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Numerical investigation of isospectral cavities built from triangles

Hua Wu and D. W. L. Sprung
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S /MAL

J. Martorell
Departamento d'Estructura i Constituents de La Materia, Eacultat Fzsica,

University of Barcelona, Barcelona 080P8, Spain
(Received 25 July 1994)

We present computational approaches as alternatives to a recent microwave cavity experiment
by S. Sridhar and A. Kudrolli [Phys. Rev. Lett. 72, 2175 (1994)] on isospectral cavities built from
triangles. A straightforward proof of isospectrality is given, based on the mode-matching method.
Our results show that the experiment is accurate to 0.3% for the first 25 states. The level statistics
resemble those of a Gaussian orthogonal ensemble when the integrable part of the spectrum is
removed.

PACS number(s): 41.20.—q, 05.45.+b, 03.65.Ge, 02.90.+p

I. INTRODUCTION

In a well-known paper, Kac [1] raised the question of
whether two isospectral plane domains must actually be
isometric. This is popularly phrased as "Can one hear
the shape of a drum?" From the physics viewpoint, since
the density of states has an asymptotic expansion whose
coefFicients depend on the area, perimeter, etc. , of the
cavity, it is clear that at least these properties must be
common, but this leaves open the question of whether
the two must be identical in all respects. The question
has now received a definitive negative answer. Gordon,
Webb, and Wolpert, [2] have given simple examples con-
structed out of seven right triangles which are isospectral,
but not isometric.

These particular shapes were subjected to experimen-
tal test by Sridhar and Kudrolli [3] and found to give
identical spectra to an accuracy of 0.2% on average for
the first 25 eigenenergies. In this paper we present ac-
curate numerical results with the mode-matching and
finite-difference methods. The agreement between the
two kinds of calculation ensures the accuracy of the re-
sults. Compared to the experimental spectra, we find
differences of order 0.3%.

In addition, a very simple proof of the isospectrality
is obtained with the mode-matching method. The wave
function transformation from one cavity to the other is
put into a simple form. We find that our computed wave
function is in good qualitative agreement with the ex-
perimental wave function. The level statistics resemble
those of a Gaussian orthogonal ensemble (GOE) when a
subset of integrable levels are removed.

In Sec. II we outline the mode-matching method for
the two cavities. In Sec. III we demonstrate isospectral-
ity analytically. Section IV contains the numerical results
and conclusions.
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Here A~, . . . , D~ are mode expansion coefIicients, the
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in the interior of regions shown in Fig. 1 with Dirich-
let conditions on the boundaries. Each cavity consists
of seven equal-sided right triangles. Let the length of a
short side of a triangle be the unit length d. Since the cav-
ities are made from regular shapes, we can divide them
into smaller regions as shown in Fig. l. We will first con-
centrate on cavity 1. The five smaller regions are three
triangles labeled A, B, and E, and two squares labeled
as C and D. We shall write 4~~, etc. , for wave-function
values along the internal boundary lines separating the
regions. Then the auxiliary boundary conditions on the
smaller regions are conveniently written by expanding
these wave functions in the Fourier series

II. THE MODE-MATCHING METHOD

The problem we wish to solve is Helmholtz's equation

(V'+E)C = 0

FIG. 1. Geometric shapes of the two two-dimensional do-
mains with identical spectra. The dotted lines are boundary
lines dividing the cavities into smaller regions.
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from 1 to N, a value truncating the infinite series summa-
tion. We shall now see that if these auxiliary boundary
conditions are assumed to be known, the wave functions
in each region are easily determined as long as the energy
does not happen to coincide with an eigenenergy of the
small closed region. The wave function for the square
region is easy to work out and thanks to the 45 of the
triangle, the wave function for the triangle is just that
of a square plus antisymmetrization along the diagonal
line. Thus
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where U, V,W are N x N matrices with elements de6ned
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De6ning the diagonal matrix P of order N, as P„„=
(—1)", then

=PA'P, V = PV

In Eq. (12), Ai, etc. , are column matrices of order N
with Al, etc. , as their elements.

Normally, one would look for nontrivial solutions to
Eq. (12) by seeking energies for which det(Mq) = 0. A
better way is to diagonalize Ml first. Then, when s,ar-
ming in energy a zero eigenvalue is found; this energy
corresponds to an eigenmode of the cavity and the cor-
responding eigenvector gives rise to the wave function.
When det(Mi) g 0, the wave functions Eqs. (2)—(S) on
the internal boundaries vanish and the only possible non-
trivial solutions are when the energy coincides with one
of the eigenenergies of the smaller regions themselves.
Thus, besides the solutions dictated by det(Mi) = 0,
other solutions exist at the eigenenergies of the basic tri-
angle, which are known analytically. The wave functions
in the several triangles must be in proper phase to make
the normal derivatives across the boundary lines contin-
uous and that fixes the relative sign in each small region.

In a totally parallel way, the condition for finding
eigenenergies for the second cavity is (see the Appendix)
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By construction, these wave functions are already con-
tinuous across the boundary lines. The mode expansion
coeFicients are now determined by requiring the normal
derivatives to be continuous as well. A straightforward
calculation gives the condition
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III. ISOSPECTRALITY

The theorems proved by Gordon et al. [2] ensure that
the two cavities have the same spectra. The experimen-
tal work of Ref. [3] entailed some error in comparing the
two spectra. We shall now discuss how well the numeri-
cal computations presented here confirm the isospectral-
ity theorem. With the same grid size, we find that the
finite-difference method gives exactly the same spectra
(up to machine precision) for the two cavities. Thus, even
for a finite grid size, and although the method is an ap-
proximation to the real cavities, isospectrality is always
precise. The same property holds for the mode-matching
method. To prove this, we notice that the matrices M»
and M2 are connected by an orthogonal transformation

0 1 0 P
1 0 P 0
0 —1 0 P

—1 0 P 0

(20)

The mode-matching method is essentially an analyti-
cal one, though it requires numerical diagonalization and
root searching. It yields fast convergence with respect
to the truncation parameter N. As will be discussed
further in the next section, even after truncation the nu-
merical spectra of the two cavities are identical, so that
comparing them does not give any additional check on
the accuracy of the numerical results. Therefore, as a
further check we performed a more conventional calcula-
tion using a finite-difference method for the purpose of
comparison and testing the results. The implementation
is trivial: one replaces the Laplace operator in Eq. (1)
with a five point difference formula, and eigenenergies
and wave functions are obtained in one single diagonal-
ization step.

M» ——T'M2T (21)

This proves that the determinants of M» and. M2 have
the same set of zeros and therefore produce the same
spectra. In addition, substituting Eq. (21) into Eq. (12)
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B1
C»
D1

=0 (22)

Thus the wave functions in the two cavities are connected
by
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B2
C2
D2

A

C»
D»

IV. RESULTS AND DISCUSSION

Since our computations yield exactly the same ener-
gies for the two cavities, only one spectrum is presented.
There is a subset of levels, those of the unit triangle,
which are analytically known and these have to be added
to the zeros of det(Mq). Introducing an energy unit
E„= (m/d), the eigenenergies of a unit square are
(n + n2)E„. For a unit triangle, due to the antisym-

This relationship is consistent with Eq. (1) of Ref. [3],
but has a more compact and easily accessible form. It is
valid for arbitrary truncation number ¹ By taking N ~
oo, we have an alternative proof of the isospectrality of
these two cavities, which uses tools more familiar to the
physicist. Clearly, the two cavities represent the same
quantum problem, but in different representations.
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FIG. 2. Contour plot of wave functions for
the 9th (the top row) and the 21st (bottom
row) states which are eigenstates of a closed
unit triangle. The 21st state is exactly the
doubling of the 9th state.
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metrization requirement, the allowed eigenenergies are
the same with the restriction n & n„, with correspond-
ing wave function
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The first two such states are at 5E„and 10E„, which
correspond to modes (n, n„) = (2, 1) and (3, 1). Com-
pared with the experimental or calculated spectrum, they
are the 9th and 21st states. In Fig. 2 we plot these two
states, revealing their triangular nature. Because these
states are analytically known and are observed experi-
mentally, they can be used to calibrate the experiment.

There are degenerate states within the set of triangu-
lar states. The first twofold degenerate pair appears at
E = 65E„with modes (7,4) and (8,1). Aside from the tri-
angular states, numerical results show there are no other
degenerate states up to the 600th level.

Table I lists 25 levels from the experiment of Ref. [3]
and from our calculation. Column 1 is simply the state
sequential number. All the energies are in units of E„.
The second and the third columns (cavities 1 and 2) are
obtained from the measured frequencies of Table I of
Ref. [3] with the conversion formula E/E„= (2fd/c)
0.25842[f (GHz)] . If the experiment were done with air
in the cavity as the normal condition, the conversion fac-
tor would be multiplied by 1.0006. Table I assumes this
situation. These two sets of data agree with an average
percentage error 0.2'%%uo.

The fourth column (FD) is the result from finite-
differences. Calculations for grid sizes h = d/30, d/40,
and d/50 were found to vary quadratically with grid size
h. Richardson extrapolation to the limit gives accurate
eigenvalues.

The last column (MM) is the result from our mode-
matching method. Results were found to vary linearly
in the variable 1/N. Values from N = 50 and N = 60
were extrapolated linearly to N ~ oo. Comparing FD
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FIG. 3. Error relative to the mode-matching method as
compared to the average level spacing dE. Finite-difFerence
method (stars); experimental values: cavity 1 (triangles) and
cavity 2 (squares).

C(CCFl&CC~

with MM, the error is 0.02'%%uo. This small error probably
comes primarily from the finite-difference method. Com-
paring the mode-matching method with either cavity's
experimental data shows the difference is 0.3% on aver-
age. Thus the two computational results agree by one
order of magnitude better than the agreement between
theory and experiment. Figure 3 shows the error as com-
pared with the average level spacing (dE), relative to

TABLE I. The first 25 eigenvalues from the experiment
of Ref. [3] and from our finite-difference and mode-matching
numerical calculations.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Cavity 1
1.02471
1.46899
2.08738
2.64079
2.93297
3.72675
4.28393
4.67021
4.98838
5.27908
5.78755
6.41357
6.84891
7.15242
7.67783
8.44285
8.57859
8.99495
9.60312
9.92583

10.00330
10.55227
11.09578
11.41874
11.99364

Cavity 2
1.02481
1.47194
2.08831
2.63985
2.92949
3.71892
4.28388
4.66917
4.98531
5.27278
5.78371
6.43781
6.84718
7.16045
7.70604
8.45947
8.62220
8.97209
9.59562
9.93689

10.03932
10.55740
11.10035
11.40569
11.98033

FD
1.0289358
1.4818654
2.0982494
2.6497154
2.9381762
3.7326894
4.2951927
4.6776652
5.0000019
5.2914753
5.8015308
6.4338942
6.8662601
7.1598024
7.6947374
8.4636545
8.6135359
9.0124054
9.6099682
9.9211311

10.0000076
10.5710201
11.0669165
11.4195509
11.9846497

MM
1.0285350
1.4814672
2.0974674
2.6495466
2.9374335
3.7323341
4.2947278
4.6775322
5.0000000
5.2902751
5.8011384
6.4321556
6.8662262
7.1593432
7.6924171
8.4632568
8.6111689
9.0103493
9.6097908
9.9210396

10.0000000
10.5697365
11.0657272
11.4188499
11.9840803

o

FIG. 4. Contour plot of the wave functions for states 1, 3,
and 6, which correspond to the measured wave functions in
Fig. 2 of Ref. [3].
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FIG. 5. Nearest level spacing distribution
P(A) and A3 statistics of the spectrum. The
upper panel is for the full set of the first 598
states. The bottom panel is after the 78 tri-
angular states were removed. Also plotted
are Wigner and Poisson distribution curves.
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the mode-matching method [(E —EMM)/dE]. It reveals
both statistical and systematic error in the data. The
error is confined within 10% margin of the average level
spacing. On average, the root mean square of this quan-
tity is 3% for cavity 1, 4% for cavity 2, and 0.2% for the
finite-di8'erence calculation.

One of the highlighted points of Ref. [3] was the ability
to measure the wave function. Figure 4 plots the first,
third, and sixth wave functions, which show qualitative
agreement with experiment. Our more accurate wave
functions may be useful in further study on the problem
of classical quantum correspondence.

We computed the level statistics for the first 598 states
as shown in Fig. 5 ~ The actual spectrum was unfolded
using the average density of states obtained from Weyl's
formula as given by Ref. [3]. However, we corrected the
topological constant to be 5/12 rather than the stated
0.54. One sees excellent agreement with the quantum
spectrum. Because each cavity is a pseudointegrable sys-
tem [4], the statistics are closer to a GOE than to Poisson.
As we have pointed out, there are degeneracies among the
triangular eigenstates; this part of the spectrum is fully
integrable. Among the first 598 states, there are 78 such
triangular states. Separating them from the whole spec-
trum, the level statistics of the remainder are now very
much like that of a GOE, a type of level statistics often
associated with nonintegrable systems [5].

In summary, we have presented numerical calculations
for the isospectral problem in domains constructed from
right angle 45 triangles. We found accurate theoretical
results which confirm the experiment and give an abso-
lute reference to the data. We point out a subset of eigen-
states which are analytically solvable and can be used to
calibrate the experiment. The mode-matching method
also yields a simple analytical proof of isospectrality.

APPENDIX: MODE MATCHING FORMULA
FOR CAVITY 2

The auxiliary boundary values are expanded as

n7r X
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Matching normal derivatives
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Allovving m to run from I to N, Eqs. (Alo) —(A13) give
rise to Eq. (18).
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