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We have recently exhibited expressions for Green's functions for dynamic scattering problems for
gratings and two-dimensional arrays, expressed in terms of lattice sums. We have also discussed
efBcient techniques to evaluate these sums and how their use in Green s function forms leads nat-
urally to Rayleigh identities for scattering problems. These Rayleigh identities express connections
between regular parts of wave solutions near a particular scatterer and irregular parts of the solution
summed over all other scatterers in a system. Here we discuss these ideas and techniques in the
context of the problem of the scattering of a scalar wave by a regular lattice of spheres. We discuss
expressions for lattice sums which can be integrated arbitrarily-many times to accelerate conver-
gence, a computationally efBcient Green s function form, and the appropriate Rayleigh identity for
the problem. We also discuss the long-wavelength limit and obtain the Maxwell-Garnett formula
for lattices of perfectly conducting spheres.

PACS number(s): 03.50.De, 41.20.Jb, 71.25.Cx

I. INTRODUCTION

Recently, it has been proved, both theoretically and
experimentally, that periodic dielectric structures in one,
two, or three dimensions exhibit photonic band gaps [1,2].
In such structures, called "dielectric crystals, " new types
of electron-photon interactions appear leading to a spe-
cific behavior of light.

The most widely used theoretical approach in calculat-
ing the photonic band structures relies on the treatment
of the full vector Maxwell equations by means of Bloch
expansions [3—5]. In this method, the coeKcients of the
series expansions are the solutions of a homogeneous lin-
ear system of equations. At the same time, &om the sec-
ular equation associated with this system, one obtains
the wave numbers of the propagating modes. The ef-
fective dielectric constant of the composite is obtained
as the long-wavelength (or quasistatic) limit of the pho-
tonic band structure problem [6]. Due to the fact that
the Bloch expansions converge slowly, this method re-
quires a large number of terms in the series in order to
obtain accurate numerical results. This also requires the
evaluation of large determinants by complicated and time
consuming numerical algorithms.

The Korringa-Kohn-Rostoker (KKR) method [7—9] is
a classical technique for the solution of the Schrodinger
equation in periodic lattices of atoms. The KKR method,
as developed by Korringa [7], was explicitly inspired by a
formulation due to Lord Rayleigh [10] for the solution of
electrostatic problems involving lattices of spheres or ar-
rays of cylinders. The work in this paper represents the
continuation of a series of papers which have extended
Rayleigh's technique &om static to dynamic problems,

for both singly [11,12] and doubly periodic [13,14] sys-
tems. We now turn to triply periodic scattering systems
and exhibit what may be regarded as either the gener-
alization of the KKR method to photonics, called for by
Lamb et al. [15] and Moroz [16], or as a further develop-
ment in our generalizations of the Rayleigh method.

In order to illustrate the method, we restrict our con-
siderations to the propagation of an electromagnetic wave
through a periodic lattice of perfectly conducting spheres
embedded in an isotropic homogeneous host medium. In
this case we may use the scalar wave equation. First, we
present the spatial form and the spectral domain form
of the Green's function. These two forms are related by.
the Poisson summation formula as generalized to quasi-
periodic problems. In this way we obtain dynamic lat-
tice sums which in turn provide us with the Neumann
series for the spatial form of the Green's function. Then,
by applying the Green's theorem to the pair constitut-
ing the Green's function and the general solution of the
wave equation, we obtain the dynamic Rayleigh identity
in the form of an infinite, linear homogeneous system
of equations. The unknowns of this system are the ex-
pansion coefficients of the propagating modes, while the
zeros of the determinant define the wave numbers of the
modes. Finally, we analyze the quasistatic limit of the
dynamic Rayleigh identity in the case of a simple cubic
lattice. In the first-order approximation, we obtain the
usual Maxwell-Garnett formula for a two-phase compos-
ite.

The lattice sums involved in our method are repre-
sented in terms of absolutely converging series over the
reciprocal lattice [14,17]. In contrast to the method used
by Ewald [18], these series may be accelerated by succes-
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sive integrations to any order. By introducing the lattice
sums, we obtain a representation of the Green's func-
tion in terms of a rapidly convergent Neumann series.
In numerical applications, the use of such a representa-
tion with fast converging lattice sums leads to a simpler
secular equation and consequently to a high efficiency in
computing time. This high efficiency is obtained when we
need the numerical values of the Green's function or fields
at several spatial points. The coefFicients of the series ex-
pansions for these physical quantities are in essence the
lattice sums which, for a given mode in a specified lattice,
have to be evaluated once only. Therefore, we need only
to evaluate the spatially varying part of a small number
of terms in the corresponding Neumann series.

In order to make clear the main parts of our method
we have moved most of the mathematical details to ap-
pendixes, and refer to results from the Appendixes using
bracketed equation numbers.

II. QUASIPERIODIC GREEN'S FUNCTION

We consider the case of a periodic lattice of identical
spheres, of radius a, embedded in a homogeneous mate-
rial. Let ei, e2, and e3 be the three fundamental trans-
lation vectors of the lattice. These vectors are not neces-
sarily orthogonal, nor are their lengths necessarily equal.
Thus the vectors &om the origin of coordinates to the
center of the pth sphere are specified by a set of three
integers:

Rp —plel + p2e2 + pse3 = (pl p2 p3) p; & Z. (1)

We denote by 'V the primitive cell of the lattice and by
V the volume of D. The primitive cell of the reciprocal
lattice is defined by the vectors

(i, j, k) = (1,2, 3) (2)

and the vectors in the reciprocal lattice have the form

Kh —2lr(~lul + h2u2 + h3113) = (~1 g ~2) h3) )I

with h; c Z.
The propagation of an electromagnetic wave through

the lattice is described by the Maxwell equations. In
the case when the host medium is an isotropic homoge-
neous dielectric in which the electromagnetic wave has
the wave number A:, the equations for the components of
the electric and magnetic fields decouple and each field
component satisfies the Helmholtz equation

dition follows &om the Bloch theorem, stating that the
field on the pth sphere depends explicitly on the sphere
position (R„)through the phase factor exp (ik; . Rz) [19].

The inhomogeneous Helmholtz equation, defining the
quasiperiodic Green's function, has the form

(V', + k ) G(r; p) = —) 8(r —R„—p)e'"'

eik(r —Kp —
p~

G( .
) ) e ik;Kp

47r /r —Rp —
p/

(7)

We mention that, in terms of the spherical Bessel func-
tions of the third kind (A3), the Green's function takes
the form

G(r; p) = —) ho( l(kyar —R„—pi)e'"*" (8)

which is written in a form similar to the expression of the
Green's function for the two-dimensional problem [14].

If we apply on the right-hand side of (6) the Pois-
son sumlnation formula (as generalized to quasiperiodic
problems)

—) e'~"' = ) b(r —R„)e'" ~.
h p

and expand the Green's function in the Fourier series

G(r. p) —) g(Q )e 4&'( Pl

h

where Qg = Kg+I;, we obtain the spectral domain form
of the Green's function

eQ~( —p)
G( p)=p). q 2

h

The Green's function, expressed by (7) or (11), is Her-
mitian:

G(r' p) = G (p'r) (12)

with the asterisk denoting complex conjugation, and sat-
isfies the quasiperiodicity relations

where the Laplacian operator I7„acts on the components
of the vector r. The solution of this equation is the spatial
domain form of the Green's function

(4)

The solution f (r) has to fulfill the boundary conditions
at the surfaces of the spheres and the quasiperiodicity
condition

f(r+ Rp) = e'"' & f(r) Vp,

G(r + R„;p) = e'"*" ~ G(r; p),
G(r; p+ Rp) = e '"' ~ G(r; p) .

(IS)
(14)

Actually, the two forms of the Green's function (7) and
(ll) are equal [8] and this equality follows from the Pois-
son summation formula

where k, = (k;, 8;, p, ) is the wave vector of the incident
radiation (Bloch momentum). The quasiperiodicity con-

~ eiQ p,
.(r —p)

Q —k
h

V iA, )~-a,,—
p~e ik; KP

4vr -
/r —R„—pf

(15)
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III. LATTICE SUMS

In this section we will consider the Green's function
depending on only one variable g = r —p, so that (15)
may be written in the form

ho( ) (k()he oh o + ikje(k()Se
4m

4&,.e) - je(Qa() Y. (8 )
h

~ipse g

Q —k
h

V). e ' 'q Riki( —Rp i

e-
ig —R„i

(16)
where we have identified the dynamic lattice sums

Se = ) he (kR„)Ye* (Bp, (p„) e'"*" (18)

We also consider that Le' is restricted to the unit cell
centered at the origin of coordinates, so that ( ( R„Vp g
0 (see Fig. 1 for the case of a simple cubic lattice and for
the definition of angles Og, pt, specifying the orientation
of g). We separate the term for p = 0 and follow the
method &om Ref. [14]. Thus we have

and he (z) are spherical Bessel functions of the third
kind (A3).

In this way we have obtained the representation of the
lattice sums in terms of series over the reciprocal lattice

ir i(—R„i 4~

p+0

Se je(k() =— ho( ) (k() be ph o
4m

4~ e+i)- je(@~&) Y. (8 ) (,9)
h

~ik$

4' +ik ) je(k()Ye (He, (pt)
e,m

x ) he (kR„)Ye' (8~, happ)e'""

p80

4~ -, - je(V.C) .= —) i Ye (8(, ve) ) 2,Ye' (8h p~)
e,~ h

Then we expand the terms of the series on the left-hand
side and the exponentials on the right-hand side, accord-
ing to the relations (A12) and (A9), respectively,

We may also define Sg ——S& + iS&, where

= ) ~e(kR~)Ye' (8~ ~~)e'"' "'
p+0

= ) ~e(kR~)Ye' (8~ V'~)
e'""" .

p80

(20)

As in the two-dimensional case, we may evaluate ex-
actly the lattice sums S& . Starting with the Poisson
summation formula

Finally, by multiplying both sides by Ye (8~, rpt) and in-
tegrating over the directions of g, we obtain

) e' &' = —) h(s —Kg)
p h

(22)

and choosing s = k + ki, under the assumption that
s g KI, Vh, we obtain

iRp (k+k;) p

p

(23)

Here k is an arbitrary wave vector. Then we separate
the term for p = 0 and expand exp(ik Rp) according to
(A9),

).i'Se Ye (81, V ~) = ——= — Yoo(6, pj. ) (24)4z- 4~Em

Integration over the directions of k and use of the orthog-
onality relation (A14) gives

1
~e,o~,o

4m
(25)

By substituting (25) in (19) we obtain the representa-
tion of the nontrivial lattice sums (21)

FIG. 1. The unit cell for a simple cubic lattice of spheres.
The inset shows the declination (8„) and the azimuthal (rp„)
angles, which define the direction of the arbitrary vector
v = (v, 8„,y„).

Se" je(k() =— 1

4m

4~.e)- je(q~() Y. (8 )2 —k2
h ~h

(26)
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For fixed k, E, m, Eq. (26) is true independent of ( and
provides us with an identity relating sums of spherical
Bessel functions. The vector g has always to be confined
within the unit cell. Therefore, in numerical applications,
we set $ = min ([er, [).

For large arguments, the spherical Bessel functions of
the first kind have the principal asymptotic form [20]

20

1
jr(z) - —cos (z —Ar/2 —vr/2)

z

and so the series of moduli, associated with the series
in (26), diverge logarithmically. Hence, in the represen-
tation (26) all the lattice sums S& converge condition-
ally. Following the method for series acceleration, &om
Ref. [14], we may express the lattice sums S& in terms
of absolutely converging series. Thus we multiply both
sides in (26) by ( + and integrate over ( from 0 to il,
where g & 1. The integrals may be expressed in the
closed forms [20]

-0.5 q=6

:,0 25 |r n

f
r/

(/+2 ~

( ()d( X+2 2&+i(u0)

0 G

f (/+2
( ()d( X+2 y&+i (u 1)

0 a

(27)

2'+'I'(E + 3/2)
rie+

(28)

FIG. 2. The dynamic lattice sum S2vp for k; = (1.2, 0, 0.5)
and k = 2.3. The solid curve represents S~o as given by the
sum (21) over the direct lattice with pi 2 3 C [ n, n—], while the
dashed curves represent S2vp as given by the sum (29) over the
reciprocal lattice with h1,2,3 E [ n, n] and ( = 1, for different
orders of series acceleration q.

for I. ) 0. Then we change rI into ( and repeat the same
procedure, this time multiplying both sides of the equa-
tion by (r+s. After q steps, we obtain

lattice sums with m ( 0 are given by the equation

S~ = (—1) Sr"*,

Se je+q(k() =— 1
[y~(k() + tp~(k()] 8r ph p

4vr

4~,e) - & k )' je+q(Q~()
E& ) Q' —k'

x Y~' (Hi, ph, ), (29)

which follows directly from the definition (21).
In Fig. 2 we compare the convergence of the lattice sum

S20 with the number of terms involved in summation over

Y

20
where

( () — )2~~; p!

0.062

l
l
1
l

\

\
\

Now, for all q ) 1, the series in (29) converge absolutely.
At; the same time, by increasing the value of q we make
the series in (29) converge more rapidly. This is an im-
portant feature in numerical computations. As in the
case of two-dimensional lattice sums, too large values of
q lead to an instability of the numerical algorithm [14].
In particular, for small A; we have to use small values for q
(for instance, 2 or 3) and replace the term y~(k()+tpz(k()
by the convergent part from the series expansion of y~(z)
[21],

0.O6O - l

0.058-

0.056-

q=6
q=1

q=3
q=2

yq(k() + tpq(kg)
4

10 15 20 25 30

(—1)~-~ (kgb '" '
2 p!I'(p —q+1/2) ( 2 )

We mention that (29) may be used for m ) 0. The

FIG. 3. The dynamic lattice sum S20 as given by the sum
(29) over the reciprocal lattice with hi 2 3 E [ n, n] and—

1, for different orders of series acceleration q. Also,
k, = (1.2, 0, 0.5) and k = 2.3.
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TABLE I. The numerical values of the lattice sum S64 as a function of k, for k; = (1.2, 0, 0.5) and hq q s g [
—30, 30], as given

by (29), for g = 0, 1, 3, 6. The computation time for this table was 429 s (CPU time) for a FORTRAN computer program run on
a DEC ALPHA 3000. computer. The number in brackets denotes the poorer of 10 by which the preceding is to be multiplied.

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

0
0.819186411852387[+04]
0.709019550555784[+02]
0.487881116948925[+01]
0.748955049958104[+00]

—0.48898305 1569029[+00]
0.376054591098526 [—01]
0.2865 10335422465 [+00]
0.810234383167462 [+00]

—Q.388981141556492 [—01]
0.568063626017161I+00]

1
Q.84 1651684845925 [+04]
0.728436380691055[+02]
Q.501367084205489 [+01]
0.771977146536978[+00]

—O.482277 566609O37(+00]
0.404634033752571 [—Ol]
0.288176820077083{+00]
Q.81154778492 5639[+00]

—0.374070364938334[—01]
Q. 571680363085179I+00]

3
0.84165624408603 7[+04]
0.7284402 70179216[+02
0.501369725187842[+01]
0.771981505255299[+00]

—0.482276356 154453 [+00]
0.40463886 1338264 [—01]
Q. 288 177076 171283[+00]
0.811547959731758[+00]

—Q.374068825809523[—01]
Q.571680548800277[+00]

0.84 1656012387273 [+ 04]
Q. 72844007563 1804[+02]
Q. 501369596654419[+01]
0.771981301506167[+00]

—0.4822 76409668387[+00]
0.404638663380802 [—01]
0.288 1 066683895[+00
0.811547954 103075[+00]
0.3 406886620056 [ 011
Q. 571680545314962[+00]

the direct lattice (21) and over the reciprocal lattice (29).
Note the oscillatory nature of the direct lattice results,
with no evidence of convergence being evident. By con-
trast, reciprocal lattice results with q = 0 and q = 6 agree
to graphic accuracy from n = 5 onwards. The numerical
values, and those given below, have been calculated in
double precision FORTRAN, using double precision rou-
tines from ATILT (ftp address netlib. att. corn) for Bessel
and I' functions and for associated I egendre functions.

In Fig. 3 we compare the rate of covergence of the
reciprocal lattice formula (29) for Szo, for various rates of
acceleration. The accelerated forms all agree to graphic
accuracy &om n = 7 onwards. A similar comparison is
made for 864 in Fig. 4. Note that, as in the case of Szo,
the direct lattice summation (21) yields an oscillatory
result, which Quctuates about the accelerated reciprocal
lattice results.

In Table I we provide numerical values for the recip-
rocal lattice results for 564. Note that the values for

q = 3, 6 agree to better than 10 . As far as we know,
no previous values for these lattice sums have been re-
ported. Essentially, the same algorithm was used as that
whose results are compared with those of Herman and
Greengard [22] for static sums in Appendix C.

In Figs. 5 and 6 we display the behavior of the lattice
sums Soo and 920 as functions of k. Note that all lattice
sums diverge whenever k is equal to the magnitude of a
reciprocal lattice vector Qg, in agreement with the Bragg
condition [19] and Eq. (29). All lattice sums also diverge
at the origin (k = 0).

IV. NEUMANN SERIES FOR THE C REEN'S
FUNCTIQN

64
36

~V

From (7), by means of (A12), we obtain the Green's
function as a Neumann series [21] in terms of the spher-
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27
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«eA
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I
I
I
I

11, I
I

g I
V

lo 15 20 25
~ n

2 I (L'g Q )11')1' 't't~'~' 3 &"

FIG. 4. The dynamic lattice sum S64 for k, = (1.2, 0, 0.5)
and k = 2.3. The solid curve represents S6~4 as given by the
sum (21) over the direct lattice with p$ 2 3 g [ n, n], while the-
dashed curves represent Sev4 as given by the sum (29) over the
reciprocal lattice with hg 2 3 E [ n, n] and ( = 1, f—or di8'erent
orders of series acceleration q.

-10 -'

FIG. 5. The lattice sum Soo as a function of k, for
k, = (1.2, 0, 0.5), q = 6, and h1,2,3 E [ 20, 20].
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10-

5-

20
have

G(() = —y—o(k() ——) yo(k~g —R„~)e'"' ~~
4' 4a pgA"

—k). (&e" —+e'"') ee(t0&e (ge, ~e)
em

or

G(&) = ——):yo(kl& —R~l)""'4' pgA'

—k). (S" —S"'
) je(k()Ye (9e, eee),

em

0

FIG. 6. The lattice sum S~o as a function of k, for
k, = (1.2, 0, 0.5), q = 6, and hi g 3 E [ 20, 20].

where A = JV*LI((0,0, 0)). In this way, we obtain rapidly
converging series in the representation (32) of the Green's
function.

The representations (31) and (32) of the Green's func-
tion are valid for g restricted to the unit cell centered at
the origin of coordinates. We may extend the validity of
the series expansions in (31) and (32) to a larger region
consisting of nearest-neighbor unit cells, by defining the
lattice sums

Se~ = ) hq (kR„)Y&' (9„,(p„) e'"*" (33)

ical Bessel functions of the first kind

G(g) = —h() (k() +ik) Sr jr(k()Y& (9g, pt) (31)
em

With these modified lattice sums we obtain a represen-
tation of the Green's function, consisting of two parts

and, by substituting (25), we have

k
G(g) = — yo(k() —k ) Sr" jr(k() Yj (9(, pg). (32)

G(() = —) hol I(ki( —R„i)e'"*"' pe~

+ik ) Sr jg(k()Yg (9(, (p) ). (34)

The lattice sums of large order E are well approximated
by the nearest-neighbor terms The first part in (34) is related to the cluster formed by

the sphere at the origin and its nearest neighbors, while
the second part refers to the spheres outside this cluster.
Now, the series expansion in the representation (34) of
the Green's function is valid in the region formed by the
unit cell containing the sphere centered at the origin and
the unit cells corresponding to the nearest neighbors of
this sphere. This procedure may be continued by con-
sidering the set of next-nearest-neighbor spheres, and so
on, in order to obtain a representation of the Green's
function, in terms of a Neumann series, valid in an ar-
bitrary finite region of the lattice. Of course, continuing
this procedure indefinitely returns us the expression (8).

Sz~ = ) y&(kR )Ye (9ue Fp)e
per"

Here A* represents the set of triplets p = (pi, p2, ps) in-
dexing the vectors Hp, which point to the nearest neigh-
bors of the sphere centered at the origin

= ((pi p2 ps)lpi p2 ps C [ 1 1]) ')(((0 0 0)).
By means of the nearest-neighbor estimate for the lattice
sums, we may apply Kummer's method [20] to accelerate
the convergence of the Neurnann series in (32),

V. RAYLEIGH'S IDENTITY

em

k
G(4) = ——yo(k&)4'

— ).(~e" —~e" "")ee(t:()&e (&eVe)',
—k ) ) yg(kR„)jI(kg)Yr* (9„,p„)

pg JV~ em

Y (9 )
sk, H.

The asymptotic series has a closed form sum so that we

By means of the addition theorem for scalar waves, we
separate the variables r and p in the representation (32)
of the Green's function (see Appendix B). Then, within
the unit cell, we apply the Green's theorem to the pair
constituting the Green's function (B8) and the general
solution of the Helmholtz equation (4),

f(r) = ) [Ag jg(kr) + BI y~(kr)] Yr (9,y„). (35)
e,m
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Thus we have

f(p)&p'&(r p) —G(r &)&p'f(p) dp

Aem = Te&em

and, from (38), we obtain the homogeneous system

). (Tepee ~~~ —oe~;e ~ ) &e ~
e,m

(39)

(40)

f(&)
(" ) —G(r;&) f( ) d. . (36)

~UPS

Here 17 is the volume of the unit cell (Wigner-Seitz cell)
with the boundary O'V and 8 represents the volume of
the sphere with the boundary BS, while 'D $8 means the
unit cell 'V excluding the sphere 8. The left-hand side
of (36) may be evaluated by means of (4) and (6). As
r, p C D we obtain f (r)— On . the right-hand side of
(36), because of the periodicity of the product Gf, the
integral over the cell boundaries (817) vanishes. Hence
the only contribution comes &om the integral over the
surface of the sphere

f( ) = f(.)""'—G(',.)""
Bp |9p

where a is the radius of the sphere. As an example, in the
case of a simple cubic lattice, the layout of the vectors r
and p is displayed in Fig. 1.

A straightforward procedure, involving the explicit ex-
pressions (35) and (B8) and the Wronskian (A4), leads
us to the dynamic Rayleigh identity

) Ae je(kr)Ye (0„,y )
e,m

= ) &e ~ ) ~e ~;e ~ je"(k&)Ye"~"(0~~ p~). (37)
e'm' e m

Physically, this identity has a left-hand side which repre-
sents the part of the field component f that is a regular
function (i.e. , does not diverge) at the origin. The right-
hand side expresses this function as a sum of the irregular
part of f, summed over all the spheres in the lattice. In
other words, the part of f that is regular in the neighbor-
hood of the central sphere must have its sources on all
the other spheres in the lattice and the waves emanating
from the other spheres are just the irregular part, with
an appropriate choice of origin. It is interesting that this
is the physical argument that generalizes the reasoning
of Lord Rayleigh for static problems. The breakup of f
according to regular and irregular parts is preferred; the
alternative breakup according to incoming and outgoing
waves does not appear to be useful.

By means of the orthogonality of spherical harmonics
we obtain from (37) the linear system of equations

The values k for which the determinant of the system (40)
vanishes are the eigenvalues of the Helmholtz equation
(4), i.e. , the wave numbers of the propagating modes.
By solving the system (40) for a wave number we obtain
the coefficients for the propagating mode (35).

VI. THE QUASISTATIC LIMIT

The equation

det [Tepee ~ —ae;e (41)

also defines the band structure of photons propagating
through the lattice. If k is required for a general k;, which
is not invariant under any of the symmetry operations
&om the lattice symmetry group, we will use the lattice
sums defined in (29). If k; is invariant under some of the
symmetry operations &om the lattice symmetry group,
we have to analyze in detail the behavior of the lattice
sums in such situations.

For any lattice, a point of high symmetry is k; = 0. In
relation to the dispersion curves, in the system k versus
k;, we may distinguish two cases [19]: (i) k; = 0 and
k g 0 for optical bands and (ii) k, —+ 0 and k = nk; for
the acoustic band. Here, k; = ~k;~ and cx is the effective
re&active index of the lattice.

In the first case, the lattice sums (26) are simply
changed into the form

S. je(kq) =— 1
yp(kg)Se pS

4tr

4~ .e ~ - i e(Z„()
em( h& ~hJ~ (42)

1
[y, (k() + tv, (k()] Se,pb, p

4tr

-"") i'"'i ""' ""
( )

h

with the same function tpz(k() as in (29). Furthermore,
in this case, all the lattice sums are real and

with the direction of Kh being specified by polar angles
oh and ph, and further, to the corresponding formula
containing accelerated series

~e je+.(k&)

Aem- oem. e m' +e'm'
t (38) ~e, = (—1)'~e

e,m

The boundary conditions on the surface of the sphere
impose a relation between the coeKcients Ae and Be
For scalar boundary value problems such as those involv-
ing perfectly conducting spheres, this relation is linear

The second case represents the quasistatic limit when
the linear system (40) takes the form of Rayleigh's iden-
tity for the relevant lattice in an electrostatic field. To
illustrate this change of the homogeneous linear system
(40) into an inhomogeneous linear system, we consider
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f(r)isa = o (44)

a simple cubic lattice of spheres. The behavior of the
dynamic lattice sums when both k and k, tend to zero
simultaneously is discussed in Appendix C.

If we assume a Dirichlet problem for the field compo-
nents f(r) in (35)

0 ~ P2(cos 8„)

p+0 P

The value of this lattice sum depends on the form of the
surface at infinity (E2) which encloses the lattice (see
Fig. 7). In Cartesian coordinates, the lattice vectors take
the form

then the relations (39) take the form R„=xpx + ypy + zpz, (54)

ye(ka)
je(ka)

(45) where x, y, and z are the unit vectors along the axes.
Also, in Cartesian coordinates, (53) has the form

and (35) may be written in the forin

f (r) = —) . — Bemye(ka)&em(O. I p. )
je(kr) ye(kr)
je(ka) ye ka

--&- (-:) —(-:)
' .-"-~"~ (46)

em

Be (o.k;a)e+'—
ye (ka) (2E —1)!! (47)

We also have

Be (2& + 1)!!—
je(ka) (ak a)e (48)

With these notations, in the first-order approximation,
the system (38) reduces to the equation

Here (46) represents f(r) in the limit k -+ 0. To ob-
tain this form we have used the relations (A5) and (A6).
At the same time, the coefficients Bem are coiistants (in-
dependent of k) and this suggests that, for small k; and
k = nk;, the coefficients Be depend on k (or k;) through
the relations

x2 — 2 —z2 2x2 —s2
I/0 ) iI yP rI ) rI P

2B ' 2(x 2 + s 2) 5/2 '

pWO p p+O P P

where sp = yp + zp .2 2 2

Following the method &om Refs. [23,24], we write the
series in (53) as a finite sum, containing terms within a
large sphere (Di), excluding the origin 0, and an integral
over the volume (D2):

0
U2 =

2 22zp —sp

2(x 2 + s 2)5/2
R q(o&go)

2x —s
(56)

2x' —s' 1 ~ xx l
2(x + s ) /2 2 q

rs ) (57)

we find

Here N~ denotes the volume density of lattice points
and Nv = 1/V for our simple cubic lattice. Also, for any
boundary (Zi) of regular shape (e.g. , a sphere or a cube
with center 0) the finite sum in (56) vanishes. Using the
Green's theorem together with the relation

(nk;a)s
BqO 1 — O.io.io3 7

From (B7) we obtain the expression

( „2010.10 = +47r
l

~00 ~20'l

5

(49) UO
2

N~ x—x ng ding
2 (g ) p

Nv
2 (g ) T

(58)

In the quasistatic limit for the lattice sums (C12) and
(C14) and by assuming that the Bloch momentum k; is
oriented parallel to the negative y axis (i.e. , 8, = vr/2 and
y; = 3vr/2), (50) becomes

E;

6U,'
~10' 10

Consequently, we obtain, for Eq. (49),

Bio (1 —2a U2) = 0.

(51)

(52)

I
I
I
I
I
I
I
I

I
I

I
I

I
I
I
I
I
I
I

I
I

In the direct lattice space, the lattice sums U2 are con-
ditionally convergent. In our example, we are interested
in the static lattice sum

FIG. 7. The volume of integration used in deriving the
value of Uz. Lq represents the maximum spatial extension
of the lattice.
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P = —4~cpBgoNv. (59)

The second ixitegral in (58) is

The first term is simply 27r&v/3. The second is related to
an integral over the surface charge density on the bound-
ary (Z2) between the lattice and &ee space.

Let P denote the polarization or dipole moment per
unit volume, where P is independent of position within
the lattice. We have

Physically, as long as the wavelength of the incident ra-
diation is smaller than the size of the lattice, the fields
created by successive regions of opposite charges, associ-
ated with exp (ik, . r), cancel between them and Ex = 0.
When the wavelength of the incident radiation is larger
than the size of the lattice, we are in a situation of a lat-
tice placed between the plates of a capacitor in an ac cir-
cuit; i.e., at every instant we have a well-defined polarity
of the plates and therefore a well-defined depolarization
field Ey .

1 z 2vreoEg—P n2dA2 ——
2P (g) r3 P (60)

VII. CONCLUSIONS

where E~ is the x component of the field at 0 due to the
polarization charges on (Z2) (for a discussion of these
results see, for example, Ref. [25]). Combining (59) and
(60), we have

2 1Ep
U2 = —xNv ——

3 2 Bio
(61)

By substituting the expression of U2 in (52), we find the
inhomogeneous equation

&xo(1 —p) = —Ex ~', (62)

with p = 4ma /(3V) the voluxne fraction occupied by the
spheres. The effective dielectric constant of the compos-
ite is given by [23,24]

so that we obtain the Maxwell-Garnett formula for a cu-
bic lattice of perfectly conducting spheres

1+ 2p
1 —p

(64)

Bxa(1 —p) = (EJ + E,)as, —

In all these computations, carried out to show how
the homogeneous equation (49) is transformed into the
inhomogeneous equation (62), the key role is played by
the lattice sums S00 and Sgo (in the dynamic case) and
their relation with the lattice sum U2 (in the static case).
Apparently, there is a difFerence between (62) and the
corresponding equation for static problems [23,24]

We have discussed Green's function, lattice sums, and
the Rayleigh identity for three-dimensional lattices of
spheres, in the context of a scalar wave problem involving
Dirichlet boundary conditions on the sphere surfaces. We
mention that the representation of lattice sums in terms
of absolutely converging series has been achieved. We
plan to extend our treatment to the full vector problem,
involving the use of Mie theory to match electric and
magnetic field components at sphere surfaces. Note that
this generalization will not alter the required lattice sums
and Green's function. The Rayleigh identity (38) applies
unaltered to each Cartesian field component separately.
Only Eq. (39) needs to be replaced by a vector equiva-
lent, coupling the tangential components of electric and
magnetic Gelds.

We have obtained the Maxwell-Garnett formula (64)
in the quasistatic limit of our dynamic formulas. Lamb
et aL [15] also treated arrays of spheres in the quasistatic
limit and arrived at a generalized Maxwell-Garnett for-
mula. However, their treatment was a vector one and so
our scalar validation of the Maxwell-Garnett formula is
not in disagreement with their vector modification of it.
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where E; represents the applied (static) electric field,
while E~ is the depolarization Geld. The homogeneous
equation (49) pertains to modes, which by definition ex-
ist without an applied or incident Geld. Energy is prop-
agating along the y axis and "spreads out" into the x-z
plane. The wave emanating from the axis in this plane
is reHected back oK the discontinuity marking the edge
(Z2) of the inhoxnogeneous region containing spheres and
this reHected Geld in the static limit goes over to E~, the
polarization Geld.

The inHuence of this polarization Geld in static prob-
lems is governed mathematically by a pair of non-
comxnuting limits (k, ~ 0 and 12 ~ co; see Fig. 7).

APPENDIX A: EXPANSIONS IN SPHERICAL
BESSEL FUNCTIONS

2e(z) = —J~+x)2(z)
2Z

(A1)

x(z) = —Yx+x)2 (z),
2Z

(A2)

and

We use the following definition of the spherical Bessel
functions [20]:
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he" (z) = je(z) + '~e(z) = —
e+ /2(z) (A3)

(8 V') = (—1) Ye' (8 &)

and the orthogonality condition
On the right-hand-side of (Al), (A2), and (A3) we have
the usual cylindrical Bessel [J„(z)], Neumann [Y„(z)],
and Hankel [H„(z)] functions, respectively. The func-

tions je(z), ye(z), and he (z) are called spherical Bessel
functions of the first, second, and third kind, respectively.

The Wronskian of the spherical Bessel functions of the
erst and second kind is

~b-(z) ~-(z)) = ~-(z)~.'(z) - j.'(z)~-(z) = z '. (A4)

, (8 V )Ye.~, (8, V ) d~ = 6,e, ~,~, (A14)

Ye,-, (8 V)Ye,-.(8 V)

The product of two spherical harmonics of equal argu-
ments may be written in the form

ei+e2

) (E, mg + m2~ 82m2 ~Egmg)

xY,+, (g, p),
(A5)(2n+ 1)!!'

(2n —1)!!
u-(z) -— where the Gaunt coeKcients

(A6)
(t'm~ E2m2 ~t'pm')

For small arguments, the spherical Bessel functions are
approximated by the formulas

(A15)

where (2n+ 1)!!= (2n+ l)(2n —1) . . 1.
Prom the series expansion

Ye' (8, p) Ye,~, (8, Ip) Ye, ~, (8, p) dB (A16)

e"' ' = ) (2/+ 1)i je(z)Pe(cosg)
e=o

and the addition theorem for the Legendre polynomials

e4'
Pe(cos 8) = ) Ye~(gq, rpq)Ye~(82, &p2), (A8)

m= —e

we obtain the expansion of plane waves [20]

may be expressed in terms of vector-coupling (Clebsch-
Gordan) coefficients [26]

(Im~ E2m2 ~Egmg)

(2e, + 1)(2Z, + 1) "
4vr(28 + 1)

sin (k() = ) (2&+ 1)je(kp) je(kr)Pe(cos 8)
e=o

= ) (2E+ 1)je(kp)ye(kr)Pe(cos 8)
cos (k()

k

e'"' = 4vr ) ieje(kr)Ye (8„,p„)Ye' (gl„yl, ) .
e,m

Also, we have [20]

(A9)

(A10)

(A11)

The Clebsch-Gordan coeKcients are nonzero if m = mq+
m2 and t'q, E2, E satisfy the triangular condition ~Eq E2

~

(—
APPENDIX B: SCALAR WAVE ADDITION

THEOREM

The spatial domain form of the Green's function (32)
is represented by a series expansion in terms of spherical
waves

where ( = ~r —p~, (2 = r2 + pz —2rpcosg, and p ( r.
Prom these relations we obtain the expansion of spatial
domain Green's function

= ik ) je(kp) he' (kr)
e,m

4e~(C) =je(k()Ye~(gt, V g), (B1)

where g = r —p. In order to separate the variables r
and p, we follow the method devised by Felderhof and
Jones [27]. Thus we expand the terms &om the plane
wave identity

x Ye~(g„, fp„)Ye' (gp) yp) . (A12)

For the spherical harmonics we use the definition [26]

ikg ikr —ik p
7

into series of spherical waves, by means of (A9),

).i'&e-(&)Ye' (g~ &~)

(B2)

1/2
(g ) ( 1)na ( )

4~ (t'+ m)! Pe (cos8)e'

where Pe is an associated Legendre function. The spher-
ical harmonics satisfy the relation

=4~) )
y egmg

1(8» p~)&e, ~Q(p)Ye. ~ (8» &I )
(B3)
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Multiplying both sides by Ye~(6)y, pg) and integrating
over the directions of k, we obtain the addition theorem

i/je~(C) = ). ).&e,~„e,~, (/)e, ~, (r)i/je, ~, (p), (B4)
&Iml &gm2

Se je(k() -—4~ e je(k'&)

4~,.e ~ - je(K).()
k y / g 2 Em( h&Vh)'

hgO h
(C2)

where

&e™~„e,~, = 4~& ' ' (&imi( &2m2 (&m) (B5)

with the Gaunt coefficients defined in (A17).
By applying the addition theorein (B4) to the series

(32) we are led to the following representation of the
Green's function: ) f(Kh, ) =,) E(R ),

h p

(C3)

Here Oh and p'h define the direction of the reciprocal lat-
tice vector Kh.

First, we apply the Poisson summation formula to the
series in (C2). In three dimensions, the Poisson summa-
tion formula has the standard form

G(r; p) = ——yp(k() —k ) ) ) Se Ae'

fm Elml E2mg

~, , ( )~,*. , (p) (B6)
lattice andj.(R,) = f j(K)e-*"" dK. (C4)

where V is the volume of the primitive cell of the direct

+&Iml, &2 m2

gl+gg
~y ~E,m —m2

E,ml —m2 Xl ml, Eg m2 (B7)

The sum over m is super8uous as the Clebsch-Gordan
coefficients in (B5) are nonzero only for m = mi —m2.
Also, Zi, E2, and E have to satisfy the triangular condition,
so that the series over 8 is restricted to a Rnite sum and
we may introduce the coeKcients

Therefore, we have

j (a.,) = f"(,r) v, (d, ).- ""dK

dKj (K$) ef drjec Ye (eeec, e ec)e

= 4vr( —i) Ye* (8p, pp) dKje(K() je(KR„).
0

Finally, we obtain the spatial domain form of the
Green's function with separated variables

k
G(r' p) = yp(k~)4a

—k ) ). ere, ~, ;e,~,We, ~, (r)@e ~, (p).
Elml 42m2

The first term in (B8) has the form [20]

cos (k() (B9)

so that, for p ( r, this term has a series expansion of the
form (All).

Here we have used the relation

je(KRp)Ye (gp, pp) = AJr e* (el', y~)e4'
which follows from (A9). The integral over K is a special
case of the discontinuous Weber-Schafheitlin integral I21]

dKje(K() je(KR„)

dK Je+1/2 (K() Je+1/2 (KRp)

2/(Rp p K

((/R )e+i/2 if ( ( R
2(2E+ 1)g(R„(R„/()'+'/' if ( & R„.

If g is restricted to the unit cell centered at the origin of
coordinates (the Wigner-Seitz cell), then ( ( R Vp g 0
and ( & Rp ——0. Consequently, we have

APPENDIX C: THE LATTICE SUMS IN THE
QUASISTATIC LIMIT

27''

The lattice sums S&, of order I, & 0, are given by the
equation

and E(Rp) = 0.
Now, &om (C3), we obtain

Se je(k() =— 1
y()(k()be pb p

4vr

4~,e~ - ie(Q~() Y.
k2 Yern(~jee V je)

~h

)- je(Kh() Y. (Oj r
)

& (,)e
se (~)

An h e 'e('je

(Cl) where we have denoted by se (() the lattice sums

For I. & 3, in the quasistatic limit, when k; = ~k;~ is small
and k = o,k;, we have

e+i
se (() =) I I

Ye' (ep &p). (c6)
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TABLE II. The static lattice sums Ue from (C15), evaluated by means of (C9) with q = 20,
h$, 2 3 6 [

—20, 20], and ( = 1. The fourth column displays the static lattice sums given by (C6) with
pz, s, s E [

—20, 20], while the last column contains numerical values from Ref. [22], obtained by an
independent method.

l
4
4
6
6

20
20
20
20

m
0
4
0
4
0
8

16
20

(C9)
3.10822668269941
1.85752072772944
0.57332928943444

—1.07260088543324
2.70422478172723
0.73455215840517
0.89118810020379
1.41533291157431

(C6)
3.10761609357029
1.85715583093161
0.57332926925510

—1.07260084768101
2.70422478070659
0.73455215812998
0.89118809986957
1.41533291104048

[22)
3.10822668269940
1.85752072772950
0.57332928943450

—1.07260088543320
2.70422478070660
0.73455215812998
0.89118809986958
1.41533291104050

The lattice sums se (() are related to the static lattice
sums Ue [23,24] by means of the formula

) )
2E+ 1 (E —m)!

4vr (E + m)! U] (C8)

The formula (C7) provides us a representation of the
static lattice sums by series over the reciprocal lattice.
The convergence of these series may be accelerated by
multiplying by ( +2 both sides of (C7) and integrating
over (. The integrals involving the spherical Bessel func-
tions are evaluated by means of (27). Thus, after q suc-
cessive integrations, we have

With this notation and taking into account the fact that
the term for 6 = 0 in (C5) vanishes if E ) 3, the series on
the right-hand side of (C2) may be written in the form

- je(Ka()—i ), Ye~(OI„(p'h, ) = se~((). (C7)V „Kh ' 2l+ 1

Se - — i, " ', —,+ ye(nk;()se ((). (C10)
4m .e Ye* (8;,y;) 1

+4vr jp (k;$)
V k; n(1 —n~)

S jp (nk;() — —yp (nk;()—JJ 1
Qp ~

g4
/4~ ~ jp(Ka()
ek.V +- g 2

hgo
(C11)

We mention that the second term in (C10) is dominant,
being of the order (1/k;)e+ .

The lattice sums of order 8 = 0 and E = 2 are special
cases and we will analyze them separately. We mention
that the lattice sums of order E = 1 are special cases too,
but we will not expand their behavior as these lattice
sums are not involved in our considerations concerning
the quasistatic limit of the Rayleigh identity. However,
the lattice sums of order E = 1 may be treated in the
same way as the lattice sum of order E = 0.

For S = 0, k = o.k;, and k, 0, the lattice sum S&0
from (Cl) may be written in the form

(2E+ 2q+ 1)!!4~(s .e
(2E —1)!! V

~ - je+.(Ka&)
&& g. (K ~) + Ye (~a &Pa).

h+0
(C9)

We apply the Cauchy integral test to the series over the
reciprocal lat tice

f jp (K() 4vr sin x 2n

K2 ( p x

For E & 3, in the limit k, -+ 0, taking into account
the behavior of the spherical Bessel functions for small
arguments, given by (A5) and (A6), we may express the
dynamic lattice sums in the form

Therefore, this series converges for ( g 0 and we will
denote its value by Pp((). Further, we substitute in (Cll)
the series expansions of yp (z) / jp (z) and 1/ jp (z), for small
arguments

TABLE III. The static lattice sums Ue from (C15), evaluated by means of (C9) w'ith q = 15,
hi, 2, s C [

—30, 30], and ( = 1. The fourth column displays the static lattice sums given by (C6) with
p] Q 3 E [—30, 30], while the last column contains numerical values from Ref. [22], obtained by an
independent method.

4
4
6
6

20
20
20
20

m
0
4
0
4
0
8

16
20

(C9)
3.10822668269944
1.85752072772946
0.57332928943446

—1.07260088543325
2.70422478080866
0.73455215815726
0.89118809990286
1.41533291109368

(C6)
3.10795084275112
1.85735588183049
0.57332928531616

—1.07260087772843
2.70422478070659
0.73455215812998
0.89118809986957
1.41533291104048

[22]
3.10822668269940
1.85752072772950
0.57332928943450

—1.07260088543320
2.70422478070660
0.73455215812998
0.89118809986958
1.41533291104050
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1 nk, ( (nk;() s

nk, ( 3 45Soo
1

/4rr 1 1

V n(l —n2) ks

— " 1+ ""'+o(k') —'~ (~)oV 6 ' k,.
(C12)

4rr &2* (~, , y, ) 1

4m. &2* (0, , y, ) 1
V o3 k3

(~l;, p;) 1—+ y2(nk, ()s2 ((). (C14)

In the case I = 2, the term for h = 0 in (C5) has the
for xn

so that (C5) takes the form

The lattice sums 82 are related to the static lattice
sums U2 [23,24] by the general formula (C8).

In Tables II and III we display the numerical results
obtained from (C9) for different orders of acceleration q
and different number of terms in the series, with ( = 1.
These results are compared with numerical values given
by (C6) for the same number of terms in the series, also
with ( = 1. In order to compare our results with those
reported by Berman and Greengard [22] we changed the
formula (C8) into

By this method, we obtain

V s2 (()
4~ 5( (C13)

st (1) = U~4' (C15)
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