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Several neural network models in continuous time are reconsidered in the framework of a general
mean-field theory which is exact in the limit of a large and fully connected network. The theory
assumes pointlike spikes which are generated by a renewal process. The e8'ect of spikes on a receiving
neuron is described by a linear response kernel which is the dominant term in a weak-coupling
expansion. It is shown that the resulting "spike response model" is the most general renewal
model with linear inputs. The standard integrate-and-fire model forms a special case. In a network
structure with several pools of identical spiking neurons, the global states and the dynamic evolution
are determined by a nonlinear integral equation which describes the efFective interaction within
and between different pools. We derive explicit stability criteria for stationary (incoherent) and
oscillatory (coherent) solutions. It is shown that the stationary state of noiseless systems is 'almost
always unstable. Noise suppresses fast oscillations and stabilizes the system. Furthermore, collective
oscillations are stable only if the firing occurs while the synaptic potential is increasing. In particular,
collective oscillations in a network with delayless excitatory interaction are at most semistable.
Inhibitory interactions with short delays or excitatory interactions with long delays lead to stable
oscillations. Our general results allow a straightforward application to different network models with
spiking neurons. Furthermore, the theory allows an estimation of the errors introduced in firing rate
or "graded-response" models.

PACS number(s): 87.10.+e, 05.90.+m, 82.40.Bj

I. INTRODUCTION

A. Temporal structure of neural activity

The theoretical description of neuronal activity has a
long tradition in both mathematics and biology [1—3] The
interest of physicists, however, seems to be more recent
and largely due to the work of Hopfield [4,5] which is
a continuation of earlier studies on associative memory
networks; cf. the reprint volumes [6,7]. The formulation
of Hopfield opened the path for an application of statis-
tical mechanics to the theory of neural networks [8,9]. In
the following years a large number of researchers stud-
ied the associative properties and the storage capacity of
the Hopfield network and extensions thereof. For reviews
consult [10—14].

In this paper we discuss a more recent development
in the field, that is, the role of time in neuronal activ-
ity. The potential relevance of temporal structure arises
from two diEerent sources. First, the signal of single neu-
rons has a pulselike structure. More precisely, it consists
of a sequence of action potentials, short spikes of the
membrane voltage. It is intuitively clear that the exact
spike times or the precise length of interspike intervals
may contain information which is not contained in the
time averaged mean firing rate [15—20]. In particular, in
all situations where fast reaction of a system is required
there is no time for temporal averaging and single spikes
should be important. A careful evaluation of experimen-
tal results has given some support to this idea [21—24].
Second, correlated changes in the activity of severa/ neu-

rons can convey additional information beyond the single
neuron activity [25—30]; for reviews see [31,32]. For ex-
ample, synchronous activity of a population of neurons
could have the additional meaning that these neurons
somehow relate to the same object in the outside world
[33—35]. Coherent oscillations as found in the visual cor-
tex of cat and monkey can be interpreted in the light of
this hypothesis [36—45].

Both aspects of time have been disregarded in the stan-
dard approach to neural networks. In all standard mod-
els, the output of the model neuron, be it discrete or
analog, is usually interpreted as the mean firing rate, a
time averaged quantity; e.g. , [4,13]. This is also true for
graded-reponse neurons where a membrane time constant
of the neurons is taken into account [5,46]. In formal as-
sociative memory networks, the role of time is mainly
restricted to the retrieval dynamics, except for those net-
works where temporal sequences of patterns have been
learned [47—54]. Some years ago, a formal model with
two time scales only was analyzed by Choi [55]. Re-
cently, however, a couple of more detailed models have
been investigated with respect to the temporal structure
of neuronal activity. In particular, several model net-
works of spiking neurons in continuous time have been
studied analytically [56—62].

Some of those investigations concern fully connected
networks of integrate and fire neurons. -In t-he one step-
version of this model, pointlike spikes are directly fed
into the central membrane equation, whereas in the two-
step or three-step model, spikes are low-pass filtered first.
The theory of Mirollo and Strogatz [56] which is applica-
ble to the one-step integrate-and-fire model in continu-
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ous time shows that almost all initial conditions eventu-
ally lead to perfect synchrony. This is difFerent in the
discrete-time version of the one-step integrate-and-fire
model without external input current [63]. The global be-
havior of integrate-and-fire networks in continuous time
can be described with dynamic mean-field equations as
discussed by Kuramoto [57] for the one-step, by Tsodyks
et al. [60] and Treves [61] for the two-step, and by Abbott
and van Vreeswijk [62] for the three-step model. A sim-
ilar approach for discrete-time dynamics has been taken
by Usher et al. [64]. Tsodyks et al. [60] discuss the efFect
of small inhomogeneities induced by variations in the pa-
rameters in a standard two-step model. Treves [61] has
studied transients and adaptation in the generalized two-
step model with two different ion currents. His approach
applies not only to homogeneous networks, but also to
systems consisting of several pools; cf. Sec. II C. Abbott
and van Vreeswijk [62] have analyzed the stability of sta-
tionary states in the generalized form of the three-step
model. Finally, simulation studies show that a network of
integrate-and-fire neurons can be used as an associative
memory [65,66].

In contrast to integrate-and-Are models which are usu-
ally stated in the form of differential equations, the spike
response model [58,59,67—71] is based on the idea of re-
sponse kernels which describe the integrated effect of
spike reception or spike emission on the membrane po-
tential. The properties of single spike response neurons
and networks thereof have been investigated in [58,67].
A large and fully connected network of spike response
neurons has been used as an associative memory for a
finite number of patterns [58]. Collective states of such
a network have been studied both in simulations and an-
alytically [58,59]. In particular, the dynamic evolution
of homogeneous networks has been described by an in-
tegral equation for the instantaneous activity averaged
over the network. The stability of stationary and os-
cillatory solutions has been analyzed in the low-noise
limit [59,70,71]. In addition to stationary and oscillatory
states, the potential relevance of spatiotemporal spike
patterns has been demonstrated [69]. An extended ver-
sion of the model that includes local inhibition and some
inhomogeneities by variations in the parameters can be
found in [68,72]. A homogeneous model in discrete time
and nonlinear synaptic transmission has been studied by
Bauer and Pawelzik [73].

A couple of other models have been used in studies
of large neural systems. The standard model of single
neuron activity is the Hodgkin-Huxley model [3], a set of
four coupled differential equations to describe action po-
tentials in the giant axon of the squid. Compartmental
versions of the model with additional ion currents have
been used by several groups [74—77]. Due to the com-
plicated system of nonlinear equations, network studies
have been limited to simulations, usually with a small
number of neurons only [78—80]. There are several other
simulation studies based on difFerent versions of nonlinear
difFerential equations [39,81—85]. Analytical results with
a piecewise linear neuron model have been achieved by
Abbott [86]. Oscillations can also be found in networks
of formal two-state neurons with local inhibition [87]. I' i-

nally, several researchers have used the Kuramoto model
[88,89] to describe collective oscillations in neuronal net-
works [90—94]. A slightly difFerent version of this model
has been studied by Kurrer and Schulten [95]. Depending
on the level of intrinsic noise they find a phase transition
from the quiescent state to a collective oscillation.

B. Overview

In this paper we address four major topics.
(1) The first and central question concerns the rela-

tion between difFerent model neurons frequently used in
neural network studies. In Sec. IC we give a short re-
view of some of the more popular model neurons and
introduce our notation. In Secs. IIA and IIB we show
that, with a simple renewal assumption, all of the spik-
ing model neurons can be analyzed in terms of two linear
response kernels which describe the efFect of a spike on
the emitting and the receiving neuron. The kernels allow
us to establish a relation between various model neurons,
in particular between different versions of the integrate-
and-fire neuron and the spike response model. Another
popular model, the graded-response neuron, is based on
a firing rate description. How rate models can be related
to spike models is the question which we address in Sec.
III 8. In particular, we derive a systematic estimation of
the errors introduced, if neuronal activity is described by
the graded-response model.

(2) If a relation between diff'erent neural network mod-
els can be established, it would be desirable to have a
general theory of the global network dynamics which con-
tains the various models as special cases. This is the sec-
ond topic which is addressed in this paper. A possible
approach to this question is presented in Sec. II C where
we introduce the concept of pools of equivalent neurons.
The pool concept in combination with the renewal as-
sumption allows us to derive a general equation for the
collective pool dynamics. Specification of the response
kernels leads back to the different model networks.

(3) Our approach by pool equations allows us to ad-
dress a third topic. In some models, the basic units of a
network are not considered to represent single neurons,
but rather localized populations of neurons. Wilson and
Cowan [96] have derived macroscopic equations for the
dynamics and interactions of pools of neurons, but their
results are limited to a rather special case. In many other
models, ad hoc nonlinear differential equations have been
used to describe the effective pool dynamics. Here we ad-
dress the question of whether a systematic derivation of
the efFective dynamics and interaction of pools of neu-
rons is possible, if the single neuron dynamics is known.
The central ideas and results regarding this question are
presented in Sec. II C.

(4) The final topic of this paper concerns the stabil-
ity of collective network states, in particular, of coherent
oscillations. Several researchers have studied collective
oscillations using rather specific network models. Here
we address the question of whether it is possible to find
universal, that is, model independent, stability criteria.
A fairly general answer is derived in Sec. IIID. The re-
sults can be applied to various versions of the integrate-
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and-Are model and the spike response model, both in the
case of excitatory and inhibitory interaction. This also
solves the question of whether excitatory or inhibitory
interactions are more appropriate to sustain collective
oscillations.

In Sec. IV, our results regarding those issues are sum-
marized in a couple of conclusions.

C. Review of current models

Eiring rate modela

Neurons which are driven by some stimulus usually
emit action potentials, that is, short solitonlike pulses
of electrical activity which travel along the axon to the
synapses on the dendritic trees of other neurons and thus
carry the signal to them. If we count the number of ac-
tion potentials emitted by a neuron in some time interval
and divide by the length of the interval, we And the mean
firing rate of the neuron. By definition it is a time aver-
aged quantity, typical time windows ranging from 100 to
over 1000 ms. The dependence of the mean firing rate v,.

of neuron i upon its input h;,

dvi

dt (4)

The time constant w can be interpreted as a membrane
parameter 7 = RC where R and C are resistance and,
respectively, capacitance of the neuron. For later conve-
nience, we transform (4) into a differential equation for
the membrane potential. With h; = P &r J,~v~ we have

* = —h; + ) J;~g(h~).
dh;

j&I';

dA;
dt

(= —A+g ) J A- (6)

This is the neuron equation in the well known "graded-
response" model as discussed by Hopfield [5] and simi-
larly by Cohen and Grossberg [46].

In some models, Eq. {4)or (5) is used in a different in-
terpretation. The time averaged rate v; in (4) is replaced
by the spatially averaged activity A, (t) of a localized pop-
ulation of neurons. Thus instead of (4) we have

v, = g(h, ),

is called the gain function of the neuron. In all standard
approaches to neural networks, be it a feedforward or a
recurrent net, the input h, to a postsynaptic neuron i is
the sum of the incoming activity

Feldman and Cowan [97] have shown that (6) can be de-
rived from microscopic equations of a neuronal threshold
dynamics under the assumption that all quantities vary
only slowly in time. In other words, oscillations and fast
transients are neglected.

2. The model of Wilson and Conan

where the sum runs over all neurons which are presynap-
tic to neuron i, i.e. , I', = (j ~

j sends signals to i). The
prefactor J;~ denotes the synaptic eKcacy of a synapse
&om j to i and is adjusted by some learning rule. The
gain function g(h) is usually taken to be a sigmoidal, e.g. ,

g(h) = (1+tanhPh)/2. Equations (1) and (2) define the
rate model of neural activity as used in most standard ap-
proaches; cf. [13]. The solutions of the fixed-point equa-
tion

v; = g ) J,.zv~.

define the collective states in Gring rate models. Note
that all quantities are stationary, that is, independent of
time.

There are several ways to introduce a dynamics with
(3) as the fixed points. One possibility is by discretizing
time and reading Eq. (3) as a mapping from one time
step to the next, that is, v;(f + 1) = g[Q.~r J,~vq(t)].
In the following we concentrate on models in continu-
ous time. In this case, a rate dynamics can be de6ned
by introduction of a time constant r turning (3) into a
differential equation

A decade before the recent interest in neural networks
started, Wilson and Cowan [96] studied the dynamics of
interacting populations of neurons from a slightly differ-
ent point of view. They have derived an integral equa-
tion governing the dynamics of the local activity A(», t)
which, in our notation, reads

refr

(x, td+ d t) = 1 — ds A(x, t —s)
I

8„(tt(x, t)],
0

with h(x, t) = f dt'e(t —t') [g J(» y)A(y t')+~(tt)]
Here, A(», t) is the activity of an excitatory or inhibitory
population labeled by the index», P{t) is soine external
stimulus, e(s') is the synaptic response function, p"r' is
the absolute refractory period, and S (h) is a monoton-
ically increasing function, 0 & 8 & 1, which denotes
the portion of neurons that 6re at a stimulation level h.
The prefactor in curly brackets arises since neurons which
are refractory are insensitive to stimulation. Based on
a "time coarse-graining" procedure, Wilson and Cowan
transformed the integral equation (7) into a differential
equation.

A(» t) = —A(», t) + jk —P A(» t)) S [h(
dt
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with some constant k and the membrane potential
h(x, t) = g J(x, y)A(y, t) + P(t). As before, the term
in curly brackets arises due to the absolute refractory pe-
riod of the neurons. In the limit of vanishing refractori-
ness (p' ' ~ 0), (8) is equivalent to the graded-response
model in the interpretation (6). Wilson and Cowan [96]
studied the macroscopic dynamics of two coupled pop-
ulations, one excitatory and one inhibitory, by a phase
plane analysis of (8). The collective states exhibit a rich
behavior including hysteresis and limit cycles.

8. Integr ate and -flu e -models

Firing rate models like the graded-response model pre-
suppose that all relevant information is contained in the
mean firing rate, a time averaged quantity. In population
models, we study the local activity, a spatially averaged
quantity. In networks with spiking model neurons, we
take single spikes of single neurons as the essential infor-
mation allowing for a much better spatial and temporal
resolution. In the following spikes are always assumed to
be short pulses described by a b function. Thus the spike
train of neuron i is

8,' '(t) = ) h(t —t~),
f=1

(9)

where tf with 1 ( f ( F are the firing times of neuron
i. Spikes are labeled such that f = 1 denotes the most
recent spike, f = 2 the second last, and so forth.

In the integrate-and-fire model [1], the neuron is de-
scribed as a leaky integrator that fires, if the membrane
potential h(t) reaches a threshold 0 & 0 (for a review see
[98,99]). After firing the membrane potential is reset to
its initial value h(to) = 0. Between two spikes the change
of the membrane potential is described by the differential
equation of a BC circuit,

dh, .

t
' = —h, + R(I,' "+I;"'), . (10)

I,". "(t) = ) K,, ) h(t —t~),

where wi ——BC is the membrane time constant of a neu-
ron with resistance B and. capacitance C. The currents
I,'. "+I;" describe synaptic and external input, respec-
tively.

As mentioned before, spikes are assumed to be b-
function pulses. In the simple version of the model, spikes
of presynaptic neurons directly feed into neuron i. Thus

tional synaptic integration time 72. To be more precise,
we have

I;""(t)= , 1 ( s'l
ds' —exp

~

——
~ ) K,~)„;

(12)

In other words, the input current to neuron i consists of
pulses that decay with a time constant w2. Similarly we
can define a three-step model, if we introduce yet another
time constant and take

I,""(t)=
r2 73

s'5 r' s'5
ds' exp

/

——
/

—exp
/

——
r2) 0

rsvp

x ) K,~ ) b(t —t~ —s').

qual-,

f=1

For 72 ——v3, each presynaptic spike induces an input
current proportional to s' exp( —s'/v'z). This is considered
a fairly realistic description of the synaptic input [98].

The standard ansatz in integrate-and-fire models is the
linear differential equation (10). It describes the dynam-
ics in a BC ciruit with constant B and C. In real neurons
both B and C have an intricate voltage dependence, since
ion channels open and close as a function of the mem-
brane voltage and/or the ion concentration. Thus we
have to study a generalized version of (10),

(14)

As before, I,- is the external input current and I,' " is
the input from presynaptic neurons. As an example we
can take R(h) oc (h —hp) where ho & 0 is the reversal
potential for a typical ion, say Na+. Inclusion of several
ion currents with specific reversal potentials leads to an
even more realistic neuron inodel (e.g. , [74—77]). The
generalized integrate-and-fire model (14) is equivalent to
a pulse coupled p-hase model. To show this we set n(h)—:
B(h)/r(h), f (h) = —h/r(h), and require that a(h) & 0
and f (h) g 0. After a nonlinear transformation, (14) can
be written in the form

i' =1+~(4.)I.(t)

with I; = I,' " + I,", g = F(P) = J dP'/f(P'), and

p(g) = a[F (Q)]/f [F (g)] where F denotes the in-
verse of the function F(P). We call (15) the standard
form I. Alternatively, we can study the model in the stan-
dard formulation II, i.e. ,

where K;~ is a coupling constant and t denotes the firing
time of neuron j. We call this the one-step version of the
integrate-and-fire model.

Whereas a presynaptic action potential is a compara-
tively short pulse, the effective input to the postsynaptic
neuron is much broader due to the synaptic transmission
process. In the two-step version, we allow for an addi-

d—V, = G(V, ) + I;(t), (16)

with V = u(Q)—: f ding'/p(g') and G(V)
1/~[u '(V)].

Equation (16) has an immediate connection to the
model of Mirollo and Strogatz [56] which we sketch here
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briefj. y. The state variable V, of a unit i is bound to the
trajectory

V = min(V, + K,~. , 1). (i8)

V = uW') (i7)
where g is sozne phase variable and u is a monotoni-
cally increasing function with u" (g) ( 0. If V, (which is
related to the membrane potential) reaches the thresh-
old 0 = 1, then the unit fires and V; is reset to zero.
A free unit evolves according to @; = t and V, = u(t).
If another unit j fires at a time t-, we have an input

I;(t) = K,i b(t —t~) and the potential at tizne t is raised
from V; to

parency, however, it is more convenient to neglect adap-
tation and take E = 1. This is a rather strong simplifica-
tion and implies that refractoriness depends on the most
recent spike only,

hrefr (t) refr (t tl) (22)

This is a renewal property and mill be used throughout
Secs. II and III.

The second response function is the 8ynaptic kernel
e(s'). It describes the eff'ect of an incoming spike on the
membrane potential at the soma of the postsynaptic neu-
ron. If we add the contributions of all input signals me
have

Since the neuron is bound to its trajectory, this causes a
phase shift

h "(t)=) J;, ds'e(s') S~I
l (t —s'). (23)

A=/' —g=u '(V) —u (V),

where u (V) is the inverse of u(@). Mirollo and Stro-
gatz [56] could show that in a homogeneous and fully
coupled population of uznts defined by (17) and (18) al-
most all initial conditions eventually lead to synchrony.
This is an important result since it is based on a rigorous
argument and concerns the full state space of the system,
in contrast to local arguments based on a linear stability
analysis.

Spike fesponse model

refr for 0(8(p"'
/(S refr) fO + refr (20)

has proven to be useful for simulations. Here, p" ' is
the absolute refractory period during which the neuron
cannot fire again. For 8 ) p' ' firing is possible, but
more difficult (relative refractory period).

If a neuron fires several spikes in sequence, the efIects of
refractoriness can add up. Assuming linear superposition
me have

As before, spikes are generated by a threshold process,
or, more precisely, the firing time t,. is given by the con-
dition that h, (t, ) = 0 where h(t) is the membrane po-
tential and 0 the firing threshold. In the spike response
model, [58,59,67—71), the net efFect that firing has on the
emitting and the receiving neuron is described by two
difFerent response functions, e(s') and g" '(s). The re
ffactory function zl' '(s) describes the response of the
firing neuron to its own spike. Due to causality, g" '(s)
vanishes for s ( 0. In principal, fl' f'(s) could be adjusted
to experimental data. The simple ansatz

where 6 is the transmission delay and w, is a membrane
time constant. The step function 0(x) is equal to one for
x ) 0 and vanishes for x ( 0.

In principle, the synaptic response can also depend on
the state of the receiving neuron, in particular the time
8 that has passed since the last postsynaptic spike. This
efI'ect is included if we take a general response kernel
r, (s, s') instead of e(s'). As will be shown in Sec. II B,
this is the most general linear ansatz compatible with re-
newal theory. As an example, we consider multiplicative
dependence, i.e. , I"(s, s') = p(s) e(s') with two arbitrary
functions p(s) and e(s') for the postsynaptic and presy-
naptic contribution, respectively. The postsynaptic part
p(s) describes the receptivity of the receiving neuron and
e(s') is the synaptic response kernel introduced above.
Note that the receptivity p(s) is multiplicative whereas
the refractory kernel q" '(s) is an additive contribution.

The total membrane potential of a neuron i which has
fired its last spike at time t, = t —8 is the sum of the
refractory potential (22) and the synaptic potential (23),

h, (s, t) = h;"'(t) + fl" '(s)

+) r, (s, s') S,I l (t —s')ds'. (25)

The sum runs over all neurons j which are presynaptic to
neuron i and J;~ is the synaptic efIicacy of a connection
from j to i. In contrast to (22), here a superposition of
an arbitrary number (I" & 1) of spikes of a presynaptic
neuron is possible. The shape of the synaptic response
function can be chosen according to experimental results.
A useful approximation is a delayed n function [98,103],

~(~') =~(~' —& *) (,, I
exx I—

(24)

hrefr (t) dszl' '(s)Sf ) = ) vl'"(t —tf). (21)
f=1

Summation over several recent spikes (I" ) 1) is a simple
procedure to incorporate adaptation effects [58,100,101].
In fact, most neurons do exhibit a pronounced adapta-
tion; see, e.g. , [102]. For the sake of analytical trans-

The additional contribution h;."i(t) allows for external
input.

Equation (25) together with the threshold process for
firing defines the noise-free spike response model. In the
case of noise, the neuron can fire even though the mern-
brane potential (25) has not reached the threshold yet or
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it may pass the threshoM for a short time without firing.
A simple way of dealing with noise is by introduction of
a firing probability

Py (h; bt) = v (h) bt, (26)

'(h) = 7O exp[P(h —0)] (27)

in analogy to the Arrhenius formula of chemical reaction
kinetics. The parameter P is a measure of the noise. For
P ~ oo we are back to the noiseless threshold behavior.

Note that in simulations, a discrete version of the
model with finite time steps At must be used. In or-
der to find the firing probability in a finite interval Lt
we integrate (26) over time. This yields [58]

P~(h; At) = 1 —exp[ —r '(h) At]. (28)

The exponential factor arises since neurons can fire at
most once in a suKciently short interval of, let us say,
At = 1 ms. The function P~(h; At) exhibits the common
sigmoidal dependence upon h with 0 & P~(h; At) & l.

In (26) we have assumed that the firing probability
at time t depends on the momentary value of h(t) only
[58,67,71]. In principle, it could also depend on other
quantities like the derivatives of h (cf. below, Sec. III E)
or the time s that has passed since the last (postsynaptic)
spike [104]. Since the latter causes no difficulties in the
mathematical analysis, we will include it in Secs. II and
III, unless stated otherwise. Thus, instead of (26), we
have

P~ (s, h; bt) = 7. ' (s, h) bt. (29)

As before, the membrane potential h(s, t) = h'" (t) +
g" '(s) + h,'.""(s,t) introduces another, implicit, s depen-
dence into w

II. THEORETICAL FRAMEWORK

A. The renewal hypothesis

Renewal theory and the mathematics of point pro-
cesses have repeatedly been applied to the phenomena
of neural activity [17,18,105—107]; for an extensive dis-
cussion of single neuron renewal models see [99,108,109].
Here we review the basic ideas and introduce our no-
tation. We suppose that the state of a neuron can be
described by a set of variables v" (t) with 1 & k & m.
The number m of state variables depends on the specific
model. In the Hodgkin-Huxley model there are four dy-
namic variables [3], in compartmental models there may
be 20 or more (e.g. , [76]). In the following we gather the
variables into a vector v(t) C R,

In general, the state of a neuron i depend. s on the
present and past input from all other neurons and ex-
ternal sources as well as on its own history. The synaptic

where bt is an infinitesimal time interval. The instanta-
neous "rate" w (h) is an arbitrary function with w

oo for h )) 0 and w —+ 0 for h (& 0. A simple choice is
[58]

input consists of spike trains, a set of firing times t . ; cf.
Eq. (9). Similarly, the past of neuron i is reflected in
a set of spike times t, Regarding the external input we
assume a current with time course I;." (t). Thus the state
of neuron i is given by

where j runs over all neurons presynaptic to neuron i and
f E H is some arbitrary function.

It is the central hypothesis of a renewal theory of neural
activity that the dependence of v; upon neuron i's own
history goes back to its most recent spike only. This
allows us to drop the dependence upon t;, t;, . . . from

(30). With (S~(t'))—:(P& i b(t' —t ) ) j 6 I';) we can
replace (30) by

v, (t) = F[t —t,'; (S, (t') };(I;"'(t')
~

t' & t)]. (31)

In this sense we can say that the internal variables are
"reset" after each spike. This is a rather crude approxi-
mation to biology since neurons are known to have strong
adaptation properties (consult, e.g. , [102]). Neverthe-
less, for the sake of mathematical transparency we as-
sume throughout the following that neurons can indeed
be described by a renewal dynamics. As will be shown
in the following subsections, this assumption allows an
enormous simplification of the model equations.

In the context of renewal theory, it is convenient to con-
sid.er the survivor function which we introduce now. Let
us consider an ensemble of Ni independent and identical
neurons which all receive the same input from a second
ensemble Sz(t), 1 &j & %2. We assume that all neurons
in the first ensemble 1 & i & Nq have fired their last spike
at t,. = tf. Due to the renewal assumption, earlier spikes
are of no inHuence. Thus all neurons 1 & i & Ki have
the same evolution of the internal state v(t') for t' ) t~
as long as they do not fire again. If we allow for a certain
amount of noise, some of these neurons fire their next
spike a little earlier, others a little later. The probabil-
ity that a neuron "survives" the time from tf to tf + 8
without firing again is called the "survivor function"

(32)

The index v is a reminder that the survivor function de-
pends on the state v(t') during the interval tf
tf + 8. Since the portion of neurons which stay quies-
cent for the time 8 decreases due to firing, the survivor
function is a monotonically decreasing function with
lim, ~o S~(tf + s~tf) = 1 and lim, S (t~ + s~tf) = 0.
Given the function S (tf + s~tf), other quantities of in-
terest can be calculated. For example, the distribution
Dv(tf + sett) of interspike intervals is given by

D-(t'+ lt') = ——S-(t'+ It' )
d

ds (33)

The mean duration of the interspike interval is

v;(t) = f t,', t, , . . . ; (t, , t, , . . .
]j c I';),(I;."'(t') ~t' & t)

(30)
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(s) = dssD„(t~+ s~t~)
0

ds S„(tf+ s~t~).
0

(34)

v= (s)

The mean firing rate v is defined as the inverse of the
mean interspike interval

interval.
This closes our review of renewal theory. It will be

shown below that the survivor function determines the
dynamics in large pools of neurons. In this sense the
sole purpose of specific neuron models is to calculate the
quantity S„(tt + s~t~).

B. Classi6cation of pulse-coupled neuron models

Our considerations here have concentrated on an en8em-
bk of equivalent neurons which all have fired their last
spike at the same time t~. Note, however, that due to
the renewal assumption a long spike train of a single neu-
ron driven by a constant input exhibits the same interval
statistics as an ensemble of neurons driven by the same
input. Thus, for constant input, the mean firing rate de-
fined in (35) can also be determined from the spike train
of a single neuron by the standard procedure of counting
the number of spikes and dividing by the measurement

The connection between the internal state v;(t) and
the synaptic input {S~(t)) is given by (31). We use this
equation to classify the model networks with spiking neu-
rons which have been introduced in Sec. I C.

First, we take the external input as a constant,
I;" (t') = Io. Furthermore, we assume that the func-
tional derivative of F with respect to the synaptic input
functions S~(t') exists. A Taylor-Volterra expansion of
(31) in S~.(t') yields

v;(t) = r11, (t —t,') + )
"s J'~ J'~ ~r~. ..,i.(t —t;; s, s ) S, (t —s') Sk(t —s") + O(S, S,S,).

For the sake of notational convenience we have omitted
the specification j p I'; in the subscript of the sum. Also,
we have split the "Taylor coefBcients" into two factors,
i.e., a response kernel m which depends on the times 8
and 8' and a prefactor which we interpret as the synaptic
eKcacy J,.~. In the limit of weak coupling (J;z && 1),
the linear term dominates the expansion in Sj. In the
following we keep only terms to first order in J;j.

Spike msponae naodel

As mentioned above, we work in the limit of weak cou-
p»ng (J;, « 1) and neglect all nonlinear terms. As a
Grst specification we assume that the time course K~ ~ is
the same for all pairs of neurons. This allows us to omit
the subscript ij. Since the external input current is kept

constant, we also neglect the index I0. Furthermore we
restrict the model to a single variable v(t) = h(t) only.
What remains is the most general one-dimensional linear
model compatible with renewal theory. It is characterized
by the synaptic response kernel K( ) (s, s') and the free
trajectory il{s) where s and s' are the time after the last
postsynaptic and presynaptic spike, respectively. If we
identify il{s) with the refractory function q" '(s) we have
the spike response model as discussed in Sec. IC4. In
particular, if the synaptic response kernel is independent
of the state of the postsynaptic neuron, K( ) (s, s') = e(s'),
we can give a simple interpretation of the response kernel,
i.e. , it describes the excitatory or inhibitory postsynpatic
potential evoked by an incoming spike; cf. Fig. 1. This is
the standard form of the spike response model which has
been studied earlier [58,59,67—71I. Most of our discussion
in Sec. III concerns the spike response model with arbi-

0.2 0.2

O.O0.0 10.0
tS

20.0
8

[msj8

r

0.0 I

O.O

I
I
I
I
I

f f 1 0.0
t

20.0
8

ms'
8

FIG I. &espouse kernel of the spike response model. The figure shows the change Ah;. ""(t) of the synaptic potential of
neuron i in response to a single spike of a presynaptic neuron j. Neuron j fires at time t. and the firing of i occurs at t, We
define s' = t —tr and s = t —ter. Here we assume that the synaptic response kernel has the standard form m(s, s') = c(s') with

c(s') = (s'/r, ) exp( —s'/r, )8(s') and r, = 2 ms. In this case Ah;.~"(t) = e(t —t ), independent of. s; left: s & s'; right: s(s'
(dashed line). The response kernel is defined for s ) 0 only (solid line).
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trary synaptic response kernel rf l(s, s') and arbitrary
refractory function q" '(s) = rl(s).

g. Integrate an-d fir-e models

g(s) = BIp [1 —exp( —s/~i)].

The synaptic response function depends on the version
of the integrate-and-fire model under consideration. It is

Kf'l(s, s') = exp
/

——
/
0(s —s')

0(s') ( s' i
'ri ) (38)

The standard integrate-and-fire model (10) is a special
case of the spike response model. In order to compare the
two models, we introduce J;~ = BK,.~ . For the refractory
function, we take

where Vp ——V;(t. ) = u(vp, ) is the value of the variable
V immediately before firing and V' the new value after
firing; cf. (17)—(19). Consequently, its phase evolution is
gp(t}+ Ag g(t —tf). Note that the phase shift 4@ in re-
sponse to a single spike depends on the value of the phase
variable immediately before the spike arrives. If several
spikes have arrived in the time interval t,- & t'
then the phase @, has been shifted repeatedly. It follows
that the shift Ag due to the spike at t is a function
of the input I(t') for t, & t' & t . Thus, even though
(15) looks linear in I, the phase has an implicit nonlinear
dependence upon the input and a linear response kernel
is not sufficient to describe the dynamic evolution. We
conclude that, in general, phase models are in a model
class difFerent from the spike response model.

In the limit of weak coupling (K;,. « 1), however, we
can expand g in (15) in powers of I. With @(t) = t +
A, (t) + 52(t) + . we find

for the one-step model and
t

~.(t) = «'~(t')I(t') (41)
r„f'l(s, s') = 0(s') ( s'& ( s')

exp
/

——
/

—exp
/

——
/'ri) 4 72)

( s')
xg(s —s') + exp

i

——
i)

s sl
x exp

~

——+ —
~

—1 0(s' —s) . (39)
Tl 'r2)

&.(t) = , ~(s)l, I
I(t') dt" p(t")I(t"). (42)

Equation (41) allows us to calculate the synaptic re-
sponse kernel r„& l (s, s') as will be shown now.

for the two-step model. The three-step model with 7-1
——~3 yields

rf l(s, s) = s s exp~ ——~0(s —s)0(s')
2~1 ri)

s'l
+(2ss' —s') ssp

~

——
l
p(s' —s)).

The 0 functons in (37)—(40) take care of causality and
the fact that the membrane potential is reset at s = 0.
This is most easily seen in the one-step version. Here only
those spikes contribute to the synaptic potential for s ) 0
which have been fired after the last spike of the postsy-
naptic neuron at s = 0. Thus we have a factor 0(s —s').
Similarly, in the two-step and three-step version, only
the portion on the synpatic input current which arrives
after the last postsynaptic spike contributes; cf. Fig. 2.
In Sec. III, solutions for arbitrary Kf l(s, s') are given.
With the special form (38)—(40), we get the solutions of
the integrate-and-fire model in the standard form (10).
For the generalized form (14) of the integrate-and-fire
model, however, we have to use difFerent kernels which
we discuss now.

In order to relate the "phase model" formulation, (15)
and (16), to the previous approach, we have to calculate
the response of the neuron to a single incoming spike
I;(t) = K,~ b(t —tf). According to (15), a unit which
receives no spikes has a phase evolution @, (t) = t. On
the other hand, a unit which receives a spike at time t-
suffers a phase shift AvP:—Q,'- —g; = u [V'] —u [Vp]

3. Mi r ol lo- Strogatz naodel

Specifically, let us consider the linear response to an
input I;(t) = K;~ h(t t —A ")wh—er.e ti is the last spike of
a presynaptic neuron j and L is the signal transmission
time from j to i. We make the identification K,, = J,~. /~
and introduce s = t —t,. and s' = t —t . ~ We also take
care of the fact that the phase has been reset to 0 at t,
the last firing of neuron i. From (41) we find the linear
response kernel

I + +ax)
(i)( I) g(

I gax) +( s ) g(
I gsx)

7

Thus, for low input level, the phase model in standard
form I, cf. (15), corresponds to a spike response model
with g(s) = s and rf l(s, s') given by (43); cf. Fig. 3.
With the relation h(t) = u[Q(t)] and @(t) = t + Ai(t)
we can transform our result into the standard form II; cf.
(16). This yields a linear response kernel

~f')(s, s') = 0(s' D") —} g(s —s'+ ~ ")
~ p(s)

and the free trajectory g(s) = u(s).
As a special case let us consider u(s) = AIp [1

exp( —s/ri)]. This is again the trajectory of the standard
integrate-and-fire model (10). Taking the derivative of u,
we find p(s) = 1/u'(s) = (~i/RIp) exp(s/~, }. Equation
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FIG. 2. Response kernel of the integrate-and-fire model. As before, we consider a single firing event of a presynaptic neuronj at time t~ and plot the change Ah;."" in response to the firing. For s ) 0 (or t ) t/), the change Dh;."" is given by the
response kernel, namely, Ah;. ""(t)= e(t —t~, t —t~) (thick lines). The response for t~ & t & t~ is indicated by dashed lines. Left
column: Neuron j fires later than i (s & s'). The postsynaptic neuron experiences the full efFect of the presynaptic spike. Right
column: Neuron i fires later than j (s & s'). Due to the reset of the potential at time t/, the postsynaptic neuron experiences
only a partial input for s ) 0 (or none at all). (a) One-step integrate-and-fire model: The response is an exponentially decaying
pulse for s ) s' and vanishes for s & s' (ri = 4 ms). (b) Two-step integrate-and-fire model: The response is a smooth function
of time, but it is much smaller for s & s' (7i = 2 ms, rz = 4 ms). (c) Three-step integrate-and-fire model: The response starts
even smoother, otherwise it is similar to case (b) (ri = 7z = 7z ——2 ms).

(44) leads to the response kernel

0( I gax) (~(') (s, s') = exp ~— j
xo(s —s'+ E "). (45)

In the case of delayless interaction A " = 0, Eq. (45) is
identical to the response kernel which we have found ear-
lier (38). It is the exact kernel and not a weak-couphng
approximation, since (10) describes a linear model.

C. Dynamic mean-field theory

In Sec. IIA we have considered an ensemble « in«-
pendent neurons which receive sequences of spikes from
a diferent set of neurons. Now we turn to networks.
In this case, the input to a given neuron consists of the
spikes of other neurons in the same net. In order to de-
rive dynamic equations for the macroscopic behavior of
the system, we have to restrict the network structure.
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FIG. 3. Response kernel of the Mirollo-Strogatz model. In the "phase" description (standard form I), the response kernel is
a 9 function if s ) s' (left) and vanishes for s & s' (right). In the "voltage" description, the response kernel is similar to the
one-step integrate-and-fire model; see Fig. 2.
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The pool concept

Real neural systems have a high degree of connectiv-
ity. In the mammalian cortex, for example, each neu-
ron is connected to approximately 10 other neurons and
connections can span a considerable distance (see, e.g. ,

[27,110]). Thus, in contrast to most standard models
of statistical or solid state physics, an ansatz with near-
est neighbor interaction is a bad approximation to real
cortical connectivity. Rather we should consider a fully
connected system as a first approximation. This natu-
rally leads to an approach by mean-field theory which is
exact in the limit of a large and fully connected system.

In the following we study a network of N neurons in the
limit of N ~ oo. We assume extensively many connec-
tions, i.e., every neuron is connected to a finite fraction
of all other neurons. Furthermore, we assume that the
network consists of a finite number of pools L(x) where
x g K with K to be specified.

The concept of pools and the related concept of as-
semblies have been applied repeatedly to neural systems,
both in biological considerations (for a review see [ill])
and in mathematical theories (see, e.g. , [96,112]). In the
biological literature, pools or assemblies are sometimes
defined by common input (e.g. , similar receptive fields),
by common output (e.g. , targeting the same region of
the cortex), or by a common task (e.g. , dealing with the
same object). In the following we avoid the term "assem-
bly" which is multifaceted and prone to misunderstand-
ings. We stick to the simple term "pool, " take the most
restrictive approach, and assume that pools have both
common input and output connections. More precisely,
all neurons of a given pool are equivalent in the following
sense. For any neuron i C I (x) and an arbitrary neuron
j C L(y) the interaction strength J,~ and time course
m~ ~ depend on x and y only, i.e.,

J;, = ~L(y)~ 'J(x., y), for i c I.(x),j c I.(y),
(46)

tc; (s, s') = Ic (.x, y; s, s') for i E L(x), j E L(y).

The normalization ~L(y)~ denotes the total number of
neurons in pool L(y). If we allow nonlinear terms in

(36) we require similar relations for Ic, &. Equation (46)
is the central assumption of the pool concept. Equiv-
alent or similar definitions have been used by a num-
ber of authors [51,52,58,59,61,71,96,112—114]. For the
sake of simplicity, we assume throughout the following
tc~ ~(x, y; s, s') = m~ ~(s, s'), independent of the pool in-
dices x and y.

To be specific, we discuss two examples. First, let us
consider a two-dimensional sheet of cortex subdivided in
columns. According to the concept of Hubel and Wiesel
[115,116], all neurons in a given column have similar re-
ceptive fields characterized by the location r C K in
the visual field (or on the retina) and, possibly, some ad-
ditional parameter such as the direction 8 E [0, 2vr) of a
moving bar. Both the receptive field concept and the spe-
cific spatial organization suggested by Hubel and Wiesel
have repeatedly been questioned; see, e.g. , [31,117]. Here,

we take the columnar structure as a theoretical assump-
tion in an even more restrictive formulation. In or-
der to apply the pool concept we have to require that
all neurons in a column have identica/ receptive fields
and connections. Then each column can be labeled by
x = (r, 9) C K = R x [0, 2vr) and an obvious ansatz for
the interaction between i E L(x) and j F L(y) is

J;, =Ji(r, r') J2(e —0'). (47)
In the pool concept, all details of the real cortical con-
nectivity are neglected. The result is a network structure
which describes some basic features of the "mean cortical
anatomy, " In particular, we can take care of the mean
connectivity between difI'erent areas and layers of the cor-
tex with a similar ansatz [118]. Instead of adding more
details to (47), we can also simplify even further and ne-
glect the angle dependence. In this case, we can identify
the column L(x) with neurons in the neighborhood of
a location x E ]R on the two-dimensional sheet of cor-
tex. In this interpretation, an ansatz J,i ——J(x —y)
yields the spatial connectivity from neurons near point y
to neurons near x. This can be used to derive spatially
continuous modes as studied by Wilson and Cowan [119],
Feldman and Cowan [97], and others. For a derivation of
the spatially continuous formulation, see Sec. IlIA.

We now turn to a second example of the pool concept.
Let us consider an associative network which has to learn
a finite number of patterns ((~) = ((~ = +1; 1 ( i (
N) with 1 ( p ( q. A fairly general Hebb rule yields
synaptic efficacies of the form [120]

q

~v = ) .&i(&,")&2(&,"). (48)
p, =1

Examples include the asymmetric coupling J,.~ oc

i(,". ((". —a) or the symmetric coupling oc ((,".

a) (( —a) which have both been used for low activity ran-
2

dom patterns with a = lim~~ (N q)
0. For a = 0 we have the coupling of the Hopfield
model [4]. We focus on the "information vector" (;
((, , . . . , (, ) which neuron i has to store. For q patterns,
2q difFerent information vectors. If we keep q fixed while

taking N ~ oo, there are many neurons which deal with
the same information vector. This allows us to intro-
duce sublattices [113,114,121,122] or pools of equivalent
neurons by the definition L(x) = (i~(', = x). The in-

teraction (48) for i E I (x) and j C L(y) reduces to
J;i ——J(x, y) = P i fi(x")fz(y") and we are back to
the pool interaction (46).

2. Pool dynamics

In this section we derive dynamic equations for the
pool activity

A(x, t) = lim lim ~L(x)~
AtmO Nmoo

t+At
x ) d~'s,' '(~').

L.( )

We can use this definition in Eq. (36) and find for a
neuron i c L(x)
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v(x, s, t) = st(s) +) j ds'y(x, y)z ' (x, y; s, s')A(y, t —s')
y&K

+ ) f As ds y(» y)y(» z)z (x, y, z;s, s', s")A(y, t s')—A(z, t s"—)+ O(A ).
y, sPK 0

The sum runs over all pools including w since two dif-
ferent neurons i, j E L(x) indeed interact with J;z
J(x, x). In (50) we have also set J,; = J(x, x), introduc-
ing an error of order ~L(x)

~

which vanishes for N -+ oo.
We note that all neurons j C L(x) which have fired

their last spike at the same time, i.e. , t ~ = t, have the
same internal state; cf. (50). According to (49), the
portion of those neurons is A(x, t ). The probability that
one of these neurons fires its next spike at tf + s is given
by D (t~+s~t ); cf. (33). Thus neurons which have fired
their last spike between tf and tf +ds make a contribution
D (tf + s~t~)A(x, t~) ds to the activity of pool I (x) at
time t~ + s. If we keep t = t~ + s fixed and integrate over
s we find

A(x, t) = ds D„(tit —s) A(x, t —s).
0

(51)

This is an integral equation which describes the evolution
of the pool activity A(x, t). Note that (51) is invariant
under a rescaling of the activity A(x, t):CA(x, t) An.
additional equation that yields a normalization condition
for A(x, t) can be found as follows.

Let us consider the portion of neurons in L(x) which
have fired their last spike at t —s and have stayed
quiescent &om t —s to t. With (32) this portion is
9 (t~t —s)A(x, t —s)ds z If we look at the system at
time t, every neuron must have fired its last spike at
some point back in time. Integration over time yields
the normalization condition

and the effective pool dynamics. Our derivation shows
that this connection can be found in the rather abstract
setting of renewal theory. Specific examples will be dis-
cussed in Sec. III. In particular, the relation of this result
with the model equations of Wilson and Cowan will be
explained in Sec. IIIF.

We close this section with a final remark regarding the
relevance of the renewal assumption (Sec. II A) for the
derivation of Eqs. (51) and (52). Based on the renewal
hypothesis, we have been able to classify neurons by their
last firing time t and by their pool index w and we have
concentrated on the activity A(x. , t~). In order to make
the relation between Eq. (51) and renewal theory a lit-
tle bit clearer, let us assume for the moment that the
internal state v(t) depends not only on the last firing
but also on the second last. In this case, the expression
D (t~t —s)A(x, t —s)ds in (51) is not well defined, since
the interval distribution D depends on v and the in-
ternal state v may and, in general, does vary within the
group of neurons contributing to A(x. , t —s)ds. We can
take care of this problem, if we introduce the time s2
which has passed since the second last spike as an addi-
tional parameter and work with the generalized quanti-
ties D (t~t —s, t —s2) and A(x, t —s, t —s2). Similarly we
can generalize our approach to the situation where the
last k spikes are relevant [70]. Here, we do not want to go
into detail but we return to the renewal case and apply
Eq. (53) to specific network models.

1 = ds S„(tit —s) A(x, t —s).
0

III. APPLICATION TO SPECIFIC
NETWORK MODELS

Division of (51) by (52) yields

f ds D„(tit —s) A(x. , t —s)
A(x, t) =

f ds S„(tent —s) A(x, t —s)
(53)

This is the central equation which will be used through-
out the rest of this paper.

For a discussion of the equation we have to keep in
mind that both the interval distribution and the survivor
function depend on the internal state v(x; s, t') during
the interval t —s & t' & t. The internal state v(x; s, t') in
turn is dependent upon the activity of all pools A(y, t")
for t" & t', including the pool y = x; cf. (50). If the
connection between the survivor function and the inter-
nal state is known, we have a closed set of equations.
The missing link is supplied by specific network models
as discussed in Sec. III.

The combination of (53) with (50) yields a solution of
the third problem outlined in Sec. IB, namely, it gives
a systematic link between the single neuron dynamics

h(x; s, t) = g(s) + h'~" (x, s, t), (54)

with

h'""(x, s, t) = ) J(x, y) ds'K(s, s')A(y, t —s').
0

(55)

The first term in (54) describes the internal dynamics,
the second term is the total input h' ". We now turn to
the specific network models of Sec. I C.

Throughout the following we assume that the internal
state (50) has a linear dependence upon the input only.
In other words we neglect terms of second and higher
order in A. We also restrict our discussion to models
with a single internal variable v(t) = h(t) only. For the
sake of simplicity, we make the additional assumption
r~i~ (x, y; s, s')—:r(s, s'), independent of the pool indices
x and y. Equation (50) is then reduced to
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A. Spatially continuous networks

L(x) = (i~xi & x, , i & xi+ e;x2 & x;2 & z2+e). (56)

In a homogeneous, two-dimensional network, the number
of neurons in L(x) is proportional to e2, thus

IL(x) I
= ~" (57)

where p is the spatial densitiy of the neurons. It is con-
venient to renorinalize the weights (46) and introduce
scaled connections

J(x, y) = c J(x, y). (58)

With these definitions, we find from (55)

We remind' the reader that x in (54) and (55) is a
formal vector index denoting neurons in pool L(x). In the
simplified columnar interpretation (neglecting any angle
dependence) as sketched in Sec. IIC 1, however, we can
identify x E R, with a location on the two-dimensional
sheet of cortex and L(x) with the ensemble of neurons in
the neighborhood of x. Instead of the index i, neurons
can now be labeled by their coordinate x; = (x; i, x;,2).
A pool L(x) with x = (xi, x2) is defined by

constant pool activities, i.e. , A(x, t):—A(x). Using

Jo dsDi, (t~t —s) = 1 and (34) we find from (53)

OO —1

A(x) = ds Si, (tit —s) = (s)
0

(61)

The survivor function Si, (t~t —s) in (61) has to be eval-
uated with the internal variables

h(»; s, t) = g(s) + K(s) ) J(x, y)A(y), (62)

where we have introduced R(s) = jo ds'r(s, s'). Equa-
tions (61) and (62) are the first result of this section and
will now be discussed &om a different point of view.

Let us consider a single neuron driven by a constant
input h'" = g J(x, y)A(y). After a spike at a time
tt = t s, its i—nternal state at time t will be given by (62).
Therefore it behaves identically to the neurons in pool
L(x). By definition, the firing rate of a neuron driven by
a constant input h'" can be found &om the gain function,
that is, v = g(h'"); cf., (1). On the other hand, the mean
firing rate is the inverse of the mean interspike interval
[17], i.e., v = (s) i; cf. Eq. (35). Thus Eqs. (61) and
(62) can be reduced to a single fixed-point equation

h'""(x, s, t) = ) e J(x., y)
x

x ds'~(s, s')A(y, t —s').
0

Taking the continuum limes e —+ 0, we find

h'""(x, s, t) = fdy J(xy),
(59)

A(x) =g ) J(x y)A(y) l
(63)

and we are back to the firing rate model. Our derivation
shows that a rate description is valid for the stationary
activity in large pools of neurons.

So far, the synaptic reponse kernel K(s, s') need not
be specified. We now turn to a rather specific response
function

x ds'K(s, s')A(y, t —s').
0

(6O)

B. Firing rate models

A spatially continuous formulation has been used by a
large number of researchers. von Seelen [123] has stud-
ied linear field theories of homogeneous continuous net-
works. A linear network including specific details of the
mean cortical anatomy has been studied by Krone et al.
[118]. Wilson and Cowan [119] have applied their pop-
ulation equations to the continuous case. Feldman and
Cowan [97], Ermentrout and Cowan [124,125], and others
have combined the spatially continuous formulation with
the graded-response model (5) and studied spatiotem-
poral activation patterns. Recently, Idiart and Abbott
[126] have analyzed the propagation velocity of excita-
tion over a continuous net of graded-response neurons.
In principle, the spatially continuous formulation can be
combined with any of the model neurons introduced in
Sec. I C. In the following subsections, these model neu-
rons will be reconsidered from the viewpoint of the gen-
eral theory developed in Sec. II.

1 ( s')
~(s, s') = —exp

~

——
~

e(s').
)

(64)

~—„h'""= —h'""+ ) J(x, y)A(y, t),s n (65)

where we have used (64). If we now replace A(y, t) by
g[h'V"(y, t)], as suggested by (63), then (65) becomes
identical to the standard equation of the graded-response
model; cf. Eq. (5). This change is possible under sta
tionary conditions; cf. Eq. (63). We remark that this
procedure suggests the pool interpretation (6) with the
ensemble averaged rate A rather than the single neuron
interpretation (4) with a time averaged mean firing rate

Let us find the error introduced when replacing A(y, t)
by g[h'~" (y, t)]. To this end we use our dynamic equation
(53) and approximate

In particular, we have K(s, s') = e(s') independent of the
time s. The derivative of the synaptic potential (55) with
respect to t is

In order to connect the firing rate model, Sec. IC1,
with the theoretical &amework of Sec. II, we assume

A(t —s) = A(t) —A s + —A sI II

2
(66)
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neglecting all higher derivatives. This yields C. Spike response model

A(t) =( ) 1 —
~

1 — ~+ . , (67
A ( 2(s)2)

where

ds 8 D), (t
~

t —s) (68)

and

ds s' D„(t~t —s)

are the erst and second moments of the interval distribu-
tion. Note that the interval distribution depends on the
time course of h'i'"(t') for t —s & t' & t. If we evaluate
Dh(t~t —s) for h'~" (t') —h'""(t), then the first moment is
the mean interspike interval at input h' "(t). As before,
we have (8) = g[h'i'"(t)]. The expression in the square
brackets in Eq. (67) yields a correction to the graded-
response model which is small only if A'~i(s) && A. It
will be shown in the following sections that A(t) may
change rapidly during one period (8). In particular, dur-
ing collective oscillations, A ~i(s)/A is of order one or
larger. Thus the approximation A(x, t) = g[h'""(x, t)] is

no longer justified. Feldman and Cowan [97], who derived
graded-response equations 20 years ago by a procedure of
"time coarse graining, " have been aware of the fact that
fast transients and oscillations in A are neglected. Others
have used the graded-response ansatz with a qualitative
argument claiming the "quasistationarity" of the mem-
brane potential h. Our derivation of Eq. (67) shows that
an explicit estimation of the error due to "time coarse
graining" or "quasistationarity" is possible. In fact, the
assumption of quasistationarity is a poor approximation
during transients or collective oscillations.

Our present results can be summarized as follows.

(i) If we have a large neural system and if we know
that it is in a stationary state with constant pool ac-
tivities, then the time average and the pool average are
equivalent and the system is fully determined by the gain
function of the neurons. In this case, higher moments of
the interval distribution are not important. This result
is independent of specific model assumptions [127].

(ii) The graded-response model can be derived from the
macroscopic pool dynamics (53), if the synaptic response
function is a simple exponential and if we can evaluate the
dynamic equation for quasistationary h. More precisely,
the graded-response equations are valid, if A(t) changes
only slowly during a typical interspike interval (s). In
general, this is not the case even though h'~" may change
only slowly. Thus the graded-response model cannot pro-
vide a proper dynamic description of neural activity. In
particular, fast transients and oscillations are neglected.
It may be used, however, as a simple dynamics to find
the stationary states in firing rate models.

If we identify the internal contribution in (54) with the
refractory potential rf' '(s) = g(s) and allow an arbitrary
synaptic response kernel K(s, s') we have the generalized
version of the spike response model as defined in Sec.
IC4. The standard formulation of the spike response
model is found for r(8, 8') = e(s') independent of the
state 8 of the postsynaptic neuron. In order to keep the
arguments general, we allow throughout the following an
arbitrary response r(8, s').

Using the definition of the noise, (26), we can cal-
culate the survivor function Sh, (t~ + s~t ) that enters
the evolution equation (53). Let us consider all neu-
rons in L(x) that have fired at t = t~ and have been
quiescent thereafter. At a later time t = t~ + s, all
of these neurons receive the same input h'""(x, 8, t)

J(x, y) f~ v(s, s')A(y, t s')ds' a—nd they all have the
same refractory potential g(8). The portion of neurons
that remains quiescent decays due to firing with proba-
bility P~[s, h(ty+ s); ht] where h(t~ + s) = h' "(x,s, t~ +
s) + q(s); cf. Eq. (26). Thus the surviving portion is

Ss (tt + s(tt) = sxp (—
8

d s(ss', 'ts(tt + s')]] . (7O)

If the survivor function (70) is used in (53) we find

If we drop the explicit s dependence ofr, (71) is identi-
cal to [59] since the denominator is normalized to unity;
cf. Eq. (52). Equations (70) and (71) combined with
the equation for the membrane potential (54) and (55)
form a closed set. They describe the efFective interaction
within and between different pool activities A(x, t) and

A(y, t). We note that the interaction is highly nonlinear
due to (70) and involves three iterated integrations over

time. Thus the transition from single neurons to pools of
neurons results in a much more complicated dynamics.

In the case of stationary activity A(x, t) = A.(x), Eq.
(71) is reduced to a firing rate model

A(x) = g[h'"(x)], (72)

with

h'"(x) = ) J(x, y) A(y). (73)

In contrast to Eq. (63) of Sec. III B, we now have an
explicit expression for the gain function, namely,

A x, t = Jo ds~ '[s, h(x, 8, t)]Sh()t~t —s)A( xt s)—
Jo dsSh(tit —s)A(x, t —s)

(71)

CXO 8 —1

g(h) = d8 exp
~

— ds'7. '[ re( )h8+ iy(s')]
~

0 0
(74)
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where Ic(s) = j r(s, s')ds'.
Summarizing this subsection we have the following re-

sult. With the specific form of the noise (26), we can
calculate the survivor function, the interval distribution,
and the gain function of the model neurons. Insertion of
the survivor function into (53) combined with (54) and
(55) allows us to predict the netw'ork behavior. This is
possible for arbitrary response kernels.

D. Collective states in noise-free networks
with linear input

For the sake of convenience, we restrict our arguments
throughout the following to the case of a homogeneous
network In other words, we have a single pool with inter-
nal interaction J(x, x) = Jp. A generalization to several
pools is straightforward. To be specific we always as-
sume Jp ) 0. In the case of a network with inhibitory
coupling, the minus sign is included in the kernel v(s, s ).
We also concentrate on the noise-free limit P —+ oo. Some
remarks on noisy systems are made in passing. All ar-
guments apply for arbitrary v. (s, s') unless stated other-
wise. Specification of the response kernels v(s, s') and
q(s) yields different pulse-coupled models as discussed in
Sec. II B.

In the noiseless case we take advantage of the fact that
(s, h) ~ Oifh & gand7 (s, h) ~ oo ifh) 0,

independently of s. Thus (71) is reduced to

8)M = K 8)M ds'K(s, s') e

is the generalized Fourier transform of the synpatic re-
sponse function evaluated at time 8 after the last post-
synpatic spike. The phase n is understood to depend
on u. The change in h'~" inHuences the interspike in-
terval given by the threshold condition (76). We write
sy (ty) = T + v(tf + T), where T is the interval in the
unperturbed situation and expand (76) to first order in
A q . This yields a shift

( )
Ah(t)

n'IT + hplT

and with the ansatz (79), (80) we find

Jp A p K(T, cd)
1 —exp iuT = iw-

q'lz + hplT
(84)

In most realistic models, the right-hand side of (84) is of
small absolute value, i.e .,

due to the perturbation Dh(t) = JpAi lK(T ~) l exp(i~t
With g'lT we have denoted the derivative „~ g(s)

evaluated at time s = T and, similarly, hplT is defined as
& hp(s), also evaluated at s = T.

Linearization of (75) yields

A(t) —A. (t —T) = ——v(t)A,
d

dt

f ds h[s —s~(t —s)]A(x, t —s)
A(x, t) = j' ds' A(x, t —s')

where s~(t) is given by the threshold condition

sp (tf) = inf(s
l
h(x, s, tf + s) = 0}.

(75) M JpApK(T, (d)

rj'lT + h'pl~

In order to keep the left-hand side small as well, we have
to require

As a first step we go back to the stationary state A(t):—
Ap. Equations (76) and (77) yield

Ap ——T (77)

T = inf(s
l il(s) + K(s) JpAp ——0}.

Stability of the stationary state

We consider a small perturbation of the stationary
state

A(t) = Ap + A.i exp&iwt},

with u = u + i A where AT « 1. This induces an oscilla-
tion of the synaptic potential

h'~" (s, t) = hp(s) + hi(s) exp(iwt —in), (80)

with hp(s) = R(s) JpAp and hi(s) = JpAilK(s, cu) l, where

where the int erspike interval T is given by the threshold
condition

QJ = (d~ + V~ + ZA~, (86)

with w = n27r/T and lv l
« lw l. The leading terms in

an expansion of (84) are

(v„+ iA„)T =, , (u„P.(T, (u„) = b„e ' ", (87)
Jp Ap

il'z +hp T

where b g K is an amplitude defined by (87) and n
is the phase of the Fourier transform (81) evaluated at
s = T and w = u1 . Equation (87) is our final expression
which allows a straightforward discussion of the station-
ary (incoherent) state.

First, the requirement A = 0 yields the bifurcation
condition n = 0 and v = b„/T or n = 7r and
v = —b /T. Furthermore, an oscillation grows maxi-
mally, if v = 0 and n = vr/2. In this case we have

b /T Th—ese arg. uments are summarized in
the following criterion: The stationary state is unstable
with respect to an oscillation with frequency ~ —~, if
0 & n ( vr.

I et us apply these general results to three specific ex-
amples. First we consider the response function K(s, s') =
e(s') with e(s') given by (24). This is the kernel that has
been used in the standard version of the spike response
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model; cf. Sec. I C4. Taking the Fourier transform yields

le(~)l = (1+~'~.') ' k(T, ~) =
—(i co+7 )T gsx

e
1 + Z(d7

(92)

n = ub, "+ 2arctan(~v, ).
(88) As before, we assume uw )) 1 and evaluate at cu

n27r/T. If we expand in (ur„7.),we find

1 —e —T/v —xcu Te
(TK)ur) = (89)

As before, we consider the case ur = w = 27r/T with
Ld 'T )) 1. The first two terms in an expansion in powers
of (u„w) i are

Changing the delay L " we can adjust the phase o. while
keeping l~(u)l fixed. Note that even a small change in
b, " shifts the higher modes (n » 1) from stable to un-
stable regimes and vice versa. In general, for finite 7, we
expect that at least one of the modes is unstable, what-
ever the delay K " [59]. Note also that le(w) l

~ (uw, )
for u —+ oo. Thus higher modes decay rather slowly if
we are in a stable regime. For inhibitory interaction, we
take r(s, s') = —e(s') with e(s') given by (24). The only
difference is a change of the phase n by vr in (88). As
a consequence, the stability pattern is inverted, that is,
modes which grow (A„& 0) in the case of excitatory in-
teraction decrease for inhibitory coupling and vice versa.

Abbott and van Vreeswijk [62] have studied the sta-
bility of asynchronous states in a network of three-step
integrate-and-fire neurons. They find that the asyn-
chronous state is stable if the time constants w~

——73 are
suKciently large, but higher modes decay only slowly. In
order to understand their results, let us consider as our
second example the response function (40). This corre-
sponds to the special case of a three-step integrate-and-
fire model with 7] = 72 = 73 = 7 . The Fourier transform
IS

k(T, (u) = e T/~—i (—
l

—i+ —14l» A

Let us discuss the case of A " = 0. In contrast to (90),
the leading term in (93) is imaginary, but negative. Thus
all modes with cu v ) 1 grow exponentially. As before,
a delay 4 " ) 0 changes the bifurcation pattern. For
example, in the case of E "= T/2, all oscillatory modes
with uneven n and cu w ) 1 decay, but the stationary
state remains unstable with respect to modes ~ ~ ) 1
with n = 2, 4, . . . .

Summarizing the above considerations, we arrive at
the following results.

(i) The stationary state of the noiseless system is al-
most always unstable and oscillations can build up.

(ii) In the regime where linear stability analysis holds,
oscillations have a frequency ur n2m/T where T is the
interspike interval in the stationary state.

(iii) Whether an oscillation with frequency ui„builds
up or decays is determined by the phase o;„which can
be adjusted via the delay 4 " of the synaptic response.

(iv) The growth factor A in the case of optimally ad-
justed phase o. is determined by the coupling strength
J0 and the Fourier transform lk(T, u) l

of the synaptic
response function. Since lim ~ lr(T, u)l = 0, higher
harmonics grow more slowly than the first mode (n = 1).

Finally, let us generalize our results to the case of finite
noise level. We take r(s, s') = e(s') and expand Eq. (53)
to first order in Aq. The requirement A = 0 yields the
bifurcation condition

1 —e T~
k(T, ~„)=

l

i-
(d~7

(90) -'-d-1 —Dh(~) = hole(~)le ' —Dh(~)
dh (94)

The leading term is purely imaginary and of positive ab-
solute value. Coinparison with (87) yields A & 0. Ac-
cording to our definition of A this is equivalent to the
statement that oscillatory modes with ~ 7. )) 1 decay. In
particular, for ~ suKciently large, all oscillatory modes
decay and the stationary state (incoherent activity) is
stable; cf. [62]. Note, however, that A„« 1 for fast
modes. Thus higher harmonics decay only slowly. Also,
as before even a tiny delay makes one or more of the
modes unstable. Thus zero delay is a singular case.

As a third and final example, let us consider the
Mirollo-Strogatz model [56] in the limit of weak coupling.
The Fourier transform of (44) is

where L " is some transmission delay. We specifiy p and
take p(t) = v exp(t/r), which corresponds to the one-step
integrate-and-fire model. This yields

where Dh(u) = f0 Dh(tlt —s)e ' 'ds is the Fourier
transform of the interval distribution in the unperturbed
case. %'e note that not only the mean interspike interval
(s) but also all higher moments of the interval distri-
bution are important. For low noise level, we can ap-
proximate the interval distribution by a Gaussian with
mean (s) and finite width (As ) « (s) . In the case
of noise, the Fourier transform lDh(w)l is smaller than
1 for all u and the left-hand side of (94) cannot vanish.
A glance at the right-hand side of (94) shows that os-
cillations can build up only if [e(w) l

is sufficiently large.
Since le(w) l

~ 0 for u -+ oo, high frequency oscillations
(n » 1) are suppressed. This leads to additional conclu-
sions concerning noisy systems.

(iv) The stability of stationary states depends not only
on the mean interspike interval (s), but on the Fourier
transform of the full interval distribution.

(v) Fast oscillations (higher harmonics) are suppressed
by noise.
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2. Oscillationa and locking

Let us consider a noiseless homogeneous system of spik-
ing neurons during a collective oscillation. To be specific,
we require that all neurons fire synchronously with period
Toscar l e-&

A(t) = ) b(t —nT...). (o5)

T„~=inf s g s + — K ss+k; i' k )
(o7)

As before, the oscillation period is determined self-
consistently. For k = 1 we are back to (96).

The solutions of (96) or (97) yield the period of possible
collective excitation. To check the stability of such an
oscillation, we go back to the case of a finite number of
neurons with connections J;~. We set Jo ——P. i J;~.2=1

The oscillation period is found self-consistently from the
threshold condition (76)

T..=iaaf s~q(N)+do) e(s, s+nT. .)=9). (96)
n=0

To be specific, let us consider v(s, s') = e(s'). In the
case of 0 = 0 and P 2 e(nT „)(( e(T „)we can give
a simple graphical interpretation of this result. The first
intersection of the synaptic response Joe(s) with the neg-
ative refractory function —il(s) yields the oscillation pe-
riod T; cf. Flg. 4.

In passing we note that semicollective oscillations with
roughly two or three times the basic frequency are also
possible; cf. [128]. Consider a population which has spon-
taneously separated into two or, generally, k, subpopu-
lations of equal strength. Such a separation could be
induced by instabilities of the stationary state towards
higher harmonics; cf. the preceding paragraph. Whereas
every single neuron Gres with period T „,the collective
activity now oscillates with period T „/k. Thus we have

A(t) = Q„(I/k)b(t —nT(,.)/k) and the threshold
condition yields

For the sake of simplicity we restrict our arguments to
the fully collective case (k = 1) and assume that during
the past all neurons have fired synchronously at t—nT „for n & 1. Around t = 0, however, when the next
firing is due, the neurons are subject to a perturbation
that causes a small shift in the firing time t, = b, with
~h,.

~

(( T „. The next firing time tf = T „+P; can
be calculated from the threshold condition (76). If we
linearize around t = T „and use the fact that in the
unperturbed case 0 = il(T „)+ Jo p i v(T „,nT „),
then we find

with

I N

, + ~, b, +,+ I,, ) Jv [co~ (b,' —b", )b~ + cib~],
2=1

(o8)

. d
rl' = „@AT...—+ Jo ) —„K(s,nT „)[Tds

hf J /

n=i
N.'~,+ = J ) J,,e(b,' —b,')c, .

(100)

(101)

N N
N-' ) b,

' = N-' ) b,
' = (b) (102)

and

Purthermore we have co ——&", e(T „,s')~o+ and ci
&",v(T „,s') ~T .. The notation 0+ indicates a limit &om
above. The 0 functions arise since, in the case of delay-
less interaction, the synaptic potential of the postsynap-
tic neuron may not be differentiable at s' = 0, the time
of a presynaptic firing.

Note that co and e'~o+ always vanish, if the synaptic
response includes a delay. In this case, the derivative of
K(T „,s') taken at s' = T „usually dominates the sum
in (100). It follows that we have ci = h'/ Jo. We use this
approximation and return to the homogeneous network
(J;~ = Jo/N). Prom (98) we find

„,(b,' —(b)). (103)

0.0
0.0 5.0 10.0

s [mst
15.0 20.0

FIG. 4. Stability of a coherent oscillation. The intersection
of the scaled response jo e(s) (solid line) with the e6'ective
threshold (dashed line) 8 —rj(s) yields the oscillation period
T „.The oscillation is stable, if the slope of e(8) is positive
at the intersection, as in case H (transmission delay b, = 5
ms). It is unstable in case A(A = 2 ms).

As a summary of the above arguments, we state the fol-
lowing results.

(i) A homogeneous shift in the firing times of all neu-
rons ~(b) [ ) 0 is not reduced. This does not matter,
however, since all neurons keep firing synchronously.

(ii) An inhomogeneous shift bo g (b) is reduced only if
(il'/il'+ h') ( 1. Since for all standard models il' ) 0 this
requires h' & 0. In other words, the firing should occur
at a point s where the synaptic potential is rising.

For an intuitive understanding of (ii), let us consider
the response function v(s, s') = e(s') with e(s') given by
(24). We assume a finite delay b, " and a time constant
7; which is sufBciently short to allow fast rise and decay.
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In this case, e']z is the dominant term in (100) and
(ii) is equivalent to the condition that the firing should
occur at a point where &",e(s') ) 0. In a network of
neurons which have spiked coherently at t = 0, all neu-
rons are re&actory during some time thereafter. The
efFective threshold decays as 0 —g(t). After a time 4 ",
neurons start to experience the postsynaptic potential of
the firing at t = 0. If both the delay 4 and the rise
time 7; of the postsynaptic potential are short, then the
maximum of e(s') is reached, before the efFective thresh-
old is low enough to allow the next spike; cf. Fig. 4,
case A. Thus firing will occur later in the regime where

d, e(s') ( 0. We apply (ii) and find that the collective
oscillation is unstable. On the other hand, if the delay
is long enough, firing occurs while the postsynaptic po-
tential is still rising and a collective oscillation is stable;
cf. Fig. 4, case B and [58,59]. Similarly, if the rise time
is suKciently long, locking is possible. In this case, how-
ever, we have to take into account that the postsynaptic
potential decays only slowly and use the full condition
h =JoE =i~] &., )0

With a delayed inhibitory interaction, r(s, s') = e(s—')
with e(s') given by (24), the above locking pattern is
slightly different. The inhibition reaches its maximal
strength after s = L " + 7;. With a realistic set of
parameters, e.g. , 4 = 2 ms, w, = 2 ms, the maximum
is reached faster than the neuron recovers from refrac-
toriness. Thus spiking can occur only later while inhibi-
tion decreases But the. n, &",r(s, s') = —&, e(s') & 0 for
s ) s . Thus, in the case of inhibitory coupling, locking
is stable for a wide range of different delays.

Finally, let us consider the case with no delay (4 " =
0). For the sake of simplicity we restrict our arguments to
the situation where only neuron i is perturbed at t = 0
and bo = 0 for j g i. In this case we find the simple
relation

(104)

but now we have to consider the contribution e'lo+ as
well. To be specific, let us consider the situation thath') Oifb,. ) 0, but h, '(Oifb; (0. Thisisthestan-
dard situation if we assume fast excitatory interaction.
In particular, it applies to the Mirollo-Strogatz model,
(17) and (18), or the one-step integrate-and-fire model,
(10) and (11). It follows from (104) that a neuron which
is late (h; & 0) is pulled back into the collective oscilla-
tion whereas a neuron which is early (h,- ( 0) fires even
earlier the next time and drifts away. With our local sta-
bility analysis we cannot predict the time course of the
phase shift during the drifting process. Drifting may be
fast or slow or even stop at some point. It must slow
down and stop, however, if after n steps b; —T „.In
other words, when the neuron is early by a full period, it
is finally back in the collective state. We summarize the
discussion through the following statement:

(iii) In the case of no delay and a sharply rising synap-
tic response function the system is only semistable. Neu-
rons which fire too early will drift away. The drift stops
if they eventually are ahead by a full period.

I et us apply this result to the two-step integrate-and-

fire model defined by (10) and (12). The response kernel
has been given in (39). The derivative

&
",—v.(T „,s')

l z ..
is negative, but of small absolute value if T „))7q, 72.
Thus h' in (100) is negative for those neurons which are
early (h; ( 0). For neurons which are late, however, the
dominant contribution to h' is e'lo+ oc &", tc(T „,s') la+ ——

(~i~2) ) 0. Thus, according to (104), all neurons that
are late by a delay b,. ) 0 experience a locking "force"
which successively reduces the delay, whereas neurons
which are early (h; ( 0) slowly drift away.

This explains the effect discussed by Tsodyks et at.
[60]. In their work they have studied a fully connected
network of two-step integrate-and-fire neurons with de-
layless excitatory interaction. They introduced a small
inhomogeneity by an external current I;" which is kept
constant in time but varies &om neuron to neuron. Thus
some neurons are systematically early, others are late.
They find that only the group of "late" neurons is bound
in the collective oscillation whereas the early neurons
drift.

E. Model networks with noise

Real neurons are noisy, partly due to synaptic noise,
partly due to inherent firing noise, but also due to the
large "rest" of the brain which is out of experimental
control. In Secs. IC4 and IIIC, we have discussed how
noise is included in the spike response model. Here we
turn to pulse-coupled phase models or, equivalently, to
integrate-and-fire models.

The standard way of introducing noise into integrate-
and-fire neurons (16) is by an additive noise term o(;(t)
with mean ((;(t)) = 0 and variance o (g;(t)(z. (t'))
o 2h;~ h(t —t'). Th.us we have

—h, , = G(h;) + I;(t) + ~(, (t). (105)

—~.(t) = -a~. (t) +-~.(t), (106)

with a = 1/ri. This is a standard Ornstein-Uhlenbeck
process.

I et us discuss the infj.uence of noise. Neuron i fires
if h; ) 8 or, equivalently, if (;(t) & 0 —h, (t). Let us
now consider all neurons in pool L(x) which have fired
at t = tf. They all experience the same mean potential
h(t) for t ) tf. In principle, it should be possible to
calculate the survivor function Sh, (t~ + sit~) and interval
distribution Dh, (tt + alt ) for arbitrary h(t). In the case
of h(t)—:hs the latter is given by the distribution of first
passage times as calculated for the Ornstein-Uhlenbeck
process. The only complication in the general case is
that the distance 8 —h(t) that has to be overcome by

In the following we restrict our discussion to the standard
integrate-and-fire model (10) with G(h;) = —h;/ri. This
allows us to separate the noise induced shift (;(t) in the
membrane potential from its average time course h;(t),
i.e., h;(t) = (,(t) + h, (t) where h;(t) is a solution to the
noiseless problem, Eq. (10). We focus on the change of
the shift (,(t) and find
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the diffusive process depends on the time t. We make no
attempt to derive an expression in the general case (see
[108,99] for a review of diffusion type neuron models).
Rather we suggest two different approaches to an ad hoc
approximation.

(1) In the first approach we start with the distribution
of passage times D)„(t~ + s~t~) in the case of constant
membrane potential h(t) = h0. The first moment of the
distribution yields the mean first passage time w(h0—
0). At this point of our considerations we replace the
Ornstein-Uhlenbeck process by a Poisson process with
instantaneous rate w (h0 —0). This process has the
same mean, but a different distribution of passage times,
i.e., a simple exponential. In a further step we use the
expression w (h —0) even in the case of time dependent
h. This leads us to the survivor function S)„(t~+ s~t~) =
exp( —fo' 7 [h(t~+ s')]ds'} and we are back to the spike
response model with noise. As a rough approximation to
the mean first passage time in a diffusive process we can
take w(h —0) cc (h —0) which is valid if h is near threshold.

(2) A difFerent approximation is the following. As be-
fore we consider neurons in pool I (x) which have fired
their last spike at t~. Due to noise, the membrane poten-
tial of the neurons varies. More precisely, the Ornstein-
Uhlenbeck process produces a Gaussian distribution of
the membrane potential of different neurons around the
mean value h(t) with a width g' ) = (a /2a)(1 —e ')
where 8 = t —t~ is the time that has passed since the
last firing. If the mean h(t) approaches threshold, some
of the neurons actually pass threshold and fire. Usually
this would disturb the Gaussian distribution. If, how-
ever, the neurons are driven by a strong input, then h(t)
crosses the threshold with finite "speed"

&z h~&, ) 0 where

tg is the time at which 6 reaches the threshold, that is,
h(ts) = 0. The total time that the distribution needs
to cross threshold is roughly At = (( ) ) jz, h~s. Of
course, the distribution is disturbed as soon as some of
the neurons fire. But as long as diffusion is slow, i.e. ,
Ato (( (( ), there is no time for rearrangements. Con-
sequently the threshold process basically "scans" a Gaus-
sian distribution. As a result we have a Gaussian interval
distribution with mean (s) = inf(s

~

h(tt + s) = 0} and
width b, t. Given D&(tt + s~t~), the survivor function can
be found by integration of (33), i.e. , S&(t~ + sett) = 1—
J0 D&(t + s'~t~)ds' Thus both . approximation schemes
yield the quantities needed for a solution of (53). If the
neurons in are driven by strong input, then the synap-
tic potential crosses the threshold at finite "speed" and
the second scheme leads to a good approximation. If,
on the other hand, input is very low such that firing is
driven mainly by noise, then the first scheme should be
preferred.

To summarize, there are different ways of dealing with
noise. In the case of the spike response model, noise is
modeled by an instantaneous "escape rate" leading to
a generalized Poisson process and an explicit expression
for the survivor function can be derived. In the case
of integrate-and-fire models, fluctuations are modeled by
an additive noise term in the differential equation which
leads to an Ornstein-Uhlenbeck process. An approxima-
tive evaluation of the survivor function is still possible,

but network conditions must be known in order to find a
good approximation scheme.

F. The model of Wilson and Cowan

The approach of Wilson and Cowan [96] is restricted
to neurons with absolute refractory period only. In order
to relate their approach to the spike response model, we
take the refractory function

—oo for 0&8&p'8
O for 8) p"' (107)

Ajx, t) =» '[)»'» (x, t)]I1—

(108)

where we have used the normalization (52) and
(x t) = pi» J(x, y) f() E(s')x4(y, t —s')ds'. This is

formally identical to the integral equation of Wilson and
Cowan, if we take the time step Lt to be infinitesimally
small. In order to compare (108) with (7), we have to
add to the synaptic potential an external contribution
h'" (x, t) = J~ ~(s')P(t —s') and identify ~ i[h] with
S„[h]. Note, however, that this implies a shift in the in-
terpretation of w versus S~. In the original approach
of Wilson and Cowan, the function S is induced by
a variation of parameters, in particular different firing
thresholds within a population of neurons. Thus it is a
"quenched" disorder that gives rise to additional corre-
lations which have to be neglected; cf. [96]. In our inter-
pretation, all neurons are identical and 7 [h] is caused
by local noise in each neuron. Thus the problem of ad-
ditional correlations is avoided. .

Note also that S is bounded in the interval 0 & S
whereas w i[h] has no upper bound. This is, however, an
effect which is due to a difference between discrete versus
continuous time dynamics. For the above identification
of the two models we have assumed an infinitesimal time
step Lt + 0. For a discrete dynamics, the firing proba-
bility is given by (28) and is bounded between 0 and 1;
cf. Sec. IC4.

Our discussion of the spike response model in the pre-
ceding sections shows that we can get analytical insight
into the collective behavior directly from the integral
equation. A transformation to a differential equation
which requires coarse graining of time is not necessary.
To summarize this section, the integral equations of Wil-
son and Cowan are a special case of the pool equations

and a synaptic response function or the form K(s, s') =
e(s') with arbitrary c(s'). Also we take a firing prob-
ability P~(h; ht) = w [h]bt with no explicit depen-
dence upon the time 8 since the last postsynaptic spike.
These assumptions cause a considerable simplification of
the dynamic equation (71) since w i[h(x, s, t)] = 0 for
0 ( s ( p" ' and w i[h(x, s, t)] = 7. i[h'i'"(x, t)] if
s ) p" '. Equation (71) yields
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in the spike response model and correspond to neurons
with absolute refractory period and discrete time steps.

IV. CONCLUSIONS

(1) We have introduced a model of a neuron which
generalizes previous formulations of the spike response
model and contains various versions of the integrate-and-
fire model as special cases. In fact, it turns out to be the
most general one-dimensional model with linear input
and renewal properties.

(i) It follows froin our considerations that in the limit
of weak coupling, all spiking neuron models can be clas-
sified by their synaptic response kernel rc(s, s') where s
and 8' denote the time that has passed since the last
postsynaptic and presynaptic spike, respectively. Thus
different models of spiking neurons can be systematically
related to each other. We have used this procedure to
compare various versions of the integrate-and-fire model,
the Mirollo-Strogatz model, and the standard formula-
tion of the spike response model.

(ii) Furthermore, we have analyzed the errors intro-
duced by firing rate models. It turns out that a rate
description is correct only in a stationary state of inco-
herent firing. A graded-response model is sensible if the
membrane potential changes only slowly during a typical
interspike interval. In particular, during collective oscil-
lations a graded-reponse model is a bad approximation.

(2) All of the above network models can be understood
and analyzed kom the unifying point of view of a renewal
theory with linear inputs. The dynamic evolution of the
network is described by an integral equation for pool ac-
tivities.

(3) Our approach shows that a systematic transition
&om single spiking neurons to populations of neurons is
possible. The effective interaction between pool activities
is highly nonlinear and involves several integrations over
time. The integral equations of Wilson and Cowan [96]
which apply to neurons with absolute re&actory period
only are contained as a special case.

(4) Finally, our approach allows a straightforward solu-
tion to the problem of the existence and stability of col-
lective oscillations. Generally speaking, the shape and
temporal relation between the two response functions,
i.e., the synaptic response r(s, s ) to incoming spikes and
the internal response rI(s) to firing, determine the sta-
bility of incoherent, coherent, and partially coherent net-
work states. In particular, the following results have been
shown.

(i) The stability of incoherent states is determined by

the Fourier transform of the synaptic response kernel
K(s, s') with respect to the time s'. This general result
unifies previous studies on a variety of different model
systems [59,61,62].

(ii) The stationary state of a noiseless system is "al-
most always" unstable [59]. Instabilities may lead to col-
lective oscillations of all neurons or to higher harmonics
where the neurons spontaneously split into several sub-
groups. This is related to the phenomenon of phase clus-
tering which can also be analyzed in the &amework of
return maps [129]. It is related to a result of Golomb et
al. [128], but it is found here for spiking neurons.

(iii) Noise suprresses fast oscillations (higher harmon-
ics) and stabilizes the system. This result, which has
been found in simulation studies before [59], has been
shown here analytically.

(iv) Collective oscillations with a period T „are sta-
ble only if firing occurs while the synaptic potential is in-
creasing. The local stability analysis of collective states
presented in Sec. IIID generalizes earlier results which
have been restricted to a specific form of a local pertur-
bation [59,68].

(v) In particular, oscillations in networks with delay-
free excitatory interactions are at most semistable. Exci-
tatory interactions with long delays lead to stable oscil-
lations. The same is true for models with inhibitory in-
teraction and medium delays. This solves an often posed
question, namely, whether excitatory or inhibitory inter-
actions are more suitable to sustain collective oscillations.
The answer is, it depends on the delay. Also it gives a
direct explanation of the somewhat unexpected result of
Tsodyks et al. [60], who found that a delayless network
of integrate-and-fire neurons is only marginally stable
despite the exact result of Mirollo and Strogatz [56], who
showed that a collective oscillation is the only attractive
state in their (slightly diferent) model.

All of the models discussed in this paper are, of course,
rather simple far too simple to capture all phenom-
ena of neuronal activity. Further steps towards a better
theory of the brain are necessary and seem to be possible.
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