than the cubic term control-
ling the bifurcation can be eliminated by a homeomor-
phism (i.e., a continuous transformation). We also note
that Eq. (3.1) is invariant under a space reflection
x ~—x. In this regard, this model is often used to dis-
cuss far-from-equilibrium transitions involving symmetry
breaking. We shall see that this symmetry invariance
also finds its expression at the statistical level of the Liou-
ville equation description.

Equation (3.1) can be integrated from some initial posi-
tion xp to obtain

2

(3.4)

When p & 0, the attracting fixed points x =+Vp are
mapped onto the origin /=0, while the repelling fixed
point x =0 is sent at infinity. On the other hand, the at-
tracting fixed points can be sent at infinity with the alter-
native linearizing transformation

4=+pk (3.5)
&p —x'

with —&p &x & +v'p.
For the pitchfork bifurcation fiow, the Liouville equa-

tion reads

Bp 8
Bt Bx I (px —x )p] (3.6)

(3.7)
with p =x p ~ In the following, we shall consider separate-
ly the three cases p & 0, @=0,and p & 0.

A. The subcritical regime p &0

We start from the expression (3.7), which we rewrite in
the form

~E +
I

1/2p
( A, e' po) = J po(x)A dx,

oo g2
(3.8)

and the solution to its initial value problem Eq. (2.4) in
the form (2.11)becomes

( A, e' po)
1/2

po(y)A y
oo y'+(p —y')e '"'

x =f '(xo, p) =xo
xo+(p —xo)e

1/2

(3.2)

featuring the new variable

Xe

&x2+ Ipl
(3.9)

which holds for p%0 and for all positive times t &0. A
condition for the validity of this solution is that the quan-
tity under the square root remains positive, which leads
to the inequality

t &t'(x, )= — ln 1+ I
1

2l pl x',
(3.3)

where t* is a negative time. We may wonder what the
origin of this restricted domain of validity is when the
flow proceeds backward in time up to t =t'(xo) from the
initial condition xp. Actually, the trajectory diverges to
infinity at this particular time t*(xo) due to the cubic
term in the equation of motion (3.1). The divergence is of
the type x(t)-(t t*) ' . Since we—are limited to the
forward semigroup for our purposes, we have only to re-
quire that the solution is valid for positive times t )0,
which is always the case.

We also remark that we can reduce the nonlinear equa-
tion (3.1) to a linear one by the transformation

gn
I I

1/2g

BP V 1 g2
~ o

(3.10)
Accordingly, we obtain the decomposition

( A, e'~po)
QO

n

„=o -- n' x'+Ipl

ag" V'1 —g' /=0
(3.11)

The main idea is to expand the function A in (3.8) in a
Taylor series of exp( —

lpl t). The right and left eigenvec-
tors of the Liouville equation E can then be identified in
the coefficients of this Taylor series. The right eigenvec-
tors are the objects involving the final observable A(x),
while the left eigenvectors are those involving the initial
density po. Expanding A as a function of g in a Taylor
series, we get

Ipl'"4 ~
4'"

.=o n.
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from which we read the right and left eigenvectors. In
summary, the elements of the spectral decomposition are
given, for p&0, by

s„=np= n
l
p—

l
with n =0, 1,2, 3, . . .

gn l+ l

1 /2g

a+ v'I —g'
(3.12)

t

P„(x)= n! Qx2+ lpl

which form a complete basis

'n

g P„(x )P„(y ) =&(x —y )
n=0

(3.13)

for test functions belonging to the density-functional
space chosen here as the set of integrable functions, while
the observable functional space is the set of entire func-
tions

f'(x)=g 'le"g(x)] (3.17)

gle family of discrete eigenvalues.
Other 1D vector ftelds. The previous example suggests

a straightforward generalization to any holomorphic 1D
vector field x =F(x ) containing a single attracting fixed
point at the origin, with a stability exponent A, = —

l
A.

l so
that F(0)=0 and F"'(0)= A,XO. According to a theorem
by Poincare [21], there exists a biholomorphic transfor-
mation g =g (x ) such that the fiow is linearized in the
new coordinate g: g =A,g. The transformation g (x ) is
analytic inside a disk centered on the origin x =0, the ra-
dius of which is the smallest distance between the fixed
point at origin and the complex fixed points x; EC of
F(x ): F(x; ) =0. If there is no real fixed point other than
the origin, nothing prevents the holomorphic extension of
the function g(x) to the whole real axis. The fiow can
then be expressed in terms of the function g (x ) and its in-
verse g '(x ) as

V =X'(R), P~ =6 . (3 14) Accordingly, we have

The eigenvectors can be rewritten as sums of derivatives
of Dirac's distribution. Indeed, we can expand the func-
tion A (x ) in a Taylor series around the origin x =0 and
thereafter perform the derivatives over g in Eq. (3.11) to
obtain

y„(x ) = y (
—1)"5'"'(x )

k

(A, e'~p )0= f A[f'(x)]pa(x)dx

pag '( )= f A [g '(e 'g)], dg (3.18)
lg'[g '(k))l

—n) !ti( g y )(y )
n=0

&Ipl"n!(n —2)!!X
k!(k —2)!!

2(n —k )/2 n —k
2

(3.15)
with the complete basis

P„(x ) = 5[x —g '(g) ]Bg"

with
r

2, 4, 6, . . . , n for n even

1,3, 5, . . . , n for n odd
(3.16)

and the convention 1!!=0!!= (
—1)!!= 1.

The spectral decomposition (3.12) can be compared
with the spectral decomposition (2.20) of the linear model
(2.14). Since the fixed point x =0 is attracting, the right
eigenvectors are distributions, while the left eigenvectors
are regular functions. The left eigenvectors P„are regu-
lar functions over the whole phase space as for the linear
model, which is recovered in the limit where

l p l
~ ~ .

Near the origin x =0, the left eigenvectors behave in a
way similar to those of the linear model: P„=x"/n!
However, the cubic nonlinearity of the vector field
creates a distortion of the left eigenvectors at large dis-
tances where they converge to +1 depending on the sign
of x. On the other hand, the right eigenvectors are given
by a sum of derivatives of the Dirac distribution as an
effect of the nonlinearity. In the limit lpl ~ oo, the distri-
bution (3.15) is dominated by the last term with k =n
and, consequently, P„(x)/lpl" approaches the right
eigenvectors of the linear model. Pitchfork bifurcation
below criticality provides therefore an example of the
e6'ect of nonlinearities of the vector field on the spectral
decomposition, although the spectrum still contains a sin-

x„(x)=
nf

(3.19)

s„„=n, lA, , l

— . —n„lA,dl, — (3.20)

of the right eigendistributions

We see that the eigenvalues of the Liouville operator are
still given by s„= n

l
A,

l
as in—the linear model, the effect

of the nonlinearities of the vector field being contained
entirely in the right and left eigenvectors.

Multidimensional vector fields. Multidimensional gen-
eralizations are also straightforward for holomorphic
vector fields (2.1) with a single real-valued fixed point
whose stability exponents are satisfying the conditions of
the linearization Poincare theorem [21]. This condition
requires that the convex envelope of the d exponents
I A,„.. . , kd ] does not contain the origin in the complex
plane of A, . Under this condition, there exists a biholo-
morphic transformation g'=g(x) in a multidisk 2) cen-
tered at the fixed point (supposed to be x=O) such that
the fiow is linearized: /=A g with the diagonal matrix
A=diag(A. i, . . . , A.d). We are thus led to the following
theorem.

If all the stability exponents are negative
(A,„.. . , Ad (0), the Liouville equation (2.2) admits a
spectral decomposition in terms of the eigenvalues



80 P. GASPARD, G. NICOLIS, A. PROVATA, AND S. TASAKI

d
Q

t

„(x)=+ 5(x—g '(g))
=~ ag"'

(3.21)

/=0

acting on observables A(x) for which A [g '(g')] is ana-
lytic in a ball centered at the origin and containing the
domain g(2)) 8 IR" and of the left eigendistributions

d

„„( )= g, g( ) ',
) n, f

(3.22)

B. The critical regime p, =0

At the bifurcation point p=O, the vector field Eq. (3.1)
reduces to x = —x, so that the trajectories of the system
are now given by

Xp
x =f'(xo)=

'1/1+2xot
(3.23)

acting on initial densities po(x), which are integrable
functions in balls 2) AR". The right and left eigendistri-
butions (3.21) and (3.22) form a complete biorthonormal
basis on the speci6ed functional spaces.

X

Ixl

1 for n even

sgn(x ) for n odd,
(3.26)

so that the continuous spectrum is doubly degenerate.
The LiouviHe equation admits therefore the spectral

decomposition

& A,.'p. &=& A, y, )(y„p, &

+ dS e A»+ +Pp

+ ( A, P, ) ( P, ,po ) ] . (3.27)

The eigenvectors associated with the simple eigenvalue
s =0 are

$0(x ) =5(x ), $0(x ) =1 (3.28)

and correspond to the invariant probability density con-
centrated at the origin x =0. The eigenvectors of even
parity of the doubly degenerate continuous spectrum
s ER are

trum constituted by the entire real negative axis (Res & 0,
Ims=0). The terms in the series of Eq. (3.24) separate
according to the parity of n with

n

which holds for t & t (xo ) = —1/(2x o ), and, in particular,
for positive times. Contrary to the sub- and supercritical
cases, the time evolution is now of algebraic rather than
exponential character. At long times the trajectories are
slowly attracted to the origin according to the power law
x —1/V't, a behavior known as critical slowing down
We shall see that this critical slowing down has a dramat-
ic effect on the spectrum of the Liouville equation.

The time evolution of an average is given by

(A ),= f dx p (x)A
Qo 1+2x t

co
( 1)fl

2n!r(n /2) 2

P, +(x ) =exp
2x

The eigenvectors of odd parity are

(
—1)"

2n!r(n /2)
n odd

n/2 —1

5'"'(x ), (3.29)

(3.30)

n/2 —1

5'"'(x ) (3 31)

p( )

A '"' 0
X A(0)+ g n!

X"
(1+2x t)"

(3.24)

where we expanded the observable A(x) in a Taylor
series at the origin. Looking for a decomposition of this
time evolution in terms of exponential functions of the
form exp(st ) with s &0, we are led to the conclusion that
we must form continuous superpositions of such ex-
ponentials in order to reproduce algebraic decays.
Indeed, if we use well known properties of the Gamma
function [22] we obtain

(x ) = sgn(x ) exp
2x

(3.32)

Sup, «I A (z ) I exp( —a Iz I ) & oo (3.33)

On the other hand, the functional space of the densities
po is the set of integrable functions 9' =&'(I) so thatP

Jo exp(s/2x )po(x )dx exists since s &0.
We remark that the left eigenvectors are eigenfunctions

of the adjoint Liouville operator

The spectral decomposition holds for observables A be-
longing to the functional space V~ of entire functions of
exponential type a with arbitrary a & 0 [17],i.e., of entire
functions A (z ) such that

n
n/2 —1 E P,+=sf,+, (3.34)

(1+2x t)" 2r(n/2) "— 2
'n

s
exp

2x

(3.25)

1 $
y, (x ) = exp

X 2X
(3.35)

with f = —x 8„. In Appendix B we show how the right3

eigendistributions P,+(x ) are related to the eigenfunction

It follows that the system possesses a continuous spec- of the Liouville operator f( ~ )=B„(x ~ ). This eigenfunc-
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tion has a defective singularity at the origin x =0, which
prevents it from being handled as a regular eigenfunction.
As a consequence, it must be transformed into the distri-
butions (3.29) and (3.31) to acquire a meaning in the spec-
tral decomposition. We have shown elsewhere [9] that
the continuous spectrum arises by accumulation of
discrete eigenvalues from both sides of criticality, as
shown in Fig. 1. The spectral decomposition we con-
struct here confirms this result. We can further show
that the aforementioned accumulation concerns not only
the critical spectrum, but also the critical eigenvectors.
For instance, the left eigenfunctions (3.30) can be ob-
tained from the subcritical left eigenfunctions (3.12) if the
limit p —+0 is taken together with n~ao, while keeping
s =pn constant and n even

lim
p~o, n ~ oo, s =pn

n!P„(x)= lim &x'+ ~s ~/n

S=exp
2x

=P, +(x) . (3.36)

Similar relations hold for the other eigenstates.
As stressed above, the continuous spectrum of the crit-

ical Liouvillian dynamics is directly related to the alge-
braic decay encountered in the critical slowing down. In
view of the generality of algebraic behaviors at criticality
in far-from-equilibrium bifurcations, we expect that such
continuous spectra will occur not only in the case of
pitchfork bifurcation, but also in other bifurcations as
well.

C. The supercritical regime p) 0

0

X+N,
X+2p
x+3@,
X

I

Im s

(a)

Beyond the pitchfork bifurcation, there exist three
fixed points. The origin (x =0) is repelling with a stabili-
ty exponent A,

' '=+@, while the two other fixed points
(x =+&p) are attracting with A,

' +—'= —2p. The three
fixed points are deeply entangling the Liouvillian dynam-
ics, so that we cannot proceed as in Sec. III A.

We observe that the Liouvillian dynamics keeps the in-
tervals between the fixed points invariant. Accordingly,
we should be able to construct the spectral decomposition
of the Liouville operator on each one of these intervals
separately.

We therefore start by separating the problem in the
four intervals we label according to

X —p
% —2 p
X —3 P,

interval 2+:
interval 1+:
interval

interval 2 —:

(+V'p, + oo ),
(0, +V@,),
( —&p, 0),

( —oo, —v'p) .

(3.37)

20

10

-10

Im s

I

(c)

We remark that the intervals 1+ are bordered by the re-
pelling and one of the attracting fixed points. We may
therefore expect that the di%culty due to the entangling
of the fixed point would appear for these intervals.

We start with the time evolution of an average Eq.
(3.7). The integral from —oo to + oo is decomposed into
four separate integrals in the four intervals (3.37). In a
first stage, we derive separately the four corresponding
spectral decompositions. Afterwards, the spectral
decomposition globally defined on the real axis is ob-
tained by matching the eigenvectors and other radical
vectors of the different intervals. Let us begin with the
spectral decomposition in the external intervals 2+.

-20 1. The interval 2+

The first term of the integral (3.7) becomes

FIG. 1. Location of the eigenvalues of the Liouville operator
(3.1) (a) before and (b) after the pitchfork bifurcation at @=0.
(c) Real parts of the eigenvalues as a function of the bifurcation
parameter p through the bifurcation. The imaginary parts are
vanishing: Irns =0. The accumulation of eigenvalues near p=0
generates the continuous spectrum at criticality.

=dx A e'pox = -dye " poy .+v'p +&@ 1+)
(3.38)

where we set
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2

exp( 2p—t) . (3.39)
which hold under the same conditions as in the interval
2+.

We may now proceed as in Sec. III A to obtain the spec-
tral decomposition

f "dx A(x)e' p,(x)
+v'p.

exp( 2n—pt ) & ~ 0z'.+ '
& & 0'z'.+ ' po»

n=0
(3.40)

with the eigenvalues

s„=—2np with n =0, 1,2, . . . (3.41)

and the right and left eigendistributions inferred from

&
~(2+)

Bg" i/1+ g
n

1 +o p —x
n! +~„ po(x )dx .

(3.42)

(3.43)

Since l()M
—x )/x l

( 1 in the interval 2+, the expansion
(3.40) holds for any entire observables A(x) and abso-
lutely integrable densities po(x ).

2. The interval 2—

exp( 2n pt ) & 3,—P~„)& & Q~„',po &, (3.44)
n=0

with the same eigenvalues (3.40), but the right and left
eigendistributions

v~p

&1+/
)n

&
x)& )

&
= 1

%2n &PO ) J 2n. ~— x
po(x )dx,

(3.4S)

(3.46)

For this interval, we proceed similarly as for 2+. We
obtain

f dx A(x)e' po(x)

3. The interval 1+

As we mentioned earlier, this interval (0, + i/)M ) is lim-
ited by two fixed points. This complicates the problem,
since one fixed point is repelling and should induce a
spectral decomposition of the type (2.19), whereas the
second fixed point is attracting and should rather induce
a decomposition of the type (2.18). Since these decompo-
sitions have opposite behaviors at the level of the right
and left eigenvectors, we expect an additional difficulty to
emerge.

To overcome this difficulty, we proceed by a recursive
construction of the eigenvectors and other radical vectors
spanning the invariant subspace associated with each ei-
genvalue. At each step of the construction, we look for
the dominant term of the asymptotic time evolution of
the average & 2 &„ i.e. , the term with the slowest decay
which allows us to identify the corresponding radical vec-
tors. Then, we subtract this term from the average and
we look for the subdominant term, which is the next
slowest decay term. The invariant subspace associated
with the next eigenvalue is identified in this way and we
continue recursively the construction for still faster de-
caying modes.

In the construction, we need to go back and forth from
the position x of the trajectory (3.2) at time t to the posi-
tion xo at time t =0. Indeed, the use of the position x al-
lows us to control the local behavior of the observable
A (x ) near x = +&p at asymptotic times t ~ + ~ when
members of the statistical ensemble accumulate at the at-
tracting fixed point x =++)M. On the other hand, we
need to use the initial position xo to control the behavior
of the initial density po(xo) near the repeller x =0 since
its vicinity is depleted of particles as t ~+ ~. This dual-
ity was already at the basis of the two expansions (2.18)
and (2.19). The starting point is to express the time evo-
lution equation (3.7) in both variables x and xo =y, which
are related by (3.2)

&», l(o~-)= f "dy & y " P,(y)
')/y +(p —y ) exp( 2p,t)— (3.47)

+V@
dx

~ ~ A(x)pop ~ exp( pt)— x ~/)M exp( pt)—
p —x +x exp —2pt +)I—x +x exp( —2p, t)

(3.48)

The change of variables connecting Eqs. (3.47) and (3.48) will be used repetitively in the construction, the details of
which are given in Appendix C.

From Eq. (3.48), we obtain the spectral decomposition

~-„,=& ~,P"+'&&go"+',p &+ p( pt)& &,P", +'&&&—", +',p &

+-p(- ~ )(& .~"."&&~,".",Po&+& ~,O,"b"&&~',b",po&

pt& A, P~b+ '
& &

—
Pzg, ',po & ) +0 ( exp( 3pt ) ) . — (3.49)
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& A, y,"+)
&
= A(&l.),

', p &= f "dy p (y);

for the eigenvalue s
&

= —p,

(3.50)

(3.51)

3/2
& A, (b()'+'&= f dx [A(x) —A(&p)],

(3.52)

The three first invariant subspaces of the spectral decom-
position are the following. For the eigenvalue so =0,

4. The interval 1—

A spectral decomposition similar to (3.49)—(3.61) holds
in the interval 1 —,which is the symmetric of the interval
1+ by a reflection x —+ —x. Therefore, the distributions
defining the eigenvectors and other radical vectors are
similar, except that &p has to be replaced by —&)M and
the integrals from 0 to + v')M by integrals from —Vp to
0.

5. Comparison with the spectrum
obtained by the trace formula

&y", +',p, & =p,(0);
for the eigenvalue s2 = —2p,

f (p —x )

X A(x) —A(&p)

(3.53) In Ref. [9], we showed that the spectrum of the Liou-
ville operator associated with a general 1D vector field
can be obtained from the stability exponents of the linear-
ized dynamics in the vicinity of each fixed point. More-
over, the spectrum is the set of all the eigenvalues of all
the fixed points. In the present case, this result implies
that the spectrum is composed of the doubly degenerate
eigenvalues

2

A'(&p)
2 )M

(3.54) s„' +—'= —2pn, (3.62)

&y,".+',p, & =p,'(o), (3.55) associated with the attracting fixed points x =+&p, to-
gether with the simply degenerate eigenvalues

(3.56)
s(P) = —)M(n +1), (3.63)

&
y()+)

& f ~d y' i—
X pp(y )—

' 3/2

pp(0)

"y,p,'(0)
p

(3.57)

Applying these distributions on test functions, we can
show that they obey

I y()+) () I ty(1+) 0' (3.58)

I y(1+ ) y(1+ ) I 'ty(1+) y(1+) (3.59)

(1+ )

a(&+)
9'2b

(1+ )„t 02.
I.

%2b

2p

p

p
2p

0

2p

y()+ )
2a

~(&+)
Y'2b

y(1+ )
2a

(1+ )
4zb

(3.60)

(3.61)

Equation (3.60) shows that the Liouville operator acting
on the subspace spanned by p(z', +) and p(z'b+) is not di-
agonalizable and corresponds to a Jordan block. As a
consequence of the appearance of Jordan blocks, the de-
cay dynamics of the time evolution is slower than ex-
ponential, as rejected by the presence of terms of the
form t exp( nest) in th—e exp, ansion (3.49). Because the
distributions are well behaved at the fixed points, the
spectral decomposition (3.49) holds for analytic functions
A (x ) and pp(x ) without extra restriction on the behavior
of these functions at the fixed points.

associated with the repelling fixed point x =0 (with
n HN). According to Eqs. (3.62) and (3.63), the dimen-
sions of the invariant subspaces corresponding to s =0,
—p, and —2p are, respectively, 2, 1, and 3.

The systematic theory developed herein allowed us to
recover this result and, furthermore, to achieve the expli-
cit construction of the associated radical vectors. Actual-
ly, the radical vectors of the different intervals (3.37)
must be matched together at the fixed points in order to
construct radical vectors which are globally defined on
the real axis. Let us first consider the eigenvalue s =0,
which is common to the four intervals. 3 priori, we have
four different eigenvectors in the four different intervals.
Therefore, we have here an eigenspace of apparent di-
mension 4 obtained by linear combinations of these eigen-
vectors with four independent parameters. However,
comparing (3.42), (3.45), and (3.50), we see that the right
eigenvectors P', ' must be matched together at the points
x =+v')Lt in order to maintain the consistency of the
spectral decomposition. The matching at two points
therefore reduces by two the number of independent pa-
rameters so that the eigenspace is of dimension 2, as ex-
pected.

On the other hand, the eigenvalue s = —p is concerned
with the escape dynamics from the repelling fixed point
x =0 and appears only in the internal intervals 1+ so that
the apparent dimension of the associated eigenspace is
equal to 2. Comparing (3.43) and (3.46) with (3.53), we
observe that this eigenvector is pointlike at x =0. A
matching must be carried out at this fixed point, which
introduces one constraint so that the dimension of the as-
sociated eigenspace is equal to 1, as expected.

The situation is more complicated for the eigenvalue
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s = —2p, but the reasoning is strictly the same. Here the
invariant (radical) subspace is apparently of dimension 6
since each of the external intervals 2+ contributes by one
dimension and each of the internal intervals 1+ by two
dimensions. In (3.54) —(3.57), we observe that P2,

+' is
pointlike at x =0, while Pz''b+' is pointlike at x =+V@.
Symmetric pointlike radical vectors are found in the sym-
metric interval 1 —.As a consequence, we have to carry
out a matching three times at the three fixed points. (We
emphasize here that the matching concerns the distribu-
tions which are pointlike. ) The dimension of the radical
subspace is therefore reduced from 6 to 3, again as ex-
pected from (3.62) and (3.63). In conclusion, the present
theory is in full agreement with the trace formula result
[9].

A final remark is in order about the Jordan blocks ap-
pearing in the spectral decomposition and the related
time dependence in t exp( npt—). The origin of this
phenomenon lies in the degeneracy of the stability ex-
ponents of the repelling and attracting fixed points. Since
the stability exponents are in the ratio A,

'*'= —2k' ',
some of the eigenvalues (3.62) and (3.63) of the Liouville
operator turn out to be degenerate, which is a necessary
condition for the existence of Jordan blocks in the spec-
tral decomposition of the Liouville operator. The calcu-
lation in Appendix C proves that this is indeed the case.
For a more general vector field, such degeneracies should
not exist. As a consequence, Jordan block would not ap-
pear and usual exponential decay would hold.

IV. COMPARISON BETWEEN THE LIOUVILLE
AND FOKKER-PLANCK EQUATIONS

As mentioned in the Introduction, a probabilistic ap-
proach to bifurcations has been developed in the past at
the mesoscopic level of description [7—9]. The starting
point is to augment the deterministic description Eq. (2.1)
by a random force accounting for the effect of fiuctuations
or disturbances of external origin. One obtains in this
way a stochastic differential equation known as the
Langevin equation

x=F(x;p)+W, (4.1)

in which the random force W is usually modeled as an
isotropic Gaussian white noise

(W(t)) =0, (W(t)W(t')) =2DI5(t t'), —(4.2)

where I is the identity matrix. It is well known from
probability theory that Eqs. (4.1) and (4.2) define a
diffusion process, whose probability density p satisfies the
Fokker-Planck equation

d,p+V. (Fp)=Dip . (4.3)

fppp= —V (Fp)+Dip . (4.4)

We note that the Liouville operator is recovered in the
limit D —+O. As a consequence, we may wonder whether

Fokker-Planck equations such as (4.3) are known to
admit standard spectral decompositions in terms of the
eigenvalues and eigenvectors of the linear operator [24]

F(x)= —B„U . (4.5)

The function p =JVo exp( —UiD ) is known to be the sta-
tionary solution of the Fokker-Planck equation corre-
sponding to the eigenvalue o O=O (JVO is a normalization
constant). The Fokker-Planck equation (4.3) can then be
transformed into a Schrodinger-like form by setting

Up=exp — f .
2D

(4.6)

The equation for the function f becomes

B,f= Bf, —

where we introduced the Hamiltonian-like operator

H = —DB„+@,

(4.7)

(4.8)

with the function 4 playing the role of a potential in the
Schrodinger equation

e = —,'a'„U+ (a. U)' .
1

4D
(4.9)

The operator H is self-adjoint contrary to the Fokker-
Planck operator, whose adjoint is L Fp =Dh+F. V. Typ-
ically, the "potential" 4 is indefinitely growing at large
distances x ~+Do so that the eigenvalues of A' are
discrete. Solving the eigenvalue problem of P,

= —o (4.10)

we obtain the right and left eigenfunctions of the
Fokker-Planck equation

U
Lppg = cr q& with y =exp — g, (4.1 1)

Lppy =o y with y =exp + g, (4.12)
U

2D

in terms of which we have the same spectral decomposi-
tion as in the previous sections with the biorthnormality
relation (f&,y„)=i5

p(x, t)= g (y,po) exp(o t)y (x) .
m=0

(4.13)

We now consider, successively, the linear and the
pitchfork bifurcation model analyzed already in the pre-
vious sections.

there is a close relationship between the eigenvalue prob-
lems of the deterministic and stochastic systems. The
purpose of this section is to show that it is indeed the
case. This will lead us to a better understanding of the
meaning of the spectral decomposition of the determinis-
tic Liouville equation and, in particular, of the status of
the generalized functions (distributions) encountered in
this decomposition.

Before we begin the analysis we recall that, for the
one-dimensional systems we are concerned with, the vec-
tor field can be obtained as the gradient of a potential U
according to
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A. The case x =p.x lim y (x;D)=( —1) 5' '(x) (p&0)
D~O

(4.21)

For this linear case, the vector field is F(x ) =px, while
the corresponding potential is U = —px /2. The
Schrodinger-type potential is harmonic, given by

2
C= p x'+~

4D 2

so that the eigenvalues are

= —Ipl(m+1) for p)0,
= —Iplm for p&o,

(4.14)

(4.15)

(4.16)

and for p) 0

q) =J)/ H(ax'),

with m =0, 1,2, 3, . . . . They precisely coincide with the
eigenvalues of the Liouville equation in this special linear
case: o„=s„.However, here the right and left eigenvec-
tors are functions involving Hermite polynomials rather
than distributions: for p &0,

=JV H (ax)exp — xI pl

(4.17)
=IV H (ax),

if the renormalization constant is fixed to JV
=a +'/&m in (4.17). Equation (4.21) is the result ob-
tained directly by solving the Liouville equation.

Conversely, the left eigenfunctions y in (4.17) are
polynomials of degree m. Since H (g) =(2g)
+O(g '), the monomial of higher degree dominates
the other monomials when a~ ~. As a consequence, we
obtain the left eigenvectors of the Liouville equation

m

limy (x;D)= (p&0),
D o

' mt
(4.22)

B. The case x =px —x

The Langevin equation reads

with the normalization constant A' =
I (2a) m!]

In conclusion, we recover the spectral decomposition
of the Liouville equation by taking the limit D ~0 of the
spectral decomposition of the corresponding Fokker-
Planck equation. Let us remark that, before taking this
limit, one needs to modify the functional space X (R) of
the Fokker-Planck spectral decomposition because the
resulting distributions are not defined on X spaces.
Similar considerations hold for the case p & 0.

(4.18) x =px —x +8'(t) (4.23)

=JV H (ax ) exp — xlpl
2D

and its deterministic part undergoes a pitchfork bifurca-
tion at p=0. The vector-field potential is

with a =& p I
/(2D ) and the Hermite polynomials

Ho(g) = 1, H, (g) =2/, H2(g) =4/ —2, . . . . (4.19)

x4U= —~x'+
2 4

and the Schrodinger-type potential is

(4.24)

We can now understand what happens in the limit D ~0
or a~ ~. Let us consider the attracting case p &0. The
right eigenfunctions y„are products of Hermite polyno-
mials with a Gaussian of vanishing width (proportional to
&D ~0). The efFect of Hermite polynomials is to intro-
duce nodes in this peaked function so that the eigenfunc-
tion has successive maxima and minima, all occurring in
a small domain of width &D around the fixed point
x=0. The integral of y with an arbitrary function
would give asymptotically (D~0) the mth derivative of
the function at x =0. Let us apply this reasoning case by
case. Since the first Hermite polynomial is constant, the
eigenfunction qro converges to the Dirac distribution 5(x )

as D —+0 up to an appropriate constant. This result is ex-
pected from the term n =0 of the deterministic spectral
decomposition (2.18). Similarly, the next eigenfunction
y& has a minimum and a maximum on each side of x =0.
Considered as a distribution, y, is converging to the first
derivative —5' '(x) of the Dirac distribution as D~O.
This reasoning can be developed systematically thanks to
the Rodrigues formula according to which I22]

2

(x —p) ++——x
4D 2 2

(4.25)

60

20—

LI
-20

This potential is depicted in Fig. 2. When p & 0, the three
minima tend to the same level as D —+0, so that we may
expect quasiharmonic behavior in the three wells, which
correspond to the three fixed points: the two stable ones
x =+v'p and the unstable one x =0. On the other hand,
there is only one well when p & 0. The rescaling

dm
H (g) =( —1) exp(g ) exp( —g' ) .

m
(4.20)

0
X

Since the Dirac distribution is the limit of a Gaussian
function of arbitrarily small width, we obtain

FICx. 2. Schrodinger-type potential (4.25) for the Fokker-
Planck equation of the pitchfork bifurcation for two values of
the parameter p below and above criticality.
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FIG. 3. Eigenvalues o. of the Fokker-Planck operator {4.4)
of the pitchfork bifurcation versus the bifurcation parameter p.
The eigenvalues o. are compared with the eigenvalues
s„= n~ p—

~
of the deterministic Liouville operator.

x~D' x, t~D ' t, p~D IM, o ~D' o.

(4.26)

shows that the diffusion coefficient can equivalently be set
equal to unity (D = 1) and that the limit D ~0 is
equivalent to the limit ~p, ~~ ~.

We have numerically integrated the eigenvalue equa-
tion (4.10) to obtain the eigenvalues o and the corre-
sponding eigenfunctions as a function of the parameter p
through the pitchfork bifurcation (see Fig. 3). For large
and negative values of p before the pitchfork bifurcation,
x =0 is attracting in the deterministic system with a sta-
bility exponent A, = —

~ p~, so that the problem is essential-
ly identical to the case p (0 of the linear model. Indeed,
all the eigenvalues are well separated and we see that they
converge to the simply degenerate eigenvalues s„=—

~ p ~
n

of the Liouville equation. This behavior is confirmed by

0.2 0.2

o 0

-0.2
-5 0

-0.2
-5

X

0.2 0.2

o 0

- (c)
-0.2

0
X X

0.2

o

- (e)
-0.2 I

0

FIG. 4. {a)—{e) Right eigenfunctions {4.11) associated with the five lowest eigenvalues of the Fokker-Planck operator below the
pitchfork bifurcation p & 0. The dot marks the location of the single attracting fixed point.
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s„=0,—p, —2p, —3p, —4p, —5p, . . . ,

g„=2,1,3, 1,3, 1, . . . .
(4.27)

Indeed, the deterministic eigenvalue so =0 corresponds to
two independent Dirac distributions centered respective-
ly on the two attracting fixed points x =+&p, . In the
stochastic system, we have the stationary state of even
parity

inspection of the eigenfunctions in Fig. 4, which resemble
the eigenfunctions of the harmonic oscillator.

The situation is different beyond the bifurcation at
p & 0. We observe that the eigenvalues again converge to-
ward the Liouville eigenvalues as p~+ ~. In this limit,
we observe a clustering in the way predicted by the de-
generacies g„of the deterministic eigenvalues, which are

yo=&oexp — + xp
2D

(4.28)

—(p/D )(x —+p) i
—(p/D)(x+ +p)

e e
—(p/D)(x —&p) —(p/D)(x+ &p)

(4.29)

(4.30)

The overlap between the exponential tails explains the ex-
ponentially small separation between the eigenvalues. In

with the eigenvalue o.0=0. The left eigenfunction is
go=1. We also find another eigenvalue, which is ex-
ponentially close to cr 0

=0 [o, ——exp( D—'
) ], which

corresponds to a right eigenfunction of odd parity shown
in Fig. 5 [25]. For small D, these right eigenfunctions
reduce to

0.2

0

0 0

5 10 0.2

0 0

I

0
X

0
X

5 10 0.2

0

— (c)
-5 10

0
X

-0.2
-5 0

FIG. 5. (a) —(g) Right and (h) —(n) left eigenfunctions (4.11) and (4.12) associated with the seven lowest eigenvalues of the Fokker-
Planck operator beyond the pitchfork bifurcation p & 0. The dots mark the locations of the fixed points.
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the limit D ~0, one obtains the distributions

po —5(x —&p)+5(x+ &@),
D~O

(4.31)

5(x —&p) —5(x +&p),
D~O

(4.32)

which are linear combinations of even and odd parities of
Dirac distributions found for the Liouville equation.

The next right eigenfunction of cr2 is of even parity
[23]. The left eigenfunction tends to a Dirac distribution
centered with the unstable fixed point x =0 (see Fig. 5).
The corresponding eigenvalue s, = —p of the determinis-
tic Liouville equation is the first eigenvalue associated
with the unstable fixed point. The fact that we recover
this eigenvalue in the Fokker-Planck equation shows that
it is intrinsically associated with the problem and that it
is not an artifact of the method used in the previous sec-
tions.

Thereafter, a cluster of three exponentially separated
eigenvalues, corresponding to the triply degenerate eigen-
value —2p of the Liouville equation, appears

C. A correspondence theorem

We have seen that, far from bifurcation, there is an in-
teresting correspondence between the eigenvalue prob-
lems of the stochastic and deterministic systems, the
latter being in the noiseless limit (D —+0) of the former.
This correspondence can be rendered more precise with
the following theorem.

Let the one-dimensional vector field x =F(x ) possess a
countable set of separated fixed points Ix; I, F(x; ) =0,
without accumulation point and be such that none of the
stability exponents is vanishing

(x;)%0 .
dI'

(4.34)

The spectrum of the Fokker-Planck equation (4.3) con-
verges then to the spectrum of the Liouville equation in
the noiseless limit D —+O. Appropriate linear combina-
tions of the right and left eigenfunctions of the Fokker-
Planck equation converge in the sense of distribution to
the right and left eigenvectors of the Liouville equation if
there is no Jordan-block structure.

We can prove this theorem by noting that the
Schrodinger-type potential

lim a3, o.4, o.5= —2p . (4.33) e= ——a„F(x)F(x) 1

4D 2
(4.35)

In the deterministic system, two of these eigenvalues have
their right eigenvectors composed by first derivatives of
the Dirac distribution centered on the two stable fixed
points x =+&p and the left eigenvector of the remaining
eigenvalue is a first derivative of Dirac distribution, but
now centered on the unstable fixed point x =0. This is
confirmed by inspection of the right and left eigenfunc-
tions of o.3, o4, and o.

~ shown in Fig. 5. The right eigen-
function p4 converges to the even-parity combination
5'"(x —Vp) —5'"(x+&p). On the other hand, we ob-
serve in Fig. 5 that a weighted difference of the odd-
parity right eigenfunctions y3 and qv5 can be constructed,
which would converge to 5' "(x—&p ) +5' "(x+&p),
while the corresponding linear combination of the left
eigenfunctions qv3 and y5 would have a vanishing distri-
butionlike component when D —+0. Conversely, a
weighted sum of the right eigenfunctions y3 and y5 can
be constructed that has a vanishing distributionlike com-
ponent when D~O, although the same linear combina-
tion of the left eigenfunctions A&3 and y~ would converge
to the distribution 5'"(x ). In this way, we can establish
the correspondence between the spectral decompositions
of the stochastic and deterministic equations.

At the bifurcation p=O, the continuous spectrum of
the Liouville equation, which is the signature of the criti-
cal slowing down, is transformed into a discrete spectrum
at the level of the Fokker-Planck equation. In this re-
gion, the Liouville spectrum is of little use to understand
the eigenvalues and eigenfunctions of the Fokker-Planck
equation. However, in the limit D~0, the range of this
region shrinks to zero and the eigenvalues accumulate at
p=O so that we may understand why the deterministic
system has the continuous spectrum at p =0 described in
Sec. III.

is dominated by the first term as D ~0. Figure 6
schematically shows such a typical potential, formed by a
sequence of wells with minima at the fixed points. The
barriers between the wells grow when D —+0. Near the
fixed points the potential is approximately harmonic

4= (x —x;)—
4D ' 2

(4.36)
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FIG. 6. Typical Schrodinger-type potential (4.35) of a 1D
vector field with five fixed points. The dashed line is the poten-
tial for a relatively large value of the diffusion coefFicient D,
while the solid line is the same, but for a relatively smaller value
of the diffusion coe%cient, which shows the deepening of the
wells separating the fixed points.

since F(x)=A, (x —x;). As a consequence, the behavior
of the eigenvalues and eigenfunctions is that of a set of
harmonic oscillators near the bottom of the wells. As
D ~0, more and more of them join the set of harmonic-
like eigenvalues because the barriers grow. Therefore,
each well tends to become independent of its neighbors
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up to corrections which are exponentially small like
exp( D—') [25]. The eigenvalues of the Fokker-Planck
equation are given in terms of the independent harmonic
oscillators

lim o'„'(D ) = —
/
A, ; / n, +

D~Q 2
(4.37)

and are precisely the eigenvalues of the Liouville equa-
tion. Concerning the right and left eigenfunctions, the
preceding discussion shows that they tend to behave like
linear combinations of the results (4.17) and (4.18) locally
around each fixed point x, . In the limit D ~0, we already
proved that (4.17) and (4.18) converge to either the func-
tions or the distributions appearing in the spectral
decomposition of the Liouville equation in the limit
D~O when there is no Jordan-block structure. There-
fore, the same is true for the corresponding linear com-
binations, which ends the proof of the theorem. When
the Liouville equation presents a Jordan-block structure
as in Sec. IV B, a further analysis is required to establish
a correspondence between the eigenfunctions of the
Fokker-Planck operator and the eigenvectors and other
radical vectors of the Liouville operator, but we expect
that the correspondence extends to the general case also
under appropriate conditions. This discussion of the
correspondence between the Fokker-Planck and the
Liouville equations sheds further light on our approach
to the solution of the Liouville equation.

V. CONCLUSIONS

In this paper we constructed explicitly the spectral
decompositions of the Liouvillian dynamics of nonlinear
vector fields possessing fixed points. The Liouvillian dy-
namics is commonly encountered in every statistical
treatment of dynamical systems so that these spectral
decompositions are governing not only time averages of
observables, but also dynamic properties such as
multiple-time correlation functions and associated power
spectra. We have shown that a special kind of mathemat-
ics is necessary to describe the spectral decomposition of
the Liouvillian dynamics of deterministic systems which
involves distributions rather than regular functions used
in noisy systems.

We have essentially limited the analysis to one-
dimensional vector fields, especially a canonical model of
the pitchfork bifurcation. We showed that the spectrum
is discrete below and above criticality, but becomes con-
tinuous at criticality, reflecting the critical slowing down
associated with bifurcation. Above criticality, the spec-
tral decomposition of the Liouville operator shows a
Jordan-block structure as a result of degeneracies in the
spectrum. This is the signature, at the spectral level, of
the phenomenon of symmetry breaking induced by the
pitchfork bifurcation.

We established a correspondence theorem between the
spectral decompositions of the Liouvillian operator
governing the deterministic dynamics and the Fokker-
Planck operator of the associated stochastic dynamics.
In particular, the eigenvalues of the stochastic problem

converge to those of the deterministic dynamics in the
noiseless limit if the system is far from criticality. On the
other hand, our results show that a discrete spectrum of
the Fokker-Planck operator may turn into a continuous
spectrum for the corresponding Liouville operator if the
system is at criticality. Our results are very general and
can be extended to other types of bifurcations involving
fixed points such as, in particular, the tangent bifurcation
and the Hopf bifurcation.
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APPENDIX A: RELATION BETWEEN THE
FUNCTIONAL SPACES (2.21) AND (2.22)

In this appendix we prove that the choice of the ob-
servable functional space (2.22) is the necessary and
sufficient condition so that the series (2.18) is well defined
in the sense of distribution once the density functional
space 9 is fixed as in (2.21). Indeed, if po(x)ECO" (IR),
there exist positive constants C and k such that the
coefficients of the series (2.18) are bounded by

~ f +"y "po(y)dy~ «Ck". Therefore, the averages ( A,p, )
obtained by applying (2.18) on an observable A (x ) C (

are bounded by

co [g(n) ()
~( A, p, ) ~

«C y, (e"'k)", (A 1)

„,~W("'(0)~ +- „g e""' f y "po(y )dy
n=Q n! —oo

(A2)

For an arbitrary positive number R &0, we can find a
function po(x ) H Co" (IR) such that (a) po(x ) ~ 0, (b)

po(x ) =0 for x (0, and (c) po(x) =1 for R «x «2R. For
this function po, the coefficients of (2.18) are bounded
from below according to

~ f + "y "po(y )dy ~

~ R "+ '.
Therefore, we obtain

which converges for all times t +0 because A is an entire
function, so that the spectral decomposition is well
defined.

Conversely, let us suppose that the average ( A, p, ) ob-
tained from (2.18) converges absolutely for all

po(x) BC~0" (R) and for all times t ~0, i.e.,
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n=0

I
~ '"'(0)

I ~.+ i

n. !

f 3 "pou')4' &
" ~~'"I(0)~ +- „

n! oo
(A3)

f dx P, +(x)A(x)

l dX S
exp~x 2x

which implies the absolute convergence of the Taylor
series of A (x ) and therefore its analyticity for ~x

~

& R.
Since R is arbitrary, we finally have that A H 6'. Q.E.D.

We remark that, if A(x ) EC "(R), which is the set of
infinitely differentiable functions with arbitrary support,
for instance, such as A(x)=(x +1) ', the average
( A, p, ) may diverge for certain initial densities po when
time is positive but small enough. For these reasons, we
have to adopt the choice (2.22).

A(x )+ A( —x)
2

l dX S
exp

2m rx 2

A(x) —A( —x)
2

f dx P, (x)A(x)

(83)

(84)

APPENDIX 8:
RELATION OF f,~ TO y, [EQ. (3.35)]

IN THE CRITICAL REGIME p =0

Our purpose is to show how the right eigendistribu-
tions of the critical Liouville operator are related to the
eigenfunction (3.35). We proceed by transforming the
Gamma function appearing in (3.25) into a contour in-
tegral using Hankel's formula [22]

We recognize in these formulas the eigenfunction (3.35).
The even-parity formula (83) still contains an extra term
A (0) on its right-hand side which is due to the discrete
eigenvalue s =0 rather than to the continuous spectrum.
In order to remove this term, another contour I" shown
in Fig. 8(b) is used in terms of which both the even- and
odd-parity sectors are handled similarly

f dx P,+(x ) A (x)

f dt( t ) 'exp( —t —),
2& C

(81)
l dX S

exp2' I" x 2x
A(x)+A( —x)

2
(85)

1 s
2I (n/2) 2

n/2 —1

l
dx x expn —3 s

277 I 2x

(82)

where C is the contour of Fig. 7.
Multiplying (Bl) by a monomial in s and changing the

integration variable to x = [( —s )/( 2t )]'~, we see—that
the corresponding parts of the distributions (3.29) and
(3.31) are transformed into

f ds exp
oo 2XO

s

2x

2X Ox

2 2X XO
(86)

The relation of the right eigendistributions (3.29) and
(3.31) to the eigenfunction (3.35) is now straightforward.

To prove the equivalence of (85) with (83) and (84), we
multiply (85) by exp[s/(2xo)] and we integrate over

J ds. Because of

where I is the contour of Fig. 8(a). Thanks to this in-
tegral representation of the individual terms entering the
distributions (3.29) and (3.31), we can express the action
of these distributions on an observable A (x) as the con-
tour integrals

we get

~ Im x

-x
0

Ret

I ' = li2-- +1/2 —(

FIG. 7. Contour C entering in the Hankel formula (Bl).
FIG. 8. (a) Contour I entering in Eqs. (83) and (84). (b)

Contour I ' used in Eqs. (85) and (87).
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f ds exp
OO 2x0 fdx P,+(x)A(x) i A(x)+A( —x)

dx
2% I" 2

1 1

x —lxa I
x+ lxa I

A(x)+ A( —x)
2

—A (0) (even parity)

A(x) —A( —x)
2

odd parity
(87)

This result is obtained because the integration with the
contour I" gives a full contribution at x = lxa l plus a half
contribution at the origin x =0 (see Fig. 8). The result
(87) is identical to the result we would have obtained us-
ing (83) and (84) instead of (85). Thanks to (87), we also
proved as a corollary the completeness of the spectral
decomposition

I

This eigenspace gives us the invariant probability density.
Subtracting this asymptotic behavior from the full

average and changing the integration variable from y to x
we get, using (3.48),

(A ), —A(&p) f p0(y)dy

A(x )= A(0)+ g f ds( A, Q, )y„(x ) .
P

oo

APPENDIX C: CONSTRUCTION
OF THE SPECTRAL DECOMPOSITION
IN THE SUPERCRITICAL REGIME p & 0

(88) p i exp( pt)—
[p, —x +x exp( 2pt—)]

X [A(x)—A(&p)]

=f "dx

x &p exp( pt)— ,

PO 2+p —x +x exp( 2pt)—
(C2)

Our purpose here is to explicitly construct the first
three invariant (radical) subspaces of the spectral decom-
position (3.49) in the internal interval (0, +v p), denoted
as 1+. We start from the phase-space averages in either
the final position x or the initial position y =xo, given by
Eqs. (3.47) and (3.48). Taking the limit t ~+ oo in (3.47),
we get

In the limit t ~ ~, Eq. (C2) leads to

exp(pt) (A ),—A(v'p) f "p0(y)dy

3/2
~pa(0) f 2

[A(x)—A(/p)],
0 (p —x )

(C3)

( A ),~A(V'p) f p0(y)dy, (Cl)
0

from which we immediately obtain the first eigenspace as-
sociated with the eigenvalue s0=0 [(3.50) and (3.51)].

I

so that we can identify the second eigenspace associated
with s, = —p [(3.52) and (3.53)].

Subtracting now the first two terms from the term
average, we get

'"ex
dx [A(x)—A(&p)]

p —x +x exp —2pt
r

x&p exp( pt)—X Po +p —x +x exp( 2pt)—2 2p —x +x exp( 2pt)—
p x

p0(0) .

3/2

3/2
( A ), —A(&p) f p0(y)dy —exp( pt)p0(0) f — [A(x)—A(&p)]

(C4)

=f "dy A
+y + (p,

—y ) exp( 2pt)——A (&p) p0(y)—

In (C5), the behavior of A around y =&p is given by

2—A(V'p) = A'(Vp) — exp( 2pt)+O((—y —&p) ) .
+y + (p —y ) exp( —2pt ) 2+p

p0(0) (C5)

(C6)

On the other hand, the function pa appearing in (C4) is expanded in a Taylor series of the variable
[x&p exp( —pt )/+p —x ] and we keep the leading term of the series given by

2 2
3/2

x&pexp( pt) —p —x +x exp( 2pt)—
Po p0(0)

+p —x' +x exp( —2pt ) p x

(C7)=pa(0) exp( pt)+0(x exp(—2pt)l(p —x )) . —
2
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From Eq. (C6), we infer that the term we need to subtract from the bracket containing A (x ) in (C4) is
A'(&p)(x —p)/(2&p). The subtracted term must then be added as a remaining term. Accordingly, Eq. (C4) is split
in two different parts

3/2
( A ),—A(Vp) f "p,(y)dy —exp( —pt)p, (0)f [A(x)—A(&p)]

'"ex 2—= f "dx P P A(x) —A(&p) — — A'(&p)
[p —x +x exp( —2pt)] ~ 2&p

2
'(0) x p

( — )+0 x exp( —2pt)

A '(&p) exp( 2pt —)f dy po(y )—
2 y +(p —y ) exp( 2pt—)

3/2

po(0) (C8)

where we used (C7) as well as a change of integration to y =xo in the last term, as done in (C5). As a consequence of
the change of variable, x —p has been transformed into the particular function of y and exp( —2pt ) appearing in the
last integral of (C8).

Let us discuss the two terms composing (C8). The integral of the first term is convergent near x =0 and x =&p since
the bracket involving A behaves like (x —&p) near x =v'p. This suffices to compensate for the singularity which ap-
pears in the denominator in the limit t ~+ ~, so that the integral is finite. As a consequence, we can perform the limit
t ++ ~ in this—first term and identify a rheaningful coefficient to exp( 2p, t ). —

However, the second term is problematic near y =0 since the bracket with po behaves like y, while the denominator
behaves like y after the limit t ~+ ~ is taken so that this integral is divergent. To avoid this divergent integral, we
add and subtract a term behaving like ypo(0) in this bracket and get

3/2
( A ),—A ( &p )f po(y )dy —exp( p t )po(0—)f 3& [ A (x )

—A ( &p ) ]

'"ex 2= f "dx . . . , A(x) —A(&p) — — A'(&p)
[p —x +x exp( 2pt)] ~— 2Vp

X .po(0) exp( p,t)+0-x V'p x exp( —2p, t )

&p —x' p x

A '(&p)exp( 2pt )f dy—
2 y +(p —y ) exp( 2pt)—

X po(y )—
3/2

po(0)—,po(0)
p

3/2 2

A '(&p)po(0)exp( 2pt )f dy-
y +(p —y ) exp( 2pt) p, —y— (C9)

The integral of the second term of (C9) is now convergent. The newly added third term is still problematic if we carry
out the limit t —++ ~ before the integral. However, a divergent integral does not arise if the integral is performed be-
fore the limit t ~+ ~ because we have that

pt
1 —exp( 2p, t)—fV'p y

y +(p —y ) exp( 2pt)— (C10)

In this last term, therefore, an extra power of the time t, which is at the basis of the existence of a Jordan block, ap-
pears.

Finally, we get the asymptotic behavior
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3/2
( A ),—A(&p) f po(y)dy —exp( p—t)po(0) f [A(x) —A(&p)]

2 2=exP( 2ljt—)Pc(0)f A (x )
—A (&P )

— — A '( &P )
(p —x ) 2&@

2—exp( 2p—t) A'(V p) f dy po(y)—
3/2

po(0) —
2 po(0)

p
5/2

t exp(—2pt—) A'(V p)po(0)+O(exp( 3pt—))+O(t exp( 4pt))—, (Cl 1)

from which we can identify the third invariant subspace associated with s2= —2p, , given by (3.54) —(3.S7). We have
therefore obtained the spectral decomposition (3.49).
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